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Abstract: This paper focuses on the specification of periodic autocovari-
ance structures in the presence of outliers, we evaluate autocovariance struc-
tures using various outliers’ generating models. The analytical results in-
dicate that outliers affect the estimates of periodic autocovariance function
(PACVF) due to biases and inflated standard errors. Robust autocovariance
structures that accommodate the influence of outliers in different periodic
processes are proposed. We fit AR (1) model using both the conventional
and Jacknife autocovariance structures; the latter shows high precision in
the standard errors of the estimates. We demonstrate our proposed method-
ology with the precipitation data from Maun Airport in Botswana, and the
empirical study supports our theoretical findings.
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1. INTRODUCTION

The adjustment of a time series model to a dataset is crucial in time series in
modeling; and this should follow some basic steps as identification, estimation,
diagnostic checking and model selection. Outliers can affect model identification
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tools, dependence structures of time series models and estimation of model param-
eters (Chernick et al., 1982). The choice of suitable time series model is important
when searching for outlying observations in periodic processes, because, on one
hand, a large residual variance caused by overall lack of fit would result in under-
identification of outliers, while on the other hand, a less adequate model unable to
explain the local behavior of the series would yield a single large residuals, resulting
in over-identification, Battaglia and Orfei (2005).

It is a fact that identification can be marred by the presence of more than
one outlier in time series due to masking effect; to alleviate the aforementioned
challenges this paper focuses on evaluation of autocovariance structures of period-
ic processes in the presence of additive outliers, innovational outliers, level shifts
outliers and transitory change outliers; we shall propose some autocovariance struc-
tures that accommodate the impact of outliers in different periodic processes and
the basic statistical properties of these structures will be derived. A robust method
of estimating autocovariance in the presence of outliers is proposed with a test for
checking the significance of autocovariance structures.

2. SPECIFICATION OF PERIODIC PROCESSES WITH OUT-
LIERS

Suppose that {Yt(r,m)}t=1,...,N, r≥1, m=1,...,s is a periodic autoregressive process giv-
en as

Yt(r,m) = µm +

pm∑
i=1

{
φ
(m)
i

[
Yt(r,m) − µm−i

]}
+ εt(r,m)

We define a mean deleted process given below as periodic autoregressive (PAR)
process

yt(r,m) = Yt(r,m) − µm =

pm∑
i=1

{
φ
(m)
i yt(r,m)−i

}
+ εt(r,m) (1)

and if yt(r,m) non-stationary, we can have the integrated periodic autoregressive
process (IPAR) as

∇myt(r,m) =

pm∑
i=1

φ
(m)
i ∇myt(r,m)−i + εt(r,m) (2)

If {yt(r,m)}r≥1, m=1,...,s follows a moving average process, then a periodic moving
average (PMA) process is given as

yt(r,m) =

qm∑
j=0

θ
(m)
j εt(r,m)−j (3)

Also, we specify a periodic autoregressive moving average (PARMA) process as

yt(r,m) =

pm∑
i=1

φ
(m)
i yt(r,m)−i +

qm∑
j=0

θ
(m)
j εt(r,m)−j (4)

And the integrated periodic autoregressive moving average (IPARMA) process
is specified as

∇myt(r,m) =

pm∑
i=1

φ
(m)
i ∇myt(r,m)−i +

qm∑
j=0

θ
(m)
j εt(r,m)−j (5)
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In Equations (1)–(5), for the sequence {yt(r,m)}, the index t is an integer division
as t = t(r,m) = (r − 1)s + m, where m = 1, 2, ..., s and r = 1, 2, ..., for instance
in the case of monthly data s = 12, m and r are respectively the month and year.
εt(r,m) ∼ IIDN(0, σ2

(m)) and for all r, r′ ≥ 1 and m,m′ = 1, ..., s, εt(r,m) and
εt(r′,m′) are independent, pm is order of autoregressive polynomial, qm is the order

of the moving average polynomial, ...φ
(m)
i , i = 1, ..., pm and θ

(m)
j , j = 1, ..., qm are

respectively the autoregressive and moving average parameters of the process.

3. SPECIFICATION OF PERIODIC AUTOCOVARIANCES
IN THE PRESENCE OF OUTLIERS

Assume that yt(r,m) and dt=T ξ
t(r,m)
T are mean-deleted observations such that at

time point t = T ξ
t(r,m)
T = +1 or −1 indicating the presence of outliers depending

on the sign of the magnitude of outliers (d).
An infested time series data {zt} with outliers could be represented by

zt(r,m) = yt(r,m) + dT ξ
t(r,m)
T (6)

Now, writing Equation (6) with different outlier specifications, we have

AO : z
(1)
t(r,m) = yt(r,m) + dT (r,m) (7)

IO : z
(2)
t(r,m) = yt(r,m) + α(B)dT (r,m) (8)

where α(B) =
θ(B)

φ(B)
; 0 < δB < 1 and |δ| 6 1.

LS : z
(3)
t(r,m) = yt(r,m) + (1− δ)−1dT (r,m) (9)

TC : z
(4)
t(r,m) = yt(r,m) + (1− δB)

−1
dT (r,m) (10)

3.1. Proposition 1

Suppose that an outlier infested series follows a general liner difference equation of
the form

z
(i)
t(r,m) = yt(r,m) + ψ(i)(B)dT (r,m) (11)

where ψ(i)(B) is the respective weights of the outlying model stated in (7)–(10).
Assuming that series yt(r,m) and dT (r,m) the mean and variance of outlier in-

fested series are represented as follows: The mean of z
(i)
t(r,m) is E

(
z
(i)
t(r,m)

)
=

E
[
yt(r,m) + ψ(i)(B)dT (r,m)

]
= 0 since yt(r,m) and dT (r,m) are mean-deleted,

E
(
z
(i)
t(r,m)

)
= µ

Z
(i)

t(r,m)

= 0 (12)

The variance of z
(i)
t(r,m) is the obtained from the autocovariance specification as:

E
(
z
(i)
t(r,m)z

(i)
t−k(r,m)

)
= E

[(
yt(r,m) + ψ(i)(B)dT (r,m)

)(
yt−k(r,m) + ψ(i)(B)dT−k(r,m)

)]
γ(i)zt(r,m)

(k) = γyt(r,m)
(k) + 2ψ(i)(B)γyt(r,m)dt(r,m)

(k) + ψ(i)2(B)γdt(r,m)
(k)

(13)
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Setting k = 0 in Equation (13) gives the variance of z
(i)
t(r,m) as

Var
(
z
(i)
t(r,m)

)
= σ2

yt(r,m)
+ ψ(i)2(B)σ2

dT (r,m)
+ 2ψ(i)(B)γdT (r,m)yT (r,m)

(0) (14)

It is evident from Equation (14), that for a mean deleted series the magnitude
(d) of the outlier does not produce any effect on the mean of the resultant contami-
nated series since it gives same value as outlier free series. However, from Equation
(14), the variance of the contaminated series does not equal to the variance of
the outlier free series; the variance of outlier-free series is affected by the quantity
ψ(i)2(B)σ2

dT (r,m)
+ 2ψ(i)(B)γdT (r,m)yT (r,m)

(0).

We remark that using autocovariance structure specified in Equation (13) to
model periodic processes, will not be appropriate due to the presence of the quan-
tity 2ψ(i)(B)γyt(r,m)dt(r,m)

(k) + ψ(i)2(B)γdt(r,m)
(k) couple with the missing effect of

the magnitude of outliers in the computation of variance of z
(i)
t(r,m). Furthermore,

to compute an estimate of γ̃
(i)
z′
t(r,m)

(k) adjusting the effect of outliers we use the

expression:

γ̃
(i)
z′
t(r,m)

(k)

=γ̃zT (r,m)
(k)− γ̃yT (r,m)

(k)− 2ψ(i)(B)γ̃γ̃dT (r,m)
(k)yT (r,m)

(k)− ψ(i)2(B)γ̃dT (r,m)
(k)

(15)

where γ̃(i)(·) is the estimate of the autocovariance for the specific series of interest.
γ̃zt(r,m)

(k) is a measure of the under/over estimation of the covariance structure.

3.2. Alternative to Proposition 1

Now, assuming that the sequence
{
z
(i)
t(r,m)

}
r>1,m=1,...,s

satisfies the difference Equa-

tions (7)–(10) such that
{
ξ
t(r,m)
T

}
are independent random variables with proba-

bilities Pr
(
ξ
t(r,m)
T = −1

)
= Pr

(
ξ
t(r,m)
T = +1

)
=
Pi

2
and Pr

(
ξ
t(r,m)
T = 0

)
= 1− Pi;

where we take PT =
1

n
∈ (0, 1)∀T since each observation has equal chance of having

an outlier. For all r and m, ξ
t(r,m)
T and yt(r,m) are independent variables but ξ

t(r,m)
T

depends on dT then the alternate specification of periodic autocovariance in the
presence of outliers is:

E
[
z
(i)
t(r,m)z

(i)
t−k(r,m)

]
= E

[
yt(r,m)yt−k(r,m)

]
+ E

[
ψ(i)2(B)dT dT−k)ξ

2t(r,m)
T

]
+ E

[
ψ(i)(B)dT ξ

t(r,m)
T yt−k(r,m)

]
+ E

[
yt(r,m)ψ

(i)(B)dT−kξ
t(r,m)
T

]
Taking an assumption that if ξ

t(r,m)
T and dT ξ

t(r,m)
T are independent of yt; then

E
[
z
(i)
t(r,m)d

(i)
t−k(r,m)

]
= γyt(r,m)

(k) + ψ2(i)
∑
T

dT dT−Kξ
2t(r,m)
T P (ξ)

+ ψ(i)(B)E
(
dT ξ

t(r,m)
T

)
E
(
yt−k(r,m)

)
+ ψ(i)(B)E

(
dT−kξ

t(r,m)
T

)
E
(
yt(r,m)

) (16)
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Since E
(
yt(r,m)

)
= E

(
yt−k(r,m)

)
= 0 and letting ξ

t(r,m)
T = −1, 0 and + 1; we

have Equation (16) reducing to

γ(i)zt(r,m)
(k) = γyt(r,m)

(k) +ψ(i)2(B)
∑
T

dT dT−KPT = γyt(r,m)
(k) +ψ2(i)(B)γdT (17)

If we then assume independence of yt(r,m) and dT (r,m) in Equation (13), then

Equations (13) and (17) will give us the same quantity; and Var
(
z
(i)
t(r,m)

)
will be

σ2
yt(r,m)

+ ψ(i)2(B)σ2
dT

, where σ2
yt(r,m)

= γyt(r,m)
(0) and σ2

dT
= γdT (0) in Equation

(17).

3.3. Proposition 11

We further examine the mean and variance of the autocovariance of outliers infested
series. Let us assume that there are τ number of outliers in the observations at time
t = 1, ..., n for a particular periods; to derive the variance of γ

(i)
zt(r,m)

(k), we rely
on Barttlet (1946) expression on variance of autocovariance and cross-covariance
estimates. Suppose that γ̃(·)(k) is the estimate of γ(·)(k), then the estimate of

γ
(i)
Zt(r,m)

(k) is

γ̃
(i)
z′
t(r,m)

(k) = γ̃yt(r,m)
(k) + 2ψ(i)(B)γ̃

dt(r,m)
yt(r,m)

(k) + ψ(i)2(B)γ̃dt(r,m)
(k) (18)

Equation (18) gives the sample estimates of covariance of z
(i)
t(r,m) defined in E-

quation (11); taking the expectation of (18) gives

E
(
γ̃
(i)
z′
t(r,m)

(k)
)

= γyt(r,m)
(k) + 2ψ(i)(B)γ

dt(r,m)
yt(r,m)

(k) + ψ(i)2(B)γdt(r,m)
(k) (19)

Equation (17) gives a bias estimate of γ
(i)
Zt(r,m)

(k) due to the influence of the

outliers in the series.

MSE
[
γ̃(i)zt(r,m)

(k)
]

= (n− k)−1

 ∞∑
j=−∞

{
γ2zt(r,m)

(j)γ2zt(r,m)
(0) + 2γ2zt(r,m)

(k)γ2zt(r,m)
(j)

+ γzt(r.m)
(k + j)

(
γ2zt(r,m)

(0)γzt(r,m)
(k − j)

− 2γzt(r,m)
(k)
(
γ2zt(r,m)

(0)
(
γzt(r,m)

(i) + γzt(r,m)
(−j)

)))}]
(20)

The simplest expression without loss of generality is when j = 0, ∀k > 0; then
Equation (20) becomes

MSE
[
γ̃(i)zt(r,m)

(k)
]

= (n− k)
−1
[
γ4zt(r,m)

(0) + 2γ2zt(r,m)
(k)γ2zt(r,m)

(0) + γ2zt(r,m)
(k)
(
γ2zt(r,m)

(0)− 4γ2zt(r,m)
(0)
)]

=(n− k)
−1
γ2zt(r,m)

(0)
[
γ2zt(r,m)

(0)− γ2zt(r,m)
(k)
]

(21)

87



Specification of Periodic Autocovariance Structures in the Presence of Outliers

Equations (18) and (20) show clearly the influence of outliers in both the mean
and mean square error derivations; indeed a jacknifying appearance is recognized in
Equations (18) and (20), hence could be used as a measure of MSE for the outlier
contaminated autocovariance.

Where ψi(i = 1, , 4) is the weight attached to the value of outliers dt in the
expression for the periodic processes in Equations (5)–(9); this weight gives a mea-
sure of bias and precision contributed by the various outliers’ processes discussed.
It is evident from Equation (19) that outliers can affect the statistical properties
of outlier-periodic autocovariance function (OPEACVF); this observation will lead
to under or over estimation of the true structure. It is therefore, necessary to find
models that can accommodate outliers at model building stage; this is discussed in
the next subsection.

4. THE ESTIMATION OF ROBUST PEACVF WITH OUT-
LIERS

In section 3, we have shown that the estimates of OPEACVF are biased under
different outlier schemes; since according to Sarnaglia et al. (2010) classical sample
autocovariance function is very sensitive to the presence of outliers in data band
it will be more appropriate to obtain a robust estimator of autocovariance in the
presence of outliers.

Several authors, Sarnaglia et al. (2010), Fajardo et al. (2009), Jeromir (1994)
have proposed some robust methods of estimating autocovariance relying on scaling
factors of distribution functions; but the generalized Jacknife estimator utilized in
Transfer Function Model (Shangodoyin, 2012), will be more appropriate because of
the partitioning of the sequence of observations into various categories and using
pseudo-values to approximate the estimates of the parameters of interest. In this

sub section, we propose a modified Jacknife estimator of γ
(i)
yt(r,m)

.

4.1. Proposition III

Suppose that γ
(i)
z(·)(k) is the unknown parameter and z1, ..., zn are n independent

identically distributed periodic observations with outliers, let γ
(i)
z0 (k) be an estimate

of γ
(i)
(z)(k) based on all the n observations and let γ̃

(i)
(z)J

(k), J = 1, ..., P be the

estimate of γ
(i)
(y)(k) obtained after the deletion of J-th groups of observations. Then

γ̃
(i)
(z)J

(k) is the estimate of γ
(i)
(y)(k) from the remaining (p− 1)(lJ) observations. By

using Tukey (1957) pseudo-values, then γ̂
(i)
(z)J

(k) = pγ̃
(i)
(z)0

(k) − (p − 1)γ̃
(i)
(z)J

(k); In

this study, p = 2, therefore we have γ̂
(i)
(z)J

(k) = 2γ̃
(i)
(z)0

(k) − γ̃(i)(z)J
(k); J = 1, 2. The

Jacknife estimate of γ
(i)
(y)(k) is the average of the γ̃

(i)
(z)J

(k), J = 1, 2, as

˜̄γ
(i)
(z)(k) =

1

2

2∑
J

γ̃
(i)
(z)J

= 2γ̃
(i)
(z)0

(k)− 1

2

2∑
J=1

γ̃
(i)
(z)J

(k) (22)

The Jacknife eliminates exactly n−1 bias term (Jeromir, 1994) and the result
holds for all values of k if we can establish that:

E
[
γ̃
(i)
(z)0

(k)
]

