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1. INTRODUCTION

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued
single sequences, respectively.

We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set
of positive integers. Then, w2 is a linear space under the coordinate wise addition
and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later on,
they were investigated by Hardy [8], Moricz [12], Moricz and Rhoades [13], Basarir
and Solankan [2], Tripathy [20], Colak and Turkmenoglu [6], Turkmenoglu [22], and
many others.

Let us define the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : supm,n∈N |xmn|tmn <∞
}
,
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Cp (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|tmn = 1for some l ∈ C
}
,

C0p (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1
}
,

Lu (t) :=
{

(xmn) ∈ w2 :
∑∞
m=1

∑∞
n=1 |xmn|

tmn <∞
}
,

Cbp (t) := Cp (t)
⋂
Mu (t) and C0bp (t) = C0p (t)

⋂
Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1
for all m,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the sets
Mu, Cp, C0p,Lu, Cbp and C0bp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gökhan and Co-
lak [27,28] have proved that Mu (t) and Cp (t) , Cbp (t) are complete paranormed
spaces of double sequences and gave the α−, β−, γ− duals of the spacesMu (t) and
Cbp (t) . Quite recently, in her PhD thesis, Zelter [29] has essentially studied both
the theory of topological double sequence spaces and the theory of summability of
double sequences. Mursaleen and Edely [30] have recently introduced the statistical
convergence and Cauchy for double sequences and given the relation between sta-
tistical convergent and strongly Cesàro summable double sequences. Nextly, Mur-
saleen [31] and Mursaleen and Edely [32] have defined the almost strong regularity
of matrices for double sequences and applied these matrices to establish a core the-
orem and introduced the M−core for double sequences and determined those four
dimensional matrices transforming every bounded double sequences x = (xjk) into
one whose core is a subset of the M−core of x.

More recently, Altay and Basar [33] have defined the spaces BS, BS (t), CSp,
CSbp, CSr and BV of double sequences consisting of all double series whose sequence
of partial sums are in the spacesMu, Mu (t), Cp, Cbp, Cr and Lu, respectively, and
also examined some properties of those sequence spaces and determined the α−
duals of the spaces BS, BV, CSbp and the β (ϑ)− duals of the spaces CSbp and
CSr of double series. Quite recently Basar and Sever [34] have introduced the
Banach space Lq of double sequences corresponding to the well-known space `q
of single sequences and examined some properties of the space Lq. Quite recently
Subramanian and Misra [35] have studied the space χ2

M (p, q, u) of double sequences
and gave some inclusion relations.

We need the following inequality in the sequel of the paper. For a, b,≥ 0 and
0 < p < 1, we have

(a+ b)p ≤ ap + bp (1)

The double series
∑∞
m,n=1 xmn is called convergent if and only if the double

sequence (smn) is convergent, where smn =
∑m,n
i,j=1 xij(m,n ∈ N) (see [1]).

A sequence x = (xmn) is said to be double analytic if supmn |xmn|1/m+n
< ∞.

The vector space of all double analytic sequences will be denoted by Λ2. A sequence

x = (xmn) is called double entire sequence if |xmn|1/m+n → 0 as m,n → ∞. The
double entire sequences will be denoted by Γ2. A sequence x = (xmn) is called

double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞. The double gai
sequences will be denoted by χ2. Let φ = {all finite sequences} .
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Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence
is defined by x[m,n] =

∑m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes the double

sequence whose only non zero term is a 1 in the (i, j)
th

place for each i, j ∈ N.
An FK-space (or a metric space) X is said to have AK property if (=mn) is a

Schauder basis for X. Or equivalently x[m,n] → x.
An FDK-space is a double sequence space endowed with a complete metriz-

able; locally convex topology under which the coordinate mappings x = (xk) →
(xmn)(m,n ∈ N) are also continuous.

If X is a sequence space, we give the following definitions:
(i) X

′
= the continuous dual of X;

(ii) Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| <∞, for eachx ∈ X

}
;

(iii) Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, foreachx ∈ X

}
;

(iv) Xγ =
{
a = (amn) : supmn ≥ 1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ <∞, foreachx ∈ X} ;

(v) letX beanFK − space ⊃ φ; thenXf =
{
f(=mn) : f ∈ X ′

}
;

(vi) Xδ =
{
a = (amn) : supmn |amnxmn|1/m+n

<∞, foreachx ∈ X
}

;

Xα, Xβ , Xγ are called α− (orKöthe−Toeplitz) dual of X,β−(or generalized−
Köthe−Toeplitz)dual ofX, γ− dual of X, δ − dual ofX respectively.Xα is defined
by Gupta and Kamptan [24]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but Xα ⊂ Xγ

does not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz [36] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, c0 and `∞
denote the classes of all, convergent,null and bounded sclar valued single sequences
respectively. The above spaces are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk|.

Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn −
xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N.

Let X be the space of double sequences, converging with respect to some linear
convergence rule v− lim : X → <. The sum of a double series

∑
i,j xij with respect

to this rule is defined by v −
∑
i,j xij := v − limSmn. We denote w2 and Ω are

called as the double sequence spaces respectively. Let us define the following sets
of double sequences: A sequence x = (xmn) ∈ Ω is said to be double analytic of t if

supmn |xmn|tmn/m+n
<∞.

The vector space of all prime sense double analytic sequences are usually denoted
by Λ2 (t).

If tmn = 1 then a sequence x = (xmn) ∈ Ω is said to be double analytic if
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supmn |xmn|1/m+n
<∞.

The vector space of all prime sense double analytic sequences are usually denoted
by Λ2. The space Λ2 is a metric space with the metric

d (x, y) = supmn

{
|xmn − ymn|1/m+n

: m,n = 1, 2, · · ·
}

(2)

for all x = (xmn) and y = (ymn) in Λ2, respectively.
A sequence x = (xmn) ∈ Ω is called a double entire sequence if

p− limm,n→∞ |xmn|tmn/m+n
= 0

We denote Γ2
p (t) as the class of prime sense double entire sequences.

Γ2
bp (t) = Γ2

p (t)
⋂

Λ2 (t)

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N.
In the case tmn = 1 for all m,n ∈ ℵ; Λ2 (t) , Γ2

p (t) and Γ2
bp (t) reduce to the sets

Λ2, Γ2
p and Γ2

bp, respectively.

In the present paper, we introduce the space χ2 :
A sequence x = (xmn) ∈ Ω is called a double gai sequence if

((m+ n)! |xmn|)1/m+n → 0 as m,n→∞.

We denote χ2 as the class of prime sense double gai sequences. The space χ2 is
a metric space with the metric

d̃ (x, y) = supmn

{
((m+ n)! |xmn − ymn|)1/m+n

: m,n = 1, 2, · · ·
}

(3)

for all x = (xmn) and y = (ymn) in χ2, respectively.

2. THE DOUBLE SEQUENCE SPACE χ2

In this section, we give the some inclusion relations concerning the space χ2, we
establish that the α− and γ− duals of a space of double sequences are identical
whenever it is solid and determine β (v)− dual of the space χ2 for v ∈ {p, bp, r}
which is not coincides with the α− and γ− duals of the space χ2.

The α− dual Xα, β (v)− dual Xβ(v) with respect to the v− convergence for
v ∈ {p, bp, r} and the γ− dual Xγ of a double sequence space X are respectively
defined by

(i) Xα =

{
a = (amn) ∈ Ω :

∞∑
m,n=1

|amnxmn| <∞, for all x ∈ X

}

(ii) Xβ(v) =

{
a = (amn) ∈ Ω : v −

∞∑
m,n=1

amnxmn exists, forall x ∈ X

}

(iii) Xγ =

{
a = (amn) ∈ Ω : supM,N∈N

∣∣∣∣∣ M,N∑
m,n=1

amnxmn

∣∣∣∣∣ <∞, foreachx ∈ X
}

;

It is easy to see for any two spaces λ, µ of double sequences that µα ⊂ λα

whenever λ ⊂ µ and λα ⊂ λγ . Additionally, it is known that the inclusion λα ⊂ λβ(v)

holds while the inclusion λβ(v) ⊂ λγ does not hold, since the v− convergence of the
sequence of partial sums of a double series does not imply its boundedness.

The space λ of double sequence is said to be solid if and only if

82



Subramanian, N., & Misra, U. K. /Studies in Mathematical Sciences, 7 (2), 2013

λ̃ = {(ymn) ∈ Ω : ∃ (xmn) ∈ λsuchthat |ymn| ≤ |xmn| for allm, n ∈ N} ⊂ λ

The space λ of double sequences is also said to be monotone if and only if
m0λ ⊂ λ where m0 is the span of the set of all sequences of zero’s and one’s and

m0λ = {ax = (amnxmn) : a ∈ m0, x ∈ λ} .

If λ is monotone, then λα = λβ(v) ([29], p. 36) and λ is monotone whenever λ is
solid

Prior to giving the theorem which asserts that the α− and γ− duals of a solid
space of double sequences are identical, we quote two lemmas which are needed in
proving the theorem.

Lemma 1 ([50], Theorem 2, p. 279)
A positive term double series converges to its l.u.b (that is the l.u.b of its partial

sums) if it is bounded above. otherwise it diverges to +∞.
Lemma 2 ([49], p. 382)
A double series is absolutely convergent if and only if if the set

m,n∑
i,j=1

|xij | : m,n ∈ N


is a bounded set of all real numbers.

3. MAIN RESULTS

3.1. Proposition

χ2 is solid.

