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Abstract: In this paper we prove the homogenization of the Stokes e-
quation by the method of multiple scale expansion. In particular the cell
problems are clearly defined and an algorithm for obtaining the homogenized
solution is well stated in the concluding part.
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1. INTRODUCTION

Homogenization methods are used for studying the limit behaviour of solution of
boundary value problem with rapidly oscillating coefficients. This theory facilitates
the analysis of partial differential equations with rapidly oscillating coefficients, see
e. g. Jikov et al. [25]. Homogenization was recently applied to different problems
connected to fluid flow through machine elements with much success, see e. g.
[11–15,17–24,27]. One technique within the homogenization theory is the formal
method of multiple scale expansion, see e. g. [1] or [16]. The Stokes equation
is a simplification of the Navier-Stokes equation especially in the incompressible
Newtonian case. It is used in modelling flow of fluid through porous media. A
stokes flow has no dependence on time. This means that, given the boundary
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conditions of a Stokes flow, the flow can be found without knowledge of the flow at
any other time. The homogenization of Stokes equation and Navier Stokes equations
in perforated domains have been studied by different authors see e. g. [6] and [7].
In this paper we consider the homogenization of Stokes equation using the multiple
scale expansion method.

2. THE HOMOGENIZATION PROCEDURE

In this section we consider Stokes equation that governs incompressible Newtonian
flow. Let Ω be an open bounded subset of R2, Y = (0, 1)2. We introduce the
auxiliary matrix A =(aij), where aij = aij(x, y), and i = 1, 2, and j = 1, 2 are
smooth functions that are Y periodic in y. It is also assumed that a constant α > 0
exists such that

2∑
i,j=1

aij(x, y)ξiξj ≥ α |ξ|2 for every ξ ∈ R2.

We now define the matrix Aε as

Aε(x) =

(
aε11(x) aε12(x)
aε21(x) aε22(x)

)
= A(x, x/ε),

and we consider the homogenization of the following boundary value problem

Aεuε = f −∇pε in Ω (1)

div uε = 0 in Ω

uε = 0 on Γ

where
Aε = −∇x · (Aε(x)∇x) .

According to the formal method of multiple scale expansion it is assumed that
pε and uε are of the form

uε (x) =

∞∑
i=0

εiui(x, x/ε) (2)

pε (x) =

∞∑
i=0

εipi(x, x/ε),

where ui = ui (x, y) , pi = pi (x, y) are vectors which are both Y periodic. Applying
the chain rule to a smooth function ψ defined by

ψε(x) = ψ(x, y),

where y = x
ε , we see that

∇x → ∇x +
1

ε
∇y. (3)

Pluging into (1) we have,

−
[(
∇x + ε−1∇y

)
·
(
A
(
∇x + ε−1∇y

))]
uε = f −

(
∇x + ε−1∇y

)
pε,
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or

−
[
ε−2 [∇y · (A∇y)] + ε−1 [∇x · (A∇y) +∇y · (A∇x)] +∇x · (A∇x)

]
uε

= f −
(
∇x + ε−1∇y

)
pε

or [
ε−2A1 + ε−1A2 + ε0A3

]
uε = f −

(
∇x + ε−1∇y

)
pε, (4)

where the differential operators A1, A2 and A3 are defined as

A1 = −∇y · (A∇y)

A2 = − (∇x · (A∇y))−∇y · (A∇x)

A3 = −∇x · (A∇x) .

Also
div uε =

(
divx + ε−1divy

)
uε.

Using (4) and (2) we obtain the full expansion of (1) as,[
ε−2A1 + ε−1A2 + ε0A3

] (
u0 + εu1 + ε2u2 + ...

)
= f −

(
∇x + ε−1∇y

) (
p0 + εp1 + ε2p2 + ...

)
(
divx + ε−1divy

) (
u0 + εu1 + ε2u2 + ...

)
= 0

uε = 0.

Re-arranging we obtain

ε−2A1u0 + ε−1 (A1u1 +A2u0) + ε0 (A3u0 +A1u2 +A2u1) + ...

= ε−1 (∇yp0) f −+ε0 (∇xp0 +∇yp1) + ε1 (∇xp1 +∇yp2) + ε2 (∇xp2) .

and
ε0 (divxu0 + divyu1) + ε−1 (divyu0) + ε1 (divxu1 + divyu2) = 0.

Comparing terms with the same order of ε from −2 to 0, we obtain the following
system of equations

A1u0 = 0 (5)

A1u1 +A2u0 = −∇yp0 (6)

A3u0 +A1u2 +A2u1 = f −∇xp0 −∇yp1 (7)

in addition to the following

divxu0 + divyu1 = 0 (8)

divyu0 = 0. (9)

Lemma 1. Consider the boundary value problem

A0Φ = F in the unit cell Y, (10)

where F ∈ L2(Y ) and Φ(y) is Y-periodic. Then the following holds true:
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(i) There exists a weak Y - periodic solution Φ of (10) if and only if

1

|Y |

∫
Y

Fdy = 0.

(ii) If there exists a weak Y - periodic solution of (10), then it is unique up to
a constant, that is, if we find one solution Φ0(y), every solution is of the form
Φ(y) = Φ0(y) + c, where c is a constant.

Proof. See [1, p. 39].

From (5)
A1u0 = 0

implies that
u0 (x, y) = u0 (x) ,

since A1 is a differential operator in y.
From (8)

divxu0 + divyu1 = 0

Integrating over the period Y we have∫
Y

(divxu0 (x)) dy +

∫
Y

divyu1 (x, y) dy = 0.

By periodicity
∫
Y

divyu1 (x, y) dy = 0 and
∫
Y

(divxu0 (x)) dy = |Y |divxu0 (x) .
Hence, the last equation reduces to

|Y |divxu0 (x) = 0

or
divxu0 (x) = 0. (11)

Substituting (11) into (8) we find that

divyu1 = 0. (12)

From (6)

A1u1 +A2u0 = −∇yp0

A1u1 = [∇x · (A∇y) +∇y · (A∇x)]u0 (x)−∇yp0

= ∇y · (A∇x)u0 (x)−∇yp0. (13)

But u0 being a function of x only, implies that ∇x · (A∇y)u0 (x) = 0.
From (12) and (13) we have

A1u1 = (∇y · (A∇x))u0 (x)−∇yp0

divyu1 