= γ
(i)
(y)(k) + a(p(l1 + l2))−1 + b(p(l1 + l2))−2 + ...
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where a and b are real constants. This is true for proposition II as shown in E-

quations (17) and (18). Since γ̃
(i)
J (k) are approximately independently, identically

distributed (Tukey, 1957), then {p(p− 1)}−1
k∑

J=1

(
_
γ
(i)

(z)J
(k)− _

γ̄
(i)
(z) (k)

)2

is an ap-

proximate estimate of the Var
(̃̄
γ
(i)
(z)(k)

)
and

(
_

γ̄
(i)

(z)(k)− γ(i)(y)(k

){p(p− 1)}−1
K∑
J=1

(
_
γ
(i)

(z)J
(k)− _

γ̄
(i)

(z)(k)

)2

− 1

2

∼ tp−1 (23)

for a specified level of α. Equation (21) will be used to determine the significance

of
_

γ̄
(i)

(z)(k).

5. ESTIMATING THE OUTLIER-PERIODIC PROCESSES

The maximum likelihood estimates has potential to handle complex models. In this
paper we illustrate how to estimate the parameters of the proposed model using
ML method and indeed the substitution of the proposed Jacknife autocovariance.

Let zt(r,m) = yt(r,m) +ψi(B)dt(r,m) as defined in Equation (6) through (9), then

zt(r,m) =

pm∑
i=1

φ
(m)
i zt(r,m)−i + εt(r,m) (AR) (24)

zt(r,m) =

qm∑
j=1

θ
(m)
i εt(r,m)−j + εt(r,m) (MA) (25)

zt(r,m) =

pm∑
i=1

φ
(m)
i zt(r,m)−i +

qm∑
j=1

θ
(m)
j εt(r,m)−j + εt(r,m) (ARMA) (26)

By using the conditional maximum likelihood estimation method, the parameters
of the models (24)–(26) are obtainable.

Now consider the Equation (26); the complete form of model incorporating white
noise into the series gives:

zt(r,m) =

pm∑
i=1

φ
(m)
i zt(r,m)−i +

qm∑
j=0

θ
(m)
j εt(r,m)−j (27)

then, Equation (27) can be re-written as

zt(r,m) =φ
(m)
1 zt(r,m)−1 + ...+ φ(m)

pm zt(r,m)−pm

+ θ
(m)
0 εt(r,m) + θ

(m)
1 εt(r,m)−1 + ...+ θ(m)

m εt(r,m)−qm

(28)

Let us assumed that {εt(r,m)} are iid N(0, σ2
ε), and the joint density prob-

ability distribution ∈−
(r,m) =

(
ε
(r,m)
1 , ...., ε

(r,m)
1

)′
is given by P

(
∈− /φ, θ, σ

2
ε

)
=(

2πσ2
ε

)n
2 exp

[
−

1

2πσ2
ε

n∑
i=0

ε2t

]
89
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By re-writing Equation (28) as:

εt(r,m) =− θ(m)
1 εt(r,m)−1 − ...− θ(m)

m εt(r,m)−qm

+ zt(r,m) − φ
(m)
1 zt(r,m)−1 − ...− φ(m)

pm zt(r,m)−pm

(29)

Now let Y∗(r,m) = (Z
t(r,m)
1 , ..., Z

t(r,m)
n )′ and assume same in our initial conditions

Z∗ = (Z∗1−p, ..., Z
∗
−1, Z

∗
−0) and a∗ = (ε∗1−p, ..., ε

∗
−1, ε

∗
−0)′ then the conditional log− ln

likelihood function is lnL∗
(
φ, θ,σ2

ε

)
= −n2 ln 2πσ2

ε −
S∗

(
φ−,θ−

)
2σ2

ε
where S∗

(
φ
−
, θ−

)
=

n∑
i=0

ε2t(r,m)

(
φ
−
, θ−/Z∗, a, ∗Y ∗

)
. Hence,

lnL∗
(
φ, θ,σ2

ε

)
= −n

2
ln 2πσ2

ε −
1

2σ2
ε

n∑
i=0

ε2t(r,m)

(
φ
−
, θ−/Z∗, a, ∗Y ∗

)
(30)

