Nonoscillatory Solutions for System of Delay Difference Equations on Time Scales
Abstract
In this paper, we consider certain system of delay difference equations
$$ \Delta{y_{1}(n)} = p(n)y_{2}(n)~~~~~~~ $$
$$ \Delta{y_{2}(n)} = -f(n,y_{1}(g(n)))$$
where $p(n)\in C[N_{0},R^{+}]$,~$yf(n,y)\geq{0}$,~$f\in{C[N_{0}\times{R},R]}$,~$y\sup\limits_{n\geq{n_{0}}}\mid f(n,y)\mid>0$ for any $y\neq0$,~$g(n)\in C[N_{0},R]$,~$g(n)\leq n$.
$$ \Delta{y_{1}(n)} = p(n)y_{2}(n)~~~~~~~ $$
$$ \Delta{y_{2}(n)} = -f(n,y_{1}(g(n)))$$
where $p(n)\in C[N_{0},R^{+}]$,~$yf(n,y)\geq{0}$,~$f\in{C[N_{0}\times{R},R]}$,~$y\sup\limits_{n\geq{n_{0}}}\mid f(n,y)\mid>0$ for any $y\neq0$,~$g(n)\in C[N_{0},R]$,~$g(n)\leq n$.
Keywords
Nonoscillation; System; Difference equations; Time scales
Full Text:
PDFDOI: http://dx.doi.org/10.3968/j.sms.1923845220120502.983
DOI (PDF): http://dx.doi.org/10.3968/g3173
Refbacks
- There are currently no refbacks.
Copyright (c)
Please send your manuscripts to sms@cscanada.net,or sms@cscanada.org for consideration. We look forward to receiving your work.
Articles published in Studies in Mathematical Sciences are licensed under Creative Commons Attribution 4.0 (CC-BY).
STUDIES IN MATHEMATICAL SCIENCES Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:caooc@hotmail.com
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures