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Abstract: Optimality conditions are derived for a class of nondifferen-
tiable multiobjective control problems having a nondifferentiable term in each
component of vector-valued integrand of objective functional. Using Karush-
Kuhn-Tucker type optimality conditions, we formulate Mond-Weir type dual
to the nondifferentiable control problem and derive duality results extensive-
ly under generalized invexity. Finally, it is indicated that our duality results
can be considered as dynamic generalizations of those of nondifferentiable
nonlinear programming problems recently obtained.
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1. INTRODUCTION

The problem of optimal control was first formulated by Mond and Hanson [1] as
mathematical programming problems with equality and inequality constraints in in-
finite dimensional space. Subsequently, a number of authors, notably, and Chandra
et al. [2], Mond and Smart [3], Nohak and Nanda [4] etc. most of them considered
the Wolfe and Mond-Weir type for a single objective control problem.
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In the recent past, some researchers studied duality for multiobjective control
problems motivated with Bector and Husain [5]. Bhatia and Kumar [6] discussed
multiobjective control problems with ρ-pseudoinvexity, ρ-strict pseudoinvexity, ρ-
qausi-invexity or ρ-strict quasi-invexity. Nahak and Nanda [4] discussed efficiency
and duality for multiobjective variational control problems with (F, ρ)-convexity.
The objective functionals and constraints functionals in both references [4] and [6]
were differentiable. In the present research expositions, we study duality and op-
timality for a class of nondifferentiable multiobjective control problems in which
nondifferentiability enter due having a term of square root a quadratic form in each
component of the vector-valued integrand of objective functional. The relation-
ship of our results with those of a class of nondifferentiable nonlinear programming
problems is briefly indicated.

2. RELATED PRE-REQUISITES AND NONDIFFERENTI-
ABLE MULTIOBJECTIVE CONTROL PROBLEMS

Let I = [a, b] be a real interval, and let f i : I × Rn × Rm → R, i = 1, 2, ..., p,
gj : I ×Rn ×Rm → Rl, and h : I ×Rn ×Rm → Rn be continuously differentiable
functions. Denote by X the space of piecewise smooth functions x : I → Rn, with
the norm ‖x‖ = ‖x‖∞ +‖Dx‖∞ and by U the space of piecewise continuous control
functions u : I → Rm with the norm ‖u‖∞, where the differentiation operator D is
given by

u = Dx⇔ x(a) +

t∫
a

u(s) ds,

where x(a) is a given boundary value. Denote the partial derivatives of fi with
respect to t, x, and u, respectively, by f it , f ix, and f iu such that

f ix =

(
∂f i

∂x1
,
∂f i

∂x2
, · · · , ∂f i

∂xn

)T

, f iu =

(
∂f i

∂u1
,
∂f i

∂u2
, · · · , ∂f i

∂un

)T

,

i = 1, 2, ...p, where T denotes the transpose operator. The partial derivatives of
the vector functions g and h are similarly defined, using m × n matrix and m × n
matrix respectively.

Consider the following multiobjective control problem:
(VCP): Minimize∫

I

(
f1 (t, x, u) +

(
u(t)

T
B1 (t)u (t)

)1/2
)
dt,

...,

∫
I

(
fp (t, x, u) +

(
u(t)

T
Bp (t)u (t)

)1/2
)
dt


subject to

x(a) = α, x(b) = β (1)

ẋ = h(t, x, u), t ∈ I (2)
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g(t, x, u)< 0, t ∈ I (3)

The following convention for equality and inequality will be used. If α, β ∈ Rn,
then

α = β ⇔ αi = βi i = 1, 2, ..., n

α>β ⇔ αi> βi i = 1, 2, ..., n

α > β ⇔ α>β and α 6= β

α > β ⇔ αi > βi i = 1, 2, ..., n

Definition 1. A feasible solution (x̄, ū) for (VCP) is said to be an efficient
solution for (VCP) if there is no other solution (x, u), such that

b∫
a

f(t, x, u)dt <

b∫
a

f(t, x̄, ū)dt, for some i ∈ {1, 2, ..., p}

b∫
a

f j(t, x, u)dt<

b∫
a

f j(t, x̄, ū)dt, for all j ∈ {1, 2, ..., p}

Definition 2 (i). If there exist vector functions η(t, x, x̄) ∈ Rn, with η = 0 at
t if x(t) = x̄(t), and ζ (t, u, ū) ∈ Rm such that for the scalar function h(t, x, u) the

functional H(x, u) =
b∫
a

h(t, x, u)dt satisfies

H (x, u)−H (x̄, ū) >

b∫
a

[
ηThx (t, x̄, ū) +

dηT

dt
hẋ (t, x̄, ū) + ζThu (t, x̄, ū)

]
dt,

then H is said to be invex in x̄ and ū on [a, b] with respect to η and ζ.

(ii). If for all x ∈ X and u ∈ U ,

b∫
a

[
ηThx (t, x̄, ū) +

dηT

dt
hẋ (t, x̄, ū) + ζThu (t, x̄, ū)

]
dt > 0

⇒H (x, u) > H (x̄, ū) ,

then H is said to be pseudoinvex in x̄ and ū on [a, b] with respect to η and ζ.

(iii). If for all x ∈ X and u ∈ U ,

b∫
a

[
ηThx (t, x̄, ū) +

dηT

dt
hẋ (t, x̄, ū) + ζThu (t, x̄, ū)

]
dt > 0

⇒H (x, u) > H (x̄, ū) ,

then H is said to be strictly pseudoinvex in x̄ and ū on [a, b] with respect to η and
ζ.
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(iv). If for all x ∈ X and u ∈ U ,

H (x, u) < H (x̄, ū)

⇒
b∫

a

[
ηThx (t, x̄, ū) +

dηT

dt
hẋ (t, x̄, ū) + ζThu (t, x̄, ū)

]
dt< 0,

then H is said to be quasi-invex in x̄ and ū on [a, b] with respect to η and ζ.
(v). If for all x ∈ X and u ∈ U ,

H (x, u) < H (x̄, ū)

⇒
b∫

a

[
ηThx (t, x̄, ū) +

dηT

dt
hẋ (t, x̄, ū) + ζThu (t, x̄, ū)

]
dt < 0,

then H is said to be quasi-invex in x̄ and ū on [a, b] with respect to η and ζ.
The generalized Schwartz inequality [2] which will be invoked in the forthcoming

analysis, states that

x(t)TB(t)w(t)<
(
x(t)

T
B(t)x(t)

)1/2
(
w(t)

T
B(t)w(t)

)1/2

with equality in the above if (and only if)

B(t)x(t) = q(t)B(t)z(t), for some q(t) ∈ R.

3. NECESSARY OPTIMALITY CONDITIONS

In this section, we obtain necessary optimality conditions for the nondifferentiable
multiobjective control problems (VCP), using the relationship between efficient so-
lution of the problem (VCP) and the optimal solution of the associated nondiffer-
entiable scalar control problem.

The following lemma will be used to obtain the Fritz John type optimality con-
ditions for (VCP):

Lemma 1 (Chankong and Haimes [7]). If (x̄, ū) is an efficient solution of
the (VCP) if and only if (x̄, ū) is the optimal solutions of the scalar control problems
Pk(x̄, ū) for k = {1, 2, ..., p} where Pk(x̄, ū) is defined as

Pk(x̄, ū) : Minimize

∫
I

(
fk (t, x, u) +

(
u(t)

T
Bk (t)u (t)

)1/2
)
dt

subject to
x(a) = α, x(b) = β

ẋ = h(t, x, u), t ∈ I

g(t, x, u)< 0, t ∈ I

f j(t, x, u) +
(
u(t)

T
Bj(t)u(t)

)1/2
< f j(t, x̄, ū) +

(
ū(t)

T
Bj(t)ū(t)

)1/2
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for all j ∈ {1, 2, ..., p}, j 6= k

Chandra et al. [2] considered the following nondifferentiable single objective Con-
trol problem to determine the necessary optimality conditions:

(CP): Minimize
∫
I

(
f (t, x, u) +

(
u(t)

T
B (t)u (t)

)1/2
)
dt

subject to

x(a) = α, x(b) = β

ẋ = h(t, x, u), t ∈ I
g(t, x, u)< 0, t ∈ I

where f , g, h are the same as defined earlier. Following Craven [8], the differential
equation ẋ = h(t, x, u) with initial condition can be expressed as

x(t) = x(a) +

t∫
a

h (s, x(s), u(s))ds, t ∈ I

may be written as Dx = H(x, u) where the map H : X × U → C(I,Rn) is defined
by

H(x, u)(t) = h(t, x(t), u(t)) , t ∈ I

In the following Fritz-John type optimality conditions, some constraint qualifi-
cation to make the equality constraint locally solvable [8] is needed. For this, the
Frechet derivative of

Dx−H (x, u) = Q(x, u), (say)

with respect to (x, u),

Q′ = Q′(x̄, ū) = [D −Hx (x̄, ū) ,−Hu (x̄, ū)] must be surjective.

Theorem 3.1 (Fritz-John condition): If (x̄, ū) is an optimal solution of
(CP) and the Frechet derivative Q′ = [D −Hx (x̄, ū) ,−Hu (x̄, ū)] is surjective, then
there exist Lagrange multipliers τ0 ∈ I piecewise smooth functions y : I → Rm,
z : I → Rn and w : I → Rn satisfying for all t ∈ I,

τofx(t, x̄, ū) + y(t)T gx(t, x̄, ū) + z(t)Thx(t, x̄, ū) + ż(t) = 0, t ∈ I

τo (fu(t, x̄, ū) +B(t)w(t)) + y(t)T gu(t, x̄, ū) + z(t)Thu(t, x̄, ū) = 0, t ∈ I

u(t)TB(t)w(t) = (u(t)TB(t)u(t))
1/2, t ∈ I

y(t)T g(t, x̄, ū) = 0 , t ∈ I

w(t)TB(t)w(t) < 1, t ∈ I

(τ0, y(t)) > 0, t ∈ I

(τ0, y(t), z(t)) 6= 0, t ∈ I

The above theorem gives the Karush-Kuhn-Tucker type optimality conditions
if τ0 = 1, then (x̄, ū) will be called d normal. For this, it sufficient to assume the
Zowe’s [9] form of the Slater condition is assumed.
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Theorem 3.2 (Karush-Kuhn-Tucker type optimality conditions): If
(x̄, ū) is an optimal and normal solution of (CP), and Frechet derivative Q′ =
[D −Hx (x̄, ū) ,−Hu (x̄, ū)] is surjective, then there exist piecewise smooth y : I →
Rm, z : I → Rn and w : I → Rn, i ∈ K,

fx(t, x̄, ū) + y(t)T gx(t, x̄, ū) + z(t)Thx(t, x̄, ū) + ż(t) = 0, t ∈ I

(fu(t, x̄, ū) +B(t)w(t)) + y(t)T gu(t, x̄, ū) + z(t)Thu(t, x̄, ū) = 0, t ∈ I
y(t)T g(t, x̄, ū) = 0 , t ∈ I
w(t)TB(t)w(t) < 1, t ∈ I

y(t))> 0, t ∈ I
The following theorem gives the Fritz John type optimality conditions for (VCP)

and will be required to establish the converse duality theorem.
Theorem 3.3 (Fritz John type optimality conditions): Let (x̄, ū) be an

efficient solutions of (VCP) and the Frechet derivative Q′ is surjective. Then there
exist λi ∈ R, i ∈ K, piecewise smooth y : I → Rm, z : I → Rn and wi : I →
Rn, i ∈ K such that∑

λi
(
f ix(t, x̄, ū)−Df iẋ(t, x̄, ū)

)
+y(t)

T
gx(t, x̄, ū)+z(t)

T
hx(t, x̄, ū)+ ż(t) = 0, t ∈ I∑

λi
(
f iu(t, x̄, ū) +Bi(t)wi(t)

)
+ y(t)T gu(t, x̄, ū) + z(t)Thu(t, x̄, ū) = 0, t ∈ I

y(t)T g(t, x̄, ū) = 0, t ∈ I

u(t)TBi(t)wi(t) =
(
u(t)

T
Bi(t)u(t)

)1/2
, i ∈ K

wi(t)TBi(t)wi(t)< 1, t ∈ I, i ∈ K
(λ, y(t)) > 0

(λ, y(t), z(t)) 6= 0, t ∈ I

Proof. Since (x̄, ū) is an efficient solutions of (VCP), by Lemma3.1, (x̄, ū) is an
optimal solutions Pk(x̄, ū) for each p ∈ K and hence in particular of P1(x̄, ū).
Therefore, by Theorem 3.2, there exist λi ∈ R, i ∈ K, piecewise smooth functions
y : I → Rm, z : I → Rn and wi : I → Rn, i ∈ K such that∑

λi
(
f ix(t, x̄, ū)−Df iẋ(t, x̄, ū)

)
+y(t)

T
gx(t, x̄, ū)+z(t)

T
hx(t, x̄, ū)+ ż(t) = 0, t ∈ I∑

λi
(
f iu(t, x̄, ū) +Bi(t)wi(t)

)
+ y(t)T gu(t, x̄, ū) + z(t)Thu(t, x̄, ū) = 0, t ∈ I

y(t)T g(t, x̄, ū) = 0, t ∈ I

u(t)TBi(t)wi(t) =
(
u(t)

T
Bi(t)u(t)

)1/2
, i ∈ K

wi(t)TBi(t)wi(t)<1, t ∈ I, i ∈ K
(λ, y(t)) > 0

(λ, y(t), z(t)) 6= 0, t ∈ I
Thus the theorem follows.
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4. DUALITY

In this section, we propose the following Mond-Weir type dual to (VCP) and estab-
lish various duality results under suitable generalized invexity:

(VCD): Maximize∫
I

(
f1 (t, x, u) +

(
u(t)

T
B1 (t)u (t)

))
dt, ...,

∫
I

(
fp (t, x, u) +

(
u(t)

T
Bp (t)u (t)

))
dt


subject to

x(a) = α, x(b) = β (4)

p∑
i=1

λi
(
f ix(t, x, u)

)
+ y(t)

T
gx(t, x, u) + z(t)

T
hx(t, x, u) + ż(t) = 0, t ∈ I (5)

p∑
i=1

λi
(
f iu(t, x, u) +Bi(t)wi(t)

)
+ y(t)T gu(t, x, u) + z(t)Thu(t, x, u) = 0, t ∈ I (6)

∫
I

y(t)
T
g(t, x, u)dt> 0 (7)

∫
I

z(t)
T

(h(t, x, u)− ẋ(t))dt> 0 (8)

y(t)> 0, t ∈ I (9)

wi(t)TBi(t)wi(t)< 1, t ∈ I, i ∈ K (10)

λ > 0 (11)

Definition 4.1 A feasible solution (x̄, ū) for (VCP) is efficient if there is no
other feasible (x, u) for (VCP) such that∫

I

f i(t, x, u)dt <

∫
I

f i(t, x̄, ū)dt for some i ∈ {1, 2, ..., r}

∫
I

f j(t, x, u)dt<

∫
I

f j(t, x̄, ū)dt for some j ∈ {1, 2, ..., r}

In case of maximization, the signs of the above inequalities are reversed. We
require the following lemma in the subsequent analysis.

Theorem 4.1 (Weak Duality): Assume that all feasible (x̄, ū) for (VCP) and
all (x, u, λ, y, z, w) for (VCD) that with respect to the same functions η and ζ.

(A1):
∑
λi
∫
I

(
f i (t, x, u) + u(t)

T
Bi (t)wi (t)

)
dt is pseudoinvex with respect to

the functions η and ζ.

7
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(A2):
∫
I

y(t)
T
g(t, x, u)dt is quasi-invex η and ζ.

(A3):
∫
I

z(t)
T

(h(t, x, u)− ẋ(t))dt is quasi-invex.

Then the following cannot hold∫
I

(
f i (t, x̄, ū) +

(
ū(t)

T
Bi (t) ū (t)

)1/2
)
dt <

∫
I

(
f i (t, x, u) + u(t)

T
Bi (t)wi (t)

)
dt

for some i ∈ {1, 2, ..., p}
(12)

∫
I

(
f j (t, x̄, ū) +

(
ū(t)

T
Bj (t) ū (t)

)1/2
)
dt<

∫
I

(
f j (t, x, u) + u(t)

T
Bj (t)wj (t)

)
dt

for some j ∈ {1, 2, ..., p}
(13)

Proof. Suppose, contrary to the result, that (12) and (13) hold. Then (A1) yields∫
I

(
ηT (t, x̄, x)f ix (t, x̄, u) + ζT (t, ū, u)

(
f iu (t, x̄, u) +Bi(t)wi(t)

))
dt< 0

for all i ∈ {1, 2, ..., p}
(14)

Multiplying each inequality of (14) by λi > 0 and summing up for all i =
1, 2, ..., p, we get∫

I

{
ηT (t, x̄, x)

(
p∑

i=1

λif ix (t, x̄, u)

)

+ζT (t, ū, u)

(
p∑

i=1

λi
(
f iu (t, x̄, u) +Bi(t)wi(t)

))}
dt< 0

(15)

Using the feasibility of (VCP) and (VCD), we have∫
I

y(t)
T
g(t, x̄, ū)dt <

∫
I

y(t)
T
g(t, x, ū)dt

This, because of (A2) implies∫
I

{
ηT (t, x̄, x)

(
y(t)

T
gx(t, x̄, u)

)
+ ζT (t, ū, u)

(
y(t)

T
gu(t, x, u)

)}
dt< 0 (16)

Also ∫
I

z(t)
T

(h(t, x̄, ū)− ˙̄x(t)) dt<

∫
I

z(t)
T

(h(t, x, u)− ẋ(t)) dt

8
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From (A3), it implies that

0 >

∫
I

{
ηT (t, x̄, u)

(
z(t)

T
hx(t, x, u)

)
− d

dt
ηT (t, x̄, u)z(t) + ζT (t, ū, u)

(
z(t)

T
hu(t, x, u)

)}
dt

0 >

∫
I

{
ηT (t, x̄, u)

(
z(t)

T
hx(t, x, u)

)
+ ζT (t, ū, u)

(
z(t)

T
hu(t, x, u)

)}
dt

− ηT (t, x̄, u)z(t)
∣∣t=b

t=a
+

∫
I

ηT (t, x̄, u)ż(t)dt

(By integrating by parts)

Using ηT = 0, at t = a and t = b we have,

0 >

∫
I

{
ηT
(
z(t)

T
hx(t, x, u) + ż(t)

)
+ ζT (t, ū, u)z(t)

T
hu(t, x, u)

}
dt (17)

Combining (15), (16) and (17), we have∫
I

{
ηT (t, x̄, x)

(
p∑

i=1

λi
(
f ix (t, x̄, u)

)
+ y(t)

T
gx(t, x̄, u) + z(t)Thx(t, x, u) + ż(t)

)

+ ζT (t, ū, u)

(
p∑

i=1

λi
(
f iu (t, x̄, u) +Bi(t)wi(t)

))
+ y(t)T gu(t, x, u)

+z(t)Thu(t, x, u)
}
dt < 0

This contradicts (5) and (6). The result follows.

