Narrow Band Gap AgInTe2 Solar Cells Fabricated by Printing Method

Duy-Cuong Nguyen, Seigo Ito


AgInTe2 micron-particles were synthesized by mechanical ball milling method. Only AgInTe2 phase was obtained in the powder after ball milling from the mixture of elements (Ag, In, and Te). AgInTe2 particles had the variation in the size and the biggest particle was approximately 2 µm. AgInTe2 solar cells were fabricated as <AgInTe2/In2S3/TiO2/FTO> superstrate structure by doctor-blade printing, and were annealed at various temperatures under nitrogen ambient. AgInTe2 after annealing showed high crystallinity and two band gaps of 0.67 and 0.86 eV. Although no photocurrent was observed after annealing below 350 °C, the photocurrent was observed in AgInTe2 superstrate solar cells after annealing over 400 °C. The short-circuit photocurrent density strongly increased up to 18 mA/cm2 for the samples annealed at 600 °C for 5 min.

Key words: AgInTe2; Solar cells; Printing method


AgInTe2; Solar cells; Printing method

Full Text:



[1] Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., & Powalla, M. (2011). New World Record Efficiency for Cu(In,Ga)Se2 Thin-Film Solar Cells Beyond 20%. Prog. Photovolt: Res. Appl., 19(7), 894-897.

[2] Barkhouse, D. A. R., Gunawan, O., Gokmen, T., Todorov, T. K., & Mitzi, D. B. (2012). Device Characteristics of a 10.1 % Hydrazine-Processed Cu2ZnSn(Se,S)4 Solar Cell. Prog. Photovolt: Res. Appl., 20(1), 6-11.

[3] Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., & Noufi, R. (2008). 19.9%-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. Prog. Photovolt: Res. Appl., 16(3), 235-239.

[4] Todorov, T. K., Reuter, K. B., & Mitzi, D. B. (2010). High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Adv. Mater., 22(20), E156-E159.

[5] Braunger, D., Hariskos, D., Walter, T., & Schock, H. W. (1996). An 11.4% Efficient Polycrystalline Thin Film Solar Cell Based on CuInS2 with a Cd-Free Buffer Layer. Sol. Energy Mater. Sol. Cells, 40(2), 97-102.

[6] Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2012). Solar Cell Efficiency Tables (Version 40). Prog. Photovolt: Res. Appl., 20(5), 606-614.

[7] Bett, A. W., Dimroth, F., Guter, W., Hoheisel, R., Oliva, E., Phillips, S. P., Schone, J., Siefer, G., Steiner, M., Wekkeli, A., Welser, E., Meusel, M., Kostler, W., & Strobl, G. (2009). Highest Mutli-Junction Solar Cell for Terrestrial and Space Application. The 24th European Photovoltaic Solar Cell Conference and Exhibition, 21-25 September 2009, Hamburg, Germany.

[8] Shahrjerdi, D., Bedell, S. W., Ebert, C., Bayram, C., Hekmatshoar, B., Fogel, K., Lauro, P., Gaynes, M., Gokmen, T., Ott, J. A., & Sadana, D. K. (2012). High-Efficiency Thin-Film InGaP/InGaAs/Ge Tandem Solar Cells Enabled by Controlled Spalling Technology. Appl. Phys. Lett., 100(5), 053901.

[9] Maruyama, E., Okamoto, S., Terakawa, A., Shinohara, W., Tanaka, M., & Kiyama, S. (2002). Toward Stabilized 10% Efficiency of Large-Area (>5000 cm2) a-Si/a-SiGe Tandem Solar Cells Using High-Rate Deposition. Sol. Energy Mater. Sol. Cells, 74(1-4), 339-349.

[10] Mc Cambridge, J. D., Steiner, M. A., Unger, B. L., Emery, K. A., Christensen, E. L., Wanlass, M. W., Gray, A. L., Takacs, L., Buelow, R., McCollum, T. A., Ashmead, J. W., Schmidt, G. R., Haas, A. W., Wilcox, J. R., Meter, J. V., Gray, J. L., & Moore, D. T. (2011). Compact Spectrum Splitting Photovoltaic Module Withhigh Efficiency. Prog. Photovolt: Res. Appl., 19(3), 352-360.

[11] Goh, E. S. M., Chen, T.P., Sun, C.Q., & Liu, Y.C. (2010). Thickness Effect on the Band Gap and Optical Properties of Germanium Thin Films. J. Appl. Phys., 107(2), 024305.

[12] Retrieved from

[13] Tell, B., Shay, J. L., & Kasper, H. M. (1974). Some Properties of AgA1Te2, AgGaTe2, and AgInTe2. Physical Review B, 9(12), 5203.

[14] Nguyen, D. C., & Ito, S. (2012). Superstrate CuInSe2-Printed Solar Cells on In2S3/TiO2/FTO/Glass Plates. Energy Science and Technology, 3(2), 10-17.

[15] Joint Committee for Powder Diffraction Standards, Powder Diffraction File. No. 85-1575 (JDCPS International Center Diffration Data, 1997).

[16] Jagomgi, A., Krustok, J., Raudoja, J., Grossberg, M., Oja, I., Krunks, M., & Danilson, M. (2005). Photoluminescence and Raman Spectroscopy of Polycrystalline AgInTe2. Thin Solid Films, 480-481(1), 246-249.

[17] Nakada, T., Kume, T., & Kunioka, A. (1998). Superstrate-Type CuInSe2-Based Thin Film Solar Cells by a Low-Temperature Process Using Sodium Compounds. Sol.Energy. Mater. Sol. Cells, 50(1-4), 97-103.




  • There are currently no refbacks.

Copyright (c)

Share us to:   


If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".

We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:;;

 Articles published in Energy Science and Technology are licensed under Creative Commons Attribution 4.0 (CC-BY).


Address: 1020 Bouvier Street, Suite 400, Quebec City, Quebec, G2K 0K9, Canada. 
Telephone: 1-514-558 6138 
Website: Http:// Http://;

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures