
ISSN 1923-8444 [Print] 
ISSN 1923-8452 [Online]

www.cscanada.net
www.cscanada.org

Studies in Mathematical Sciences
Vol. 7, No. 2, 2013, pp. 55-60
DOI:10.3968/j.sms.1923845220130702.1760

55

Countable Semiadditive Functionals and the 
Hardy–Littlewood Maximal Operator

E. I. Berezhnoj[a], and E. I. Smirnov[b],*

[a]Department of Mathematics, State University, Yaroslavl, Russia.
[b]Department of Mathematics, State Pedagogical University, Yaroslavl, Russia.

* Corresponding author.
Adress: Department of Mathematics, State Pedagogical University, Yaroslavl, 
Russia; E-Mail: e.smirnov@yspu.org

Received: August 20, 2012/ Accepted: November 14, 2012/ Published: 
November 30, 2013

Abstract: We describe the continuity of nonlinear Hardy–Littlewood 

maximal operator in nonmetricable function space
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, 01 p< < ∞, Ω  is a measurable subset of Rn with finite measure. 
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1.  INTRODUCTION 

The present article consists of two parts. The first part is devoted to the classical 
operator defined by the Hardy–Littlewood maximal function in the spaces 
Lp(Ω), where Ω is a measurable subset of Rn. The maximal function operator was 
introduced in the one-dimensional case by Hardy and Littlewood in 1930. The 
boundedness of this operator in Lp(R) (1<p≤∞) was actually established by them. 
The fundamental multi-dimensional inequality of weak type for the maximal 
function was obtained in the late 1930s by N. Wiener. Various modifications 
of the maximal function operator have been studied intensively also in recent 
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times. This is connected with the fact that the maximal function operator is a 
very important operator in analysis [01-02]. It appears in the theory of Fourier 
series and in measure theory, in the theory of differentiation of integrals with 
respect to various collections of sets, in the theory of singular integrals, and 
so on (see, e.g., [03]). Therefore interest in it has not diminished even at the 
present time. Along the lines of the classical bounds of this operator we provide 
theorems concerning the boundedness of the Hardy–Littlewood maximal 
function operator in the inductive limit of Lebesgue spaces. These theorems are 
useful for the investigation of extremal function spaces (not necessarily Banach 
spaces), in which the given operator is bounded or continuous. 

As usual we will denote Lebesgue measure by µ and by S(µ)=S(Rn, Σ, µ) the space of 
functions on Rn which are measurable with respect to Σ, the algebra of µ -measurable 
sets in Rn. We will denote by || f | X || the norm of f in a normed space (X,||.||). 

2.  H A R DY– L I T T L E WO O D  M A X I M A L  F U N C T I O N  
OPERATOR 

For a function f ∈ L1,loc Hardy and Littlewood introduced a new function Mf, 
which plays an important role in the theory of functions of a real variable and in 
all harmonic analysis. This function can be defined for each x∈Rn by means of the 
identity: 

( )0

1( ) sup ( )
( ( )) B x rr

Mf x f t dt
B x rµ ,>

= | | .
, ∫

Here, as usual, B(x,r) is the open ball of radius r with centre at the point x. The 
function Mf(x) is measurable since the set {x:Mf(x)>a} is open for any a>0. The 
operator Mf(x) is called the Hardy–Littlewood maximal operator. 

This operator Mf(x):L1,loc →S(µ) has the following properties:

(i) Mf(x)≥0 for any f(x)∈L1,loc and x∈Rn ; 
(ii) for any f1(x), f2(x)∈L1,loc, we have the inequality:

1 2 1 2( )( ) ( ) ( )M f f x Mf x Mf x+ ≤ + ;

(iii) for any f(x)∈L1,loc, a∈R and x∈Rn, we have the identity:

( )( ) ( )M f x Mf xα α=| | .

Thus we can say that the operator Mf(x)  is positive (property (i)), subadditive 
(property (ii)), and positively homogeneous (property (iii)). 

The operator Mf(x) clearly satisfies the inequality:

Mf L f L∞ ∞|| | ||≤|| | ||.