Corollary 4.1 Assume that weak duality (Theorem 4.1) holds between (VCP)
and (VCD). If (x, u) is feasible for (VCP) and

(
x, u, λ, y, z, w1, ..., wp

)
is feasible

for (VCD) with y(t)T g (t, x̄, ū) = 0, t ∈ I, then (x, u) is efficient for (VCP) and(
x, u, λ, y, z, w1, ..., wp

)
is efficient for (VCD).

Proof. Suppose (x, u) is not efficient for (VCP). Then there exists some (x̄, ū) for
(VCP) such that

∫
I

(
f i (t, x̄, ū) +

(
ū(t)

T
Bi (t) ū (t)

)1/2
)
dt

<

∫
I

(
f i (t, x, u) +

(
u(t)

T
Bi (t)u (t)

)1/2
)
dt

for some i ∈ {1, 2, ..., p}

9
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∫
I

(
f j (t, x̄, ū) +

(
ū(t)

T
Bj (t) ū (t)

)1/2
)
dt

<

∫
I

(
f j (t, x, u) +

(
ū(t)

T
Bj (t) ū (t)

)1/2
)
dt

for all j ∈ {1, 2, ..., p}

ū(t)
T
Bj (t)wj (t)<

(
ū(t)

T
Bj (t) ū (t)

)1/2
(
wj(t)

T
Bj (t)wj (t)

)1/2
, t ∈ I

<
(
ū(t)

T
Bj (t) ū (t)

)1/2
, j ∈ {1, 2, ..., p}

(using
(
wj(t)

T
Bj (t)wj (t)

)1/2
< 1)

Using ū(t)
T
Bj (t)wj (t) <

(
ū(t)

T
Bj (t) ū (t)

)1/2
, t ∈ I, for all j ∈ {1, 2, ..., p}

these give∫
I

(
f i (t, x̄, ū) +

(
ū(t)

T
Bi (t)wi (t)

))
dt <

∫
I

(
f i (t, x, u) +

(
ū(t)

T
Bi (t) ū (t)

)1/2
)
dt

for some i ∈ {1, 2, ..., p}∫
I

(
f j (t, x̄, ū) +

(
ū(t)

T
Bj (t)wj (t)

))
dt<

∫
I

(
f j (t, x, u) +

(
ū(t)

T
Bj (t) ū (t)

)1/2
)
dt

for all j ∈ {1, 2, ..., p}

This contradicts weak duality. Hence (x̄, ū) is efficient for (VCP).
Now, Suppose

(
x, u, λ, y, z, w1, ..., wp

)
is not efficient for (VCD). Then there

exists some feasible
(
x̂, û, λ̂, ŷ, ẑ, ŵ1, ..., ŵp

)
for (VCD) such that∫

I

(
f i (t, x̂, û) + û(t)

T
Bi (t) ŵi (t)

)
dt >

∫
I

(
f i (t, x, u) + u(t)

T
Bi (t)wi (t)

)
dt

for some i ∈ {1, 2, ..., p}∫
I

(
f j (t, x̂, û) + û(t)

T
Bj (t) ŵj (t)

)
dt >

∫
I

(
f j (t, x, u) +

(
u(t)

T
Bj (t)wj (t)

)1/2
)
dt

for all j ∈ {1, 2, ..., p}

Using
(
û(t)

T
Bj (t) û (t)

)1/2
>
(
û(t)

T
Bj (t)wj (t)

)
, for all j ∈ {1, 2, ..., p}

We have∫
I

(
f i (t, x̂, û) +

(
û(t)

T
Bi (t) û (t)

)1/2
)
dt >

∫
I

(
f i (t, x, u) + u(t)

T
Bi (t)wi (t)

)
dt

10
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for some i ∈ {1, 2, ..., p}∫
I

(
f j (t, x̂, û) +

(
û(t)

T
Bj (t) û (t)

)1/2
)
dt >

∫
I

(
f j (t, x, u) + u(t)

T
Bj (t)wj (t)

)
dt

for all j ∈ {1, 2, ..., p}

This contradicts weak duality. Hence
(
x, u, λ, y, z, w1, ..., wp

)
is efficient for

(VCD).

Theorem 4.2 (Strong Duality): Let (x̄, ū) is efficient for (VCP) and assume
that (x̄, ū) is normal and Q′ = [D −Hx (x̄, ū) ,−Hu (x̄, ū)] is surjective for at least
one k ∈ {1, 2, ..., p}. Then there exists λ′ ∈ Rk and piecewise smooth y : I →
Rm, z : I → Rn, wi : I → Rn, i = 1, 2, ..., p such that

(
x̄, ū, λ̄, ȳ, z̄, w̄1, ..., w̄p

)
is feasible for (VCD). If also weak duality holds between (VCP) and (VCD), then(
x̄, ū, λ̄, ȳ, z̄, w̄1, ..., w̄p

)
is efficient for (VCD).