Now, by substituting Equation (28) into (29), we have

lnL∗
(
φ, θ,σ2

ε

)
=− n

2
ln 2πσ2

ε −
1

2σ2
ε

Σ
[
−θ(m)

1 εt(r,m)−1 − ...− θ(m)
m εt(r,m)−qm

+ zt(r,m) − φ
(m)
1 zt(r,m)−1 − ...− φ(m)

pm zt(r,m)−pm

]2 (31)

By differentiating partially the log-likelihood function L∗ with respect to the pa-

rameters
(
θ̂, φ̂
)

,

(
∂ lnL∗

∂θ
(m)
1

= ... =
∂ lnL∗

∂θ
(m)
qm

and
∂ lnL∗

∂φ
(m)
1

= ... =
∂ lnL∗

∂φ
(m)
qm

)
and equating

to zero will result in the following set of normal equations:

θ21
∑
ε2t(r,m)−1 + ...+ θ1θq

∑
εt(r,m)−1εt(r,m)−q + θ1φ1

∑
εt(r,m)−1zt(r,m)+

...+ θ1φp
∑
εt(r,m)−1zt(r,m)−p = 0

...
...
θqθ1

∑
εt(r,m)−1εt(r,m)−q + ...+ θ2q

∑
ε2t(r.m)−q + θqφ1

∑
εt(r,m)−qzt(r,m)+

...+ θqφp
∑
εt(r,m)−1zt(r,m)−p = 0

θ1φ1
∑
εt(r,m)−1zt(r,m)−1 + ...+ θqφ1

∑
εt(r,m)−qzt(r,m)−1 + φ21

∑
z2t(r,m)+

...+ θqφp
∑
εt(r,m)−1zt(r,m)−p = 0

...
...
θ1φP

∑
εt(r,m)−1zt(r,m)−P + ...+ θqφP

∑
εt(r,m)−qzt(r,m)−P+

φ1
∑
zt(r,m)−1zt(r,m)−p + ...+ φ21

∑
z2t(r,m) = 0

(32)
In matrix form, Equation (32) becomes

θ21
∑
ε2t−1 θ1φq

∑
εt−1εt−q θ1φ1

∑
εt−1εt−q θ1φq

∑
εt−1εt−q

...
...

...
...

θqφ1
∑
εt−1εt−q θ2q

∑
ε2t−q θqθ1

∑
εt−qεt θ1φq

∑
εt−1εt−q

θ1φq
∑
εt−1zt−1 θqφ1

∑
εt−1εt−q φ21

∑
z2t φ1φq

∑
zt−1zt−p

...
...

...
...

θ1φp
∑
εt−1zt−p θqφp

∑
εt−qzt−p θ1φp

∑
zt−1zt−p θ2p

∑
z2t−p





n
...
n
n
...
n


= 0

(33)
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We can write the expression for the sum of cross products in matrix from as:

nθ21σ
2
ε · · · 0 0 nθ1φ1σ

2
ε · · · 0

...
...

...
...

...
0 · · · nθ2qσ

2
q 0 0 · · · nθqφqσ

2
ε

...
...

...
...

...
nθ1φ1σ

2
ε · · · 0 nφ1γz(1) nφ21γz(0) · · · nφ1φpγz(p− 1)

...
...

...
...

...
0 · · · nθqφqσ

2
ε nφ1γz(p) nφ21γz(p− 1) · · · nθ2pγz(0)





1
...
1
...
1
...
1


= 0−

(34)
Equation (34) gives system of equations to solve for θ and φ, then the compact

form, where S(·) means sum of squares of the products of variables, we have θ2i Sεε θiφjSzε
...