Proof. Let |xmn| ≤ |ymn| with y = (ymn) ∈ χ2.

((m+ n)! |xmn|)1/m+n ≤ ((m+ n)! |ymn|)1/m+n
.

But ((m+ n)! |ymn|)1/m+n ∈ χ2, because y ∈ χ2. That is,

((m+ n)! |ymn|)1/m+n → 0asm, n→∞

and
((m+ n)! |xmn|)1/m+n → 0asm, n→∞.

Therefore, x = (xmn) ∈ χ2. This completes the proof.

3.2. Theorem 1

The α− dual of the space Λ2 is the space η2, where

η2 =
⋂

N∈N−{1}

{
x = (xmn) ∈ Ω :

∑
mn

|xmn|Nm+n <∞

}
.

Proof. First we show that η2 ⊂
(
Λ2
)α
. Let x ∈ η2 and y ∈ Λ2. Then we can find a

positive integer N such that
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|ymn|1/m+n
< max

(
1, supm,n≥1

(
|ymn|1/m+n

))
< N for allm, n.

Hence we may write

|
∑
mn xmnymn| ≤

∑
mn |xmnymn| ≤

∑
mn |xmn|Nm+n

Since x ∈ η2, the series on the right side of the above inequality is convergent,
whence x ∈

(
Λ2
)α
. Hence

η2 ⊂
(
Λ2
)α

(4)

Now we show that
(
Λ2
)α ⊂ η2. For this, let x ∈

(
Λ2
)α
, and suppose that x /∈ Λ2.

Then there exists a positive integer N > 1. such that∑
mn |xmn|Nm+n =∞

If we define ymn = Nm+n Sgnxmnm,n = 1, 2, · · · , then y ∈ Λ2. But, since

|
∑
mn xmnymn| =

∑
mn |xmnymn| =

∑
mn |xmn|Nm+n =∞

we get x /∈
(
Λ2
)α
, which contradicts to the assumption x ∈

(
Λ2
)α
. Therefore

x ∈ η2 (
Λ2
)α ⊂ η2 (5)

From (4) and (5) we are granted
(
Λ2
)α

= η2. This completes the proof.

3.3. Theorem 2

The α− dual of the space χ2 is the space η2, where

η2 =
⋂

N∈N−{1}

{
x = (xmn) ∈ Ω :

∑
mn

|xmn|Nm+n <∞

}
.

Proof. We know that χ2 ⊂ Λ2. ⇒
(
Λ2
)α ⊂ (χ2

)α
. But

(
Λ2
)α

= η2, by Theorem
5.2. Therefore

η2 ⊂
(
χ2
)α

(6)

For this, let x ∈
(
χ2
)α
, and suppose that x /∈ χ2. Then there exists a positive

integer N > 1 such that
∑
mn |xmn|

1

(m+ n)!
Nm+n =∞. If we define

ymn =
1

(m+ n)!
Nm+nSgnxmnm,n = 1, 2, · · · ,

then y ∈ χ2. But, since

|
∑
mn xmnymn| =

∑
mn |xmnymn| =

∑
mn |xmn|

1

(m+ n)!
Nm+n =∞,

we get x /∈
(
χ2
)α
, which contradicts to the assumption x ∈

(
χ2
)α
. Therefore

x ∈ η2. (
χ2
)α ⊂ η2 (7)

From (6) and (7) we are granted
(
χ2
)α

= η2. This completes the proof.
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3.4. Theorem 3

If a given double sequence space χ2 is solid, then the equality
(
χ2
)α

=
(
χ2
)γ

holds.

Proof. It is enough show that the inclusion
(
χ2
)γ ⊂ (χ2

)α
holds. Suppose that the

sequence space χ2 is solid and take y = (ymn) ∈ χγ . Then,

supi,j∈N

∣∣∣∣∣ i,j∑
m,n=1

xmnymn

∣∣∣∣∣ <∞
for any x = (xmn) ∈ χ2. Now, define the sequence z = (zmn) via the sequence
x = (xmn) ∈ χ2 by

((m+ n)!zmn)
1/m+n

= ((m+ n)!xmn)
1/m+n

Sgn ((m+ n)!xmnymn)
1/m+n

for all m,n ∈ N. Then z = (zmn) ∈ χ2. Since χ2 is solid and |zmn| ≤ |xmn| for all
m,n ∈ N. Therefore

sup
i,j

i,j∑
m,n=1

|xmnymn|

= sup
i,j

i,j∑
m,n=1

((m+ n)!xmn)
1/m+n

Sgn ((m+ n)! xmnymn)
1/m+n

= sup
i,j∈N

∣∣∣∣∣
i,j∑

m,n=1

ymnzmn

∣∣∣∣∣ <∞
This shows that the positive term double series

∑
mn |xmnymn| is bounded

which is convergent by Lemma (3). Therefore, Once can see by Lemma 4 that
(xmnymn)mn∈N ∈ χ2. Since x ∈ χ2 is arbitrary, y must be in

(
χ2
)α
, (i.e)the in-

clusion
(
χ2
)γ ⊂ (χ2

)α
holds. Similarly

(
χ2
)α ⊂ (χ2

)γ
holds. This step is easy.

