The Dynamic and Collision Features of Microscopic Particles Described by the Nonlinear Schrödinger Equation in the Nonlinear Quantum Systems

PANG Xiaofeng

Abstract


The dynamic and collision features of microscopic particles described by nonlinear Schrödinger equation are investigated deeply using the analytic and the Runge-Kutta method of numerical simulation. The results show that the microscopic particles have a wave-corpuscle duality and are stable in propagation. When the two microscopic particles are collided, they can go through each other and retain their form after their collision of head-on from opposite directions, This feature is the same with that of the classical particles. However, a wave peak of large amplitude, which is a result of complicated superposition of two solitary waves, occurs in the colliding process. This displays the wave feature of microscopic particles. Therefore, the collision process shows clearly that the solutions of the nonlinear Schrödinger equation have a both corpuscle and wave feature, then the microscopic particles represented by the solutions have a wave-corpuscle duality. Obviously, this is due to the nonlinear interaction b||2. Thus we can determine the nonlinear Schrödinger equation can describe correctly the natures and properties of microscopic particles in quantum systems.

Key words: Microscopic particle Schrödinger equation; Wave-corpuscle duality; Nonlinear interaction; Collision; Propagation; Quantum mechanics


Keywords


Microscopic particle Schrödinger equation; Wave-corpuscle duality; Nonlinear interaction; Collision; Propagation; Quantum mechanics

References


1] Bohr, D., & Bub, J. (1935). Phys. Rev., 48, 169.

[2] Schrödinger, E. (1935). Naturwissenschaften., 23, 807.

[3] Schrödinger, E. (1926). Phys. Rev., 28, 1049.

[4] Heisenberg, W. Z. (1925). Zeitschrift der Physik, 33, 879.

[5] Born, M., & Infeld, L. (1934). Proc. Roy. Soc. A, 144, 425.

[6] Dirac, P. A. M. (1948). Phys. Rev., 73, 1092.

[7] Diner, S., Farque, D., Lochak, G., & Selleri, F. (1984). The Wave-Particle Dualism. Riedel, Dordrecht (pp. 34-96).

[8] Ferrero, M., & Van der Merwe A. (1997). New Developments on Fundamental Problems in Quantum Physics. Kluwer, Dordrecht (pp. 56-97).

[9] Ferrero, M., & Van der Merwe A. (1995). Fundamental Problems in Quantum Physics. Kluwer, Dordrecht (pp. 48-91).

[10] Broglie de L. (1955). Nuovo Cimento, 1, 37.

[11] Bohm, D. (1951). Quantum Theory (pp. 36-98). Prentice-Hall Englewood Cliffs, New Jersey.

[12] Potter, J. (1973). Quantum Mechanics (pp. 43-105). North-Holland Publishing Co., Amsterdan.

[13] Jammer, M. (1989). The Concettual Development of Quantum Mechanics. Tomash, Los Angeles.

[14] Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics (pp. 51-132). Cambridge University Press, Cambridge.

[15] Einstein, A., Podolsky, B., & Rosen, N. (1935). Phys. Rev., 47, 777.

[16] French, A. P., & Einstein, A. (1979). Centenary Volume (pp. 64-112). Harvard University Press, Cambridge, Mass.

[17] PANG, X. F. (1985). Problems of Nonlinear Quantum Mechanics (pp. 23-167). Sichuan Normal University Press, Chengdu.

[18] PANG, Xiaofeng & FENG, Yuanping (2005). Quantum Mechanics in Nonlinear Systems. New Jersey, World Scientific, Publishing Co..

[19] PANG, Xiaofeng (1994). Theory of Nonlinear Quantum Mechanics. Chongqing, Chinese Chongqing Press.

[20] PANG, Xiaofeng (2009). Nonlinear Quantum Mechanics (pp. 1-312). Beijing, Chinese Electronic Industry Press.

[21] PANG, Xiaofeng (2008). Physica B, 403, 3571.

[22] PANG, Xiaofeng (2008). Fronts of Physics in China, 3, 243.

[23] PANG, Xiaofeng (2008). Nature Sciences, 3(1), 29.

[24] PANG, Xiaofeng (2007). Nature Sciences, 2(1), 42.

[25] PANG, Xiaofeng, Mod. (2009). Phys.Lett., B, 23, 939.

[26] PANG, Xiaofeng (2010). Physica B, 405, 2317.