...
φjθiSεz φ2jSzz


 nI
· · ·
nI

 =
[
0−

]

We consider a case when p = q = 1; using the first row of (34), we have nθ21σ
2
ε =

−nθ1φ1σ2
ε which gives the θ1 = −φ1; Also using the equation nφ1θ1σ

2
ε +nφ1γz(1)+

nφ21γz(0) = 0 to find φ1, we have to divide the last expression by nφ1; this gives

φ1γz(0) + θ1σ
2
ε = γz(1) (35)

By using Equation (35) in the first row of (35) we have φ1
(
γz(0)− σ2

ε

)
= γz(1)

and this gives

φ̂1 =
γz(1)

σ2
ε − γz(0)

θ̂1 = −
γz(1)

σ2
ε − γz(0)

 (36)

The covariances of the outlier infested series shall be replaced with the robust
estimate given in Equation (22); therefore, the robust estimates of φ1 and θ1 will
be

˜̄φ1 =
ˆ̄γ

(i)
z (1)

˜̄σ2
ε −ˆ̄γ

(i)
z (0)

˜̄θ1 =
−̂̄γ(i)z (1)

˜̄σ2
ε −ˆ̄γ

(i)
z (0)

 (37)

We shall use the conventional and Jacknife autocovariances in Equation (37) to
demonstrate the efficacy of the proposed method.

6. EMPIRICAL REAL LIFE STUDIES

The data utilized in this study is precipitation data from Maun Airport in Botswana.
The data was collected by METS and it is on monthly bases covering the period
1980–2010; a period of 30 years duration with 12 observations per each period.
Precipitation in metrology (also known as one of the classes of hydrometers) is
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any product of the condensations of the atmospheric water vapors that falls under
gravity. The main forms of precipitations include drizzle (sometimes called mist),
rain, snow, graupel and hail. Precipitation occurs when a local portion of the
atmosphere becomes saturated with water vapor, so that the water condenses and
precipitates. The methods described in our propositions I to III above were applied
to the mean deleted data, the procedure employed the use of Excel, SPSS and E-
views at various stages of data analysis. The precipitations data is confirmed to
have a number of outliers at some periods (see Table 1), thus it is an ideal data in
this respect, however, periods without outliers are used for the study.

We first sought to artificially inject outliers into the series at randomly selected
time points T = 2, 6, 11, 18, 21, 24, 26, 27 and 30. The magnitude of outliers taking
arbitrarily is of order 0.75yt, this is done to circumvent the procedure of having to
test for outliers at time T and estimate the magnitude of dT ; The basic assumption
we have used in this empirical study is that since we know the magnitude of the
outliers, then AO outliers series is taken as observed outlier contaminated series,
thus we compare other outlying generating models with this and see which of these
models best represents the periodic system under study. Secondly, we generate
the AO, IO, LS and TC outliers’ series using Equations (7)–(10). The generating
models used are as follows:

AO : z
(1)
t = yt + dT where dT = 0.75yt;

T = 2, 6, 11, 16, 18, 21, 24, 26, 27, 30 and dT = 0 ∀ t 6= T

IO : z
(2)
t = yt +

(
(1− 0.904B)−1(1− 0.742B)

)
dT

= yt + (1 + 0.16B + 0.67B2)dT

= yt + dT + 0.16dT−1 + 0.67dT−2

LS : z
(3)
t = yt + (1− δ)−1dT

= yt + (1 + δ)dT

= yt + (1 + 0.001)dT ; δ = 0.001

TC : z
(4)
t = yt + (1− δB)−1dT

= yt + (1 + 0.001B)dT

= yt + dT + 0.001dT−1

Subsequently, we disaggregated these series into outlier-free series (yt) and outlier-
infested series (yT ). To empirically study our proposed methods, we obtained the
autocovariances with the respective standard errors of AO, IO, LS and TC using
Equations (13) and (21). In Table 2, we see that all the estimates of these auto-
covariances are not significantly different from zero (see the t-statistic), this may
be due to the presence of outliers. Although if we purely use standard errors of
the estimates which has a bench-mark for their significance, we see that AO, LS,
TC have three (3) covariance estimates that seem significant while IO has four (4)
significant estimates. The proposed Jacknife estimates accommodate the influence
of the outliers, since almost all the estimates are significantly greater than zero in
the Table 3. The results in Table 3 show that LS and TC perform in the same man-
ner has AO, as evident in the lag at which the covariance estimates are significant,
the IO has lesser number of estimates that significantly different from zero but the
proposed Jacknifying has greater improvement on the relative number of estimates
that are significant.
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We fitted autoregressive model of order one, AR (1) to each of the AO, IO, LS and
TC using the conventional autocovariance and Jacknife autocovariance estimates.
In Table 4, we find that the estimates are not significant for conventional method
whereas for Jacknife method, they are conspicuously significant, showing that the
Jacknifying is resistant to the presence of outlying observations.