Therefore not given to the proof. This completes the proof.

3.5. Theorem 4

If χ2 is solid then
(
χ2
)α

=
(
χ2
)γ 6= (χ2

)β(v)
.

Proof. We observe that the double sequence space χ2 is solid. This yields to us that
the double sequence space χ2 is monotone which implies the fact that the α−duals,
γ− duals and the β (v)− duals of the space χ2 are not identical. This completes
the proof.

3.6. Theorem 5

The β (v)− dual of the space χ2 is the space Λ2.

Proof. Let us take any x ∈ Λ2 and y ∈ χ2. Consider the inequalities

|xmnymn| ≤ |xmn|Λ2 + |ymn|χ2

satisfied for all m,n ∈ N. Therefore, we derive that
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∑
mn |xmnymn| ≤

∑
mn |xmn|Λ2 +

∑
mn |ymn|χ2 <∞,

which leads us to the fact that x ∈
(
χ2
)α
, (i.e.) the inclusions

Λ2 ⊂
(
χ2
)α ⊂ (χ2

)β(v)
(8)

hold.
Conversely, take any y = (ymn) ∈

(
χ2
)β(v)

. For establishing the inclusion(
χ2
)β(v) ⊂ Λ2. Let us consider the linear functional fpq and the double sequence

y[pq] defined by

fpq : χ2 7−→ <

x = (xmn) 7−→ fpq :=
∑k=1
m,n=1 xmnymn

and

y[pq] =



y11, y13, ...y1n, 0, ...
y21, y23, ...y2n, 0, ...
.
.
.

yn1, yn2, ...ynn, 0, ...
0, 0, ...0, 0, ...


for every p, q ∈ N. Then, since y[pq] ∈ Λ2, we obtain by Hölders inequality

|fpq (x)| ≤
∑k
m,n=1 |xmnymn| =

∑
mn

∣∣xmny[pq]
∣∣ ≤ [d (x, 0)]χ2 ·

[
d
(
y[pq], 0

)]
Λ2

for each x = (xmn) ∈ χ2 which yields the continuity of the linear functionals fpq.
Therefore, we have

‖fpq‖ ≤
[
d
(
y[pq], 0

)]
Λ2
, for each p, q ∈ N. (9)

Let us consider the sequence x(pq) =
{
x

(pq)
mn

}
m,n∈N

to prove the reverse inequal-

ity, defined by

x(pq)
mn =


|ymn|Λ2

ymn
, if ymn 6= o, and m,n ≤ p, q,

0, otherwise

Then, it is clear that x(pq) ∈ χ2 and one can see that[
d
(
x(pq), 0

)]
χ2 =

[
d
(
y[pq], 0

)]
Λ2 .

This leads us to the consequence for all p, q ∈ N that∣∣fpq (x(pq)
)∣∣[

d
(
x(pq), 0

)]
χ2

=

(∑k
m,n=1 |ymn|

1/m+n
)

Λ2[
d
(
x(pq), 0

)]
χ2

=
[
d
(
y[pq], 0

)]
Λ2 .
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Hence, [
d
(
y[pq], 0

)]
Λ2
≤ ‖fpq‖ for all p, q ∈ N (10)

Therefore, we have (8) and (9) that ‖fpq‖ =
[
d
(
y[pq], 0

)]
Λ2 for all p, q ∈ N.

By applying the Banach-Steinhauss Theorem, one can observe by our hypothesis

that the sequence (fpq) of linear functionals converges pointwise. Since
(
χ2, |.|χ2

)
and (C, |.|) are Banach metric spaces, the linear functional defined by

fst : χ2 7−→ <

x = (xmn) 7−→ fst (x) = limp,q→∞fpq (x) =
∑
mn xmnymn

is continuous, and

‖fst‖ ≤ supp,q∈N ‖fpq‖

= sup
p,q∈N

[
d
(
y[pq], 0

)]
Λ2
<∞

holds. Thus, we have y ∈ Λ2 because of

‖fst‖ ≤ sup
p,q∈N

[
d
(
y[pq], 0

)]
Λ2

= sup
p,q∈N

(
p,q∑

m,n=1

|ymn|m+n

)1/m+n

Λ2

=

(∑
mn

|ymn|m+n

)1/m+n

Λ2

<∞

That is to say that the inclusion(
χ2
)β(v) ⊂ Λ2 (11)

From (8) and (11) we are granted
(
χ2
)β(v)

= Λ2. This completes the proof.
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