Proof. As (x̄, ū) satisfy the constraint qualifications of Theorem 3.2 for at least one
k ∈ {1, 2, ..., p}, it follows from Theorem 3.2 that there exist λ′ ∈ Rk , and piecewise
smooth y′ : I → Rm, z′ : I → Rn, wi ∈ Rn, i = 1, 2, ..., p satisfying

fk
x

(t, x̄, ū) +

p∑
i=1
i6=k

λ′
i
f i
x
(t, x̄, ū) + y′(t)T gx(t, x̄, ū) + z′(t)Thx(t, x̄, ū) + ż(t) = 0, t ∈ I

(18)

(
fk
u

(t, x̄, ū) +Br(t)wr(t)
)

+

p∑
i=1
i6=k

λ′
i (
f i
u
(t, x̄, ū) +Bi(t)wi(t)

)
+ y′(t)T gu(t, x̄, ū) + z′(t)Thu(t, x̄, ū) = 0, t ∈ I

(19)

ū(t)TBi(t)wi(t) =
(
ū(t)

T
Bi(t)ū(t)

)1/2
,

wi(t)TBi(t)wi(t) < 1, i = 1, 2, ..., p

y′(t)T g(t, x̄, ū) = 0 , t ∈ I

λ′i > 0,

y′(t))> 0, t ∈ I

Now setting, for i = 1, 2, ..., p, i 6= k

λ′
i

= λ′
i

/1 +

p∑
i=1
i6=k

λ′
i

 , λ̄k = 1

/1−
p∑

i=1
i6=k

λ′
i


ȳi = y′(t)

/1 +

p∑
i=1
i6=k

λ′
i

, z̄(t) = z′(t)

/1 +

p∑
i=1
i6=k

λ′
i


11
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Dividing (18) and (19) by

1 +
p∑

i=1
i6=k

λ′
i

, we get

p∑
i=1

λ̄if i
x
(t, x̄, ū) + y(t)T g(t, x̄, ū) + z(t)Thx(t, x̄, ū) + ż(t) = 0, t ∈ I

p∑
i=1

λi(f i
u
(t, x̄, ū) +Bi(t)wi(t)) + y(t)T g(t, x̄, ū) + z(t)Thu(t, x̄, ū) = 0, t ∈ I

y(t)T g(t, x̄, ū) = 0 , t ∈ I

ū(t)TBi(t)wi(t) =
(
ū(t)

T
Bi(t)ū(t)

)1/2
, i = 1, 2, ..., p

wi(t)TBi(t)wi(t) < 1, i = 1, 2, ..., p

The relations
∫
I

ȳ(t)
T
g(t, x, u)dt > 0 and

∫
I

z(t)
T

(h(t, x, u)− ˙̄x(t))dt > 0 are ob-

vious.
The above relations imply that

(
x̄, ū, λ̄, ȳ, z̄, w̄1, ..., w̄p

)
is feasible for (VCD).

The result now follows from Corollary 4.1.

Theorem 4.3 (Converse Duality): Let
(
x̄, ū, λ̄, ȳ, z̄, w̄1, ..., w̄p

)
be an efficient

solution at which
(A1)

∫
I

σ(t)
T
M(t)σ(t)dt = 0⇒ σ(t) = 0, where some vector σ(t) of appropriate

dimension
(A2) (a) The vectors y(t)T gx, z(t)Thx + ż(t) are linearly independent. Or
(b) The vectors y(t)T gx, z(t)Thu are linearly independent.
(A3) z(a) = 0 = z(b).
Then (x̄, ū) is feasible for (VCP) and value of the objective functional are the

same. If also weak duality (Theorem 4.1) holds between (VCP) and (VCD) holds,
then (x̄, ū) is an efficient solution for (VCP).

Proof. By Theorem 3.3, there exist α ∈ Rp, µ1 ∈ R, µ2 ∈ R, ζ ∈ R
p∑

i=1

αi
(
f ix
)

+ θ(t)T
(
λT fxx + y(t)

T
gxx + z(t)

T
hxx

)
+ φ(t)T

(
λT fux + y(t)

T
gux + z(t)

T
hux

)
+ µ1y(t)T gx + µ2z(t)

Thx = 0

(20)

p∑
i=1

αi
(
f iu +Bi(t)wi(t)

)
+ θ(t)T

(
λT fxu + y(t)

T
gxu + z(t)

T
hxu

)
+ φ(t)T

(
λT fuu + y(t)

T
guu + z(t)

T
huu

)
+ µ1y(t)T gu + µ2z(t)

Thu = 0

(21)

θ(t)T f ix + φ(t)T
(
f i
u

+Bi(t)wi(t)
)

+ ζi = 0 (22)

θ(t)T gx + φ(t)T gu + µ1g + ψ(t) = 0 (23)

12
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θ(t)Thx − θ̇(t) + θ(t)Thu + µ2 (h− ẋ) = 0 (24)

αiu(t)TBi(t) + φ(t)TBi(t)− 2γ(t)Bi(t)wi(t) = 0 (25)