7. CONCLUSION

This paper has demonstrated the importance of evaluating autocovariance estimates
in the specification of periodic processes. We evaluate autocovariance structures us-
ing various outliers’ generating models. The analytical results indicate that outliers
affect the estimates of periodic autocovariance function (PACVF) due to biases and
inflated standard errors. Robust autocovariance structures that accommodate the
influence of outliers in different periodic processes are proposed. We fit an AR (1)
model using both the conventional and Jacknife autocovariance structures; the latter
show high precision in the standard errors of the estimates. The proposed Jacknife
autocovariance structures are more efficient than the conventional autocovariance
structures in the presence outliers as evident from the real data analyzed.
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APPENDIX

Table 1
Periodic Evaluation of Outliers Using Spss

Period (M)
JAN

(M=1)
FEB

(M=2)
MAR
(M=3)

APR
(M=4)

MAY
(M=5)

JUN
(M=6)

Number of
outliers

0 0 1 1 3 3

Period (M)
JUL

(M=7)
AUG
(M=8)

SEP
(M=9)

OCT
(M=10)

NOV
(M=11)

DEC
(M=12)

Number of
outliers

6 6 14 0 1 1

Table 2
Periodic Evaluation of Outliers Using Spss

AO AO(SE) IO IO(SE)

Lag COV(AO) SE(C0V) COV(IO) SE(IO)
1 -2603.93 1761.024 -2629.29 2176.116
2 3478.142 1730.396 5198.243 2135.437
3 -1152.76 1699.215 -2120.51 2093.968
4 1300.386 1667.451 1965.109 2051.661
5 -1119.95 1635.07 -2266.21 2008.464
6 1872.194 1602.035 1822.794 1964.316
7 -1340.53 1568.304 -992.513 1919.154

LS LS(SE) TC TC(SE)

Lag COV(LS) SE(LS) COV(TC) SE(TC)
1 -2605.78 1762.285 -2725.8 1850.844
2 3480.5 1731.635 3586.797 1817.493
3 -1153.79 1700.431 -1240.23 1783.518
4 1301.168 1668.645 1319.055 1748.883
5 -1120.39 1636.241 -1177.64 1713.549
6 1873.602 1603.182 1893.412 1677.47
7 -1340 1569.427 -1430.75 1640.598
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Table 3
Proposed Jacknife Estimates with Standard Errors

Lag JKAO JKAO(SE) JKIO JKIO(SE)

1 -3983.618838 346.3892587 -1159.54 3045.033
2 8967.041875 2085.537011 10674.39 569.0771
3 -1138.701891 224.7899154 -4090.38 929.2655
4 2154.89988 2660.934495 1395.097 2959.367
5 -1754.014414 1359.213892 -5017.11 1592.435
6 2224.128621 1337.207261 5231.874 840.2366
7 -1726.753626 463.9025323 -3080.95 2488.502

Lag JKLS JKLS(SE) JKTC JKTC(SE)

1 -3013.71 771.3389 -3221.28 733.8556
2 8325.289 892.6178 8500.364 927.9045
3 -1949.57 537.1987 -2114.41 544.0047
4 2157.142 2568.01 2062.075 2695.93
5 -2909.5 2317.115 -3023.68 2315.108
6 4720.689 804.203 4824.627 737.5807
7 -3893.25 1613.824 -4075.33 1609.61

Table 4
AR (1) Model Estimates Using Conventional(C) and Jacknife(JK)
Autocovariances

CAO JKAO CIO JKIO

φ1 -0.257 -0.393 -0.217 -0.096
S.E. 0.174 0.028 0.179 0.035
t-dist -1.477 -13.952 -1.212 -2.700
Significance
at α = 0.05

Not sign Sign Not sign Sign

CLS JKLS CTC JKTC

φ1 -0.257 -0.248 -0.26 -0.318
S.E. 0.174 0.031 0.179 0.031
t-dist -1.477 -7.938 -1.477 -10.248
Significance
at α = 0.05

Not sign Sign Not sign Sign
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