Because of subadditivity the last inequality implies the continuity of the 
operator M:L∞→L∞ and also the continuity and countable semiadditivity of 
the functional ρ(f)=||Mf|L∞|| on L∞ [04]. As we will now see, this operator also 
satisfies another important inequality. 
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We say that a positively homogeneous subadditive operator T is of weak type   
(p,p) (1≤p<∞)if for any (a>0) the inequality 

( )( )
ppc p f L{x Tf x }µ α

α
 || | ||

:| |> ≤  
 

holds, with constant c(p) independent of f and a>0. 
For the proof of the weak bound for the operator Mf we require the classical 

lemma of Vitali. 
Lemma 1. (Vitali) Let E be a measurable set in Rn and suppose there is a 
covering of this set by a family of balls {B(x,r(x)):x∈G}. Then a sequence (finite 
or infinite) of nonintersecting balls {B(xi,r(xi))} can be chosen from this family in 
such a way that the inequality 

    ( ( ( ))) ( )i i n
i

B x r x c Eµ µ, ≥ ,∑   (1)

is satisfied, where cn is a positive constant depending only on the dimension; we 
may put cn=5n .

Proof. Let us describe the selection of the balls B(xi,r(xi)). First we choose as 
B(x1,r(x1)) a ball which is “almost” the biggest possible; this means that 

1
1( ) sup ( )
2 x G

r x r x
∈

≥ ..

Let us suppose that B(x1,r(x1)), ... , (xk-1,r(xk-1)) have already been chosen. Again 
we choose as B(xk,r(xk)) a ball which is “almost” the biggest possible among those 
remaining and which is disjoint from each of the balls B(x1,r(x1)), ... , B(xk-1,r(xk-1)), 
that is to say, 

1

1

1( ) sup ( ) ( ( )) ( ( ( )))
2

k

k j j
j

r x {r x B x r x B x r x }
−

=

≥ : , ∩ , = ∅ .


Thus the desired sequence of balls {B(xi,r(xi))} is constructed by induction. 
If the selection process terminates at the N -th step, then the inequality 

1
( ) ( ( ( )))

N

i i
i

E B x r xµ µ
=

≤ ,∑

is satisfied and the lemma is proved with cn=1. 
Suppose that the selection process does not terminate after a finite number 

of steps. If ∑i µ(B(xi,r(xi)))=∞, then (1) is established. Now let us consider the 
case where ∑i µ(B(xi,r(xi)))<∞ We will denote by B*(xi,r*(xi)) the ball with the 
same centre as B(xi,r(xi)) but expanded five times, i.e. r*(xi)=5r(xi). It will be 
established that the inclusion 

    ( ( ))i i
i

E B x r x∗ ∗⊆ ,
  (2)

holds. For the proof of (2) it is enough to show that if x0∈G then 
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0 0( ( )) ( ( ))i i
i

B x r x B x r x∗ ∗, ⊆ , .


Let us suppose that B(x0,r(x0)) is not a member of {B(xi,r(xi))} .  It 
follows from the convergence of the series ∑i µ(B(xi,r(xi))) that limi r(xi)=0. 
Therefore we may choose the first k such that r(xk+1)< ¹_² r(x0). Then the ball 
B(x0,r(x0)) intersects with one of the balls {B(xi,r(xi))}k

i=1. It is clear that for 
all x0∈G 

0 0
1

( ( )) ( ( ))
k

i i
i

B x r x B x r x∗ ∗

=

, ⊆ , .


Therefore 

( ) ( ( ( ))) 5 ( ( ( )))n
i i i i

ii
E B x r x B x r xµ µ µ∗ ∗≤ , = , .∑ ∑

The lemma is proved. 
Theorem 1. The Hardy–Littlewood maximal operator Mf has weak type (1,1). 
Proof. Suppose that f(x)∈L1,ioc and a>0 are given and let us consider the set 

( ) R ( )nU f {x Mf x }α α, = ∈ : > .

For each x∈U(a,f) we can choose a ball B(x,r) such that 

( )

1 ( )
( ( ( ))) B x r

f t dt
B x r x

α
µ ,

| | > .
, ∫

It is clear that 

( )

( ) ( ( ))
x U f

U f B x r x
α

α
∈ ,

, ⊆ , .


We apply Vitali’s covering lemma for the collection 
x∈U(a,f)B(x,r(x)) and 

obtain a sequence of balls {B(xi,r(xi))} with nonintersecting interiors, for which 
the following relation holds: 

0
0 ( ( ))

( ( )) ( ( ( ))) ( )
i i

i i B x r x
i

cU f c B x r x f t dtµ α µ
α ,

, ≤ , ≤ | |∑ ∫

10 00
( ( )) R

( ) ( )
n

i ii
B x r x

c c cf t dt f t dt f L
α α α,

= | | ≤ | | = || | ||.∫ ∫


The theorem is proved. 
Theorem 2. (See, e.g., [03]) The Hardy–Littlewood maximal operator Mf is 

bounded in any Lp for p∈(1,∞). 
Proof. The case p=∞ is obvious. Let p∈(1,∞) and let f(x)∈Lp be given. We 

apply the technique of partition of a function to its “big” and “small” parts. Fix 
a>0 and put f1(x)=f(x) if |f(x)|≥ 2