µ1yg = 0 (26)

µ2z (h− ẋ) = 0 (27)

γi
(

1− wi(t)
T
Bi(t)wi(t)

)
= 0 , i = 1, 2, ..., p (28)

λT ζ = 0 (29)

ψ(t)T y(t) = 0 (30)

(α, θ(t), φ(t), γ(t), µ1, µ2, ζ, ψ) 6= 0 (31)

(α, γ(t), µ1, µ2,ζ, ψ) >0 (32)

Multiplying (23) and (24) respectively by y(t) and z(t), we have

θ(t)T
(
y(t)

T
gx

)
+ φ(t)T

(
y(t)

T
gu

)
+ µ1y(t)T g + ψ(t)T y(t) = 0, t ∈ I (33)

θ(t)T
(
z(t)

T
hx

)
−z(t)T θ̇(t)+φ(t)T

(
z(t)

T
hu

)
+µ2z(t)

T (h− ẋ(t)) = 0, t ∈ I (34)

Thus by using (26) and (30), from (33), we have

θ(t)T
(
y(t)

T
gx

)
+ φ(t)T

(
y(t)

T
gu

)
= 0, t ∈ I

which can be written as∫
I

(
θ(t)

T
, φ(t)

T
)(

y(t)
T
gx

y(t)
T
gu

)
dt = 0 (35)

From (34), we have∫
I

(
θ(t)

T
(
z(t)

T
hx

)
+ φ(t)

T
(
z(t)

T
hu

))
dt−

∫
I

z(t)
T
θ̇(t)dt = 0

Integrating by parts, we have∫
I

(
θ(t)

T
(
z(t)

T
hx

)
+ φ(t)

T
(
z(t)

T
hu

))
dt− z(t)

T
θ̇(t)

∣∣∣t=b

t=a
+

∫
I

ż(t)
T
θ(t)dt = 0

13
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Using the hypothesis (A3), we have∫
I

[
θ(t)

T
(
z(t)

T
hx + ż(t)

)
+ φ(t)

T
(
z(t)

T
hu

)]
dt = 0

or ∫
I

(
θ(t)

T
, φ(t)

T
)T ( z(t)

T
hx + ż(t)

z(t)
T
hu

)
dt = 0 (36)

Using equality constraints (5) and (6) in (20) and (21), we have

p∑
i=1

(
αi − λiµ1

)
y(t)

T
gx +

p∑
i=1

(
αi − λiµ2

) (
z(t)

T
hx + ż(t)

)
+

(
p∑

i=1

λi

)
θ(t)T

(
λT fxx + y(t)

T
gxx + z(t)

T
hxx

)
+

(
p∑

i=1

λi

)
φ(t)T

(
λT fux + y(t)

T
gux + z(t)

T
hux

)
= 0

(37)

p∑
i=1

(
αi − λiµ1

)
y(t)

T
gu +

p∑
i=1

(
αi − λiµ2

) (
z(t)

T
hu

)
+

(
p∑

i=1

λi

)
θ(t)T

(
λT fxu + y(t)

T
gxu + z(t)

T
hxu

)
+

(
p∑

i=1

λi

)
φ(t)T

(
λT fuu + y(t)

T
guu + z(t)

T
huu

)
= 0

(38)

These can be written as
p∑

i=1

(
αi − λiµ1

)( y(t)
T
gx

y(t)
T
gu

)
+

p∑
i=1

(
αi − λiµ2

)( z(t)
T
hx + ż(t)

z(t)
T
hu

)

+

(
p∑

i=1

λi

) (
λT fxx + y(t)

T
gxx + z(t)

T
hxx

) (
λT fux + y(t)

T
gux + z(t)

T
hux

)(
λT fxu + y(t)

T
gxu + z(t)

T
hxu

) (
λT fuu + y(t)

T
guu + z(t)

T
huu

) 
·
(
θ(t)
φ(t)

)
= 0

or
p∑

i=1

(
αi − λiµ1

) (
θ(t)

T
, φ(t)

T
)( y(t)

T
gx

y(t)
T
gu

)

+

p∑
i=1

(
αi − λiµ2

) (
θ(t)

T
, φ(t)

T
)(

z(t)
T
hx + ż(t)

z(t)
T
hu

)

+

(
p∑

i=1

λi

)(
θ(t)

T
, φ(t)

T
)

 (
λT fxx + y(t)

T
gxx + z(t)

T
hxx

) (
λT fux + y(t)

T
gux + z(t)

T
hux

)(
λT fxu + y(t)

T
gxu + z(t)

T
hxu

) (
λT fuu + y(t)

T
guu + z(t)

T
huu

) ( θ(t)
φ(t)

)
= 0

14
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or

p∑
i=1

(
αi − λiµ1

) ∫
I

(
θ(t)

T
, φ(t)

T
)(

y(t)
T
gx

y(t)
T
gu

)
dt

+

p∑
i=1

(
αi − λiµ2

) ∫
I

(
θ(t)