[27] PANG, Xiaofeng (2009). Physica B, 405, 4327.

[28] PANG, Xiaofeng (1982). Chin. Nature Journal, 4, 254.

[29] PANG, Xiaofeng (2003). Soliton Physics. Chengdu: Sichuan Science and Technology Press.

[30] GUO, Bailin & PANG, Xiaofeng (1987). Solitons. Beijing: Chinese Science Press.

[31] PANG, X. F. (2008). Physica B, 403, 4292.

[32] PANG, X. F. (2008). Frontiers of Physics in China, 3, 413.

[33] PANG, X. F. (2008). Nature Sciences, 3, 29.

[34] PANG, X. F. (1985). Chin. J. Potential Science, 5, 16.

[35] PANG, X. F. (1991). The Theory of Nonlinear Quantum Mechanics. In Lui Hong (Ed.), Research of New Sciences (pp. 16-20). Beijing, Science and Tech. Press.

[36] PANG, X. F. (2006). Research and Development and of World Science and Technology, 28, 11.

[37] PANG, X. F. (2006). Research and Development and of World Science and Technology, 24, 54.

[38] PANG, X. F. (2006). Features of Motion of Microscopic Particles in Nonlinear Systems and Nonlinear Quantum Mechanics. In Sciencetific Proceding-Physics and Others (pp. 53-93), Atomic Energy Press, Beijing.

[39] Zakharov, V. E., & Shabat, A. B. (1972). Sov. Phys. JETP, 34, 62.

[40] Zakharov, V. E., & Shabat, A. B. (1973). Sov. Phys. JETP, 37, 823.

[41] PANG X. F. (1985). J. Low Temp. Phys., 58, 334.

[42] PANG X. F. (1989). Chinese J. Low Temp. and Supercond, 10, 612.

[43] PANG, X. F. (2008). J. Electronic Science and Technology of China, 6, 205.

[44] CHEN, H. H., & LIU, C. S. (1976). Phys. Rev. Lett., 37, 693.

[45] CHEN, H. H. (1978). Phys. Fluids, 21, 377.

[46] PANG, X. F. (2009). Mod. Phys. Lett. B, 23, 939.

[47] PANG, X. F. (1993). Chin. Phys. Lett., 10, 437.

[48] Sulem, C., & Sulem, P. L. (1999). The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (pp. 26-89). Springer, New York.

[49] Makhankov, V. G., & Fedyanin, V. K. (1984). Phys. Rep., 104, 1.

[50] Makhankov, V. G. (1978). Phys. Rep., 35, 1.

[51] PANG, X. F. (2009). Physica B, 404, 3125.

[52] ANG, X. F. (2009). Mod. Phys. Lett. B, 23, 2175.

[53] PANG, X. F. (2003). Phys. Stat. Sol. (b), 236, 34.

[54] PANG, X. F. (2007). Nature Sciences, 2, 42.

[55] PANG, X. F. (2000). Phys. Rev. E, 62, 6989.

[56] Desem, C., & Chu, P. L. (1992). Soliton-Soliton Interactions in Optical Solitons. In J. R. Taylor (Ed.) (pp. 107-351). Cambridge University Press, Cambridge.

[57] Tan, B., & Bord, J. P. (1998). Davydov Soliton Collisions. Phys. Lett., A240, 282.

[58] Stiefel, J. (1965). Einfuhrung in Die Numerische Mathematik. Teubner Verlag, Stuttgart.

[59] Atkinson, K. E. (1987). An Introdution to Numerical Analysis. Wiley, New York Inc..

[60]Aossey, D. W., Skinner, S. R., Cooney, J. T., Williams, J. E., Gavin, M. T., Amdersen, D. R., & Lonngren, K. E. (1992). Phys. Rev., A45, 2606.




DOI: http://dx.doi.org/10.3968%2Fj.ans.1715787020120504.1977

Refbacks

  • There are currently no refbacks.


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".

We only use the following emails to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
caooc@hotmail.com; office@cscanada.net; office@cscanada.org
ans@cscanada.net;ans@cscanada.org

Copyright © Canadian Research & Development Centre of Sciences and Cultures (CRDCSC)
Address:758, 77e AV, Laval, Quebec, H7V 4A8, Canada

Telephone: 1-514-558 6138
Http://www.cscanada.net; Http://www.cscanada.org
E-mail:caooc@hotmail.com; office@cscanada.net