α  and f1(x)=0 in the contrary case. Then we have 
successively the inequalities: 

11( ) ( ) ( ) ( )
2 2

f x f x Mf x Mf xα α
| |≤| | + , ≤ + .
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Hence we obtain with the aid of Theorem 1 

2

0
( )

2( ( )) ( )
{x f x }

cU Mf f x dx
α

µ α
α :| |≥

, ≤ | | .∫

We put g(x)=Mf(x) and let λ(a,g)=µ({x:|g(x)|≥a}), namely its distribution 
function. Then we will have 

1

00R
( ) ( ) ( ) ( )

n

pppMf x dx d g p g dα λ α α λ α α
∞∞ −= − , = ,∫ ∫ ∫

1

0
( ( ))pp U Mf dα µ α α

∞ −= ,∫

2

1 0
0 ( )

2 ( )p

{x f x }

cp f x dx d
α

αα
α

∞ −

:| |≥

 ≤ | | . 
 ∫ ∫

On reversing the order of integration in the last integral the inner integral 
will be equal to 

12 ( ) 2

0

2 ( )
1

pf x p f xd
p

α α
−| | − | |

= ,
−∫

and consequently the double integral becomes 

1 00
RR

22 ( ) 2 ( ) ( )
11 nn

p
pppc pcf x f x dx f x dx

pp
−| || | = | | .
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The theorem is proved. 

3.  CONTINUITY OF HARDY–LITTLEWOOD MAXIMAL 
OPERATOR

Let Ω be a measurable subset of Rn with finite measure µ(Ω)>0. Then for p>1 
the maximal operator M maps Lp(Ω) to Lp(Ω) and is continuous. It is clear that 
Lp1(Ω)⊂Lp0(Ω), when 1<p0<p1, and the inclusion is continuous. Therefore the 
inductive limit 

1

1

( )p

p

X L
>

= Ω


with nonmetrizable topology τ1 is defined, and moreover (X,τ) is continuously 
embedded in L1. More generally, locally convex (nonmetrizable) spaces 

0

0

( )p p

p p

X L
>

= Ω


can be defined in such a way that (Xp0,τp0
) is continuously embedded in Lp0(Ω), 

(1<p0<∞). 
Theorem 3. For p0∈(1,∞) the Hardy–Littlewood maximal operator is 

continuous as an operator M:(Xp0,τp0
→(Xp0,τp0

). 
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Proof. It is clear that because of the subadditivity of the operator M it is 
sufficient to establish its continuity at zero. Let U be an absolutely convex 
neighbourhood of zero in (Xp0,τp0

). This means that in each LP(Ω) a ball Bp(0,rp) 
can be found such that 

0(0 ) ( )p pMB r U p p, ⊂ > .

The absolutely convex envelope V=co(


p>po
Bp(0,rp)) is a neighbourhood of 

zero in (Xp0,τp0
),. We will show that MV⊂U. In fact, if f∈V we can write 

1 1
where 1 0 (0 )( 1 2 )

i i

n n

i i i i i p p
i i

f f f B r iλ λ λ
 

    ≥  ∈    n∑ ∑

We have by the subadditivity of the operator M 

1 1
0 ( )

n n

i i i i
i i

Mf M f Mf Uλ λ
= =

≤ = ≤ ∈ ,∑ ∑

and for  1
min ii n

p p∗

≤ ≤
=  we obtain from monotonicity of the norm in LP*(Ω) 

1
( ) ( )

n
pp

i i
i

Mf L Mf Lλ
∗∗



  Ω ≤  Ω ∑

It follows from this that Mf∈U. The theorem is proved. 

4.  CONCLUSION

The development of harmonic analysis and interpolation theory shows the 
importance of the continuity of Hardy–Littlewood maximal function operator, 
especially, for partial differential equations. In this case the function spaces 
can be nonmetricable and the concept of boundadness of operator should be 
replaced by the concept of continuity what is possible for Hardy–Littlewood 
maximal function operator. 

REFERENCES 

[01]  Kinnunen, J. (1997). The Hardy–Littlewood maximal function of a Sobolev 
function. Israel J. Math., 100, 117-124. 

[02]  Lewis, J. (1993). On very weak solutions of certain elliptic systems. 
Communications in Partial Differential Equations, 18, 1515-1537. 

[03]  Stein, E. M. (1970). Singular integrals and differentiability properties of 
functions. Princeton University Press. 

[04]  Smirnov, E. I. (2002). Hausdorff spectra in functional analysis. London: 
Springer-Verlag. 