T
, φ(t)

T
)(

z(t)
T
hx + ż(t)

z(t)
T
hu

)
dt

+

(
p∑

i=1

λi

)∫
I

(
θ(t)

T
, φ(t)

T
)

 (
λT fxx + y(t)

T
gxx + z(t)

T
hxx

) (
λT fux + y(t)

T
gux + z(t)

T
hux

)(
λT fxu + y(t)

T
gxu + z(t)

T
hxu

) (
λT fuu + y(t)

T
guu + z(t)

T
huu

) ( θ(t)
φ(t)

)
dt = 0

(39)

Using (34) and (35), we have∫
I

(
θ(t)

T
, φ(t)

T
)

 (
λT fxx + y(t)

T
gxx + z(t)

T
hxx

) (
λT fux + y(t)

T
gux + z(t)

T
hux

)(
λT fxu + y(t)

T
gxu + z(t)

T
hxu

) (
λT fuu + y(t)

T
guu + z(t)

T
huu

) ( θ(t)
φ(t)

)
dt = 0

By the hypothesis (A2), we have(
θ(t)

T
, φ(t)

T
)

= 0 i.e. θ(t) = 0 = φ(t), t ∈ I

Using θ(t) = 0 = φ(t), t ∈ I in (37), we have

p∑
i=1

(
αi − λiµ1

)
y(t)

T
gx +

p∑
i=1

(
αi − λiµ2

) (
z(t)

T
hx + ż(t)

)
= 0

By the hypothesis (A3) y(t)T gx, z(t)Thx + ż(t), we have

p∑
i=1

(
αi − λiµ1

)
= 0,

p∑
i=1

(
αi − λiµ2

)
= 0

p∑
i=1

αi = µ1

p∑
i=1

λi,

p∑
i=1

αi = µ2

p∑
i=1

λi

Let αi = 0 i ∈ K. Then µ1 = 0 and µ2 = 0. The relation (22) and (23) implies

ζ = 0 and ψ(t) = 0, t ∈ I

From (25) and (28) implies γi(t) = 0, i = 1, 2, ..., p and t ∈ I.
(α, γ(t), θ(t), φ(t), µ1, µ2, ζ, ψ(t)) = 0, implying a contradiction.
Hence αi > 0, i = 1, 2, ..., p giving µ1 > 0 and µ2 > 0 consequently (23) and

(24) imply
g(t, x̄, ū)< 0, t ∈ I, h(t, x̄, ū) = 0, t ∈ I

15
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Thus (x̄, ū) feasible for (VCP).
Now (25) gives

Bi(t)u(t) =
2γi(t)

αi
Bi(t)wi(t) , t ∈ I (40)

The Schwartz inequality

u(t)TBi(t)wi(t) <
(
u(t)

T
Bi(t)u(t)

)1/2
(
w(t)

T
Bi(t)w(t)

)1/2
, i ∈ {1, 2, ..., p} , t ∈ I

In view of (40) yields

ū(t)TBi(t)wi(t) =
(
ū(t)

T
Bi(t)ū(t)

)1/2
(
wi(t)

T
Bi(t)wi(t)

)1/2

If γi(t) > 0, t ∈ I, (28) implies

wi(t)TBi(t)wi(t) = 1, i = 1, 2, ..., p

Consequently

ū(t)Bi(t)wi(t) =
(
ū(t)

T
Bi(t)ū(t)

)1/2
, i = 1, 2, ..., p

If γi(t) = 0, t ∈ I, then (40) yields Bi(t)u(t) = 0, t ∈ I. So we still have

ū(t)TBi(t)wi(t) =
(
ū(t)

T
Bi(t)ū(t)

)1/2

f i(t, x̄, ū) +
(
ū(t)

T
Bi(t)ū(t)

)1/2
= f i(t, x̄, ū) + ū(t)TBi(t)wi(t), i = 1, 2, ..., k

This implies that objective functions have the same value. By Corollary 4.1, the
efficiency of

(
x̄, ū, λ̄, ȳ, z̄, w̄1, ..., w̄p

)
for (VCD) follows.

5. RELATED PROBLEM

If (VCP) and (VCD) are independent of t and x these essentially reduce to the
static cases of non- differentially multiobjective programming recently studied by
Husain and Jain [10]. Putting b − a = 1, (VCP) and (VCD) become the following
problems.

(VCP0): Minimize(
f1(u) +

(
uTB1u

)1/2, ..., fp(u) +
(
uTBpu

)1/2)

subject to

g(u)<0

h(u) = 0

16
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(VCD0): Maximize
(
f1(u) + uTB1w1, ..., fp(u) + uTBpwp

)
subject to

k∑
i=1

λi (fu(u) +Biwi) + yT gu + zThu = 0

yT g(u)> 0

zTh(u)> 0

wiTBiwi< 1, i = 1, 2, ..., p

λ > 0, y > 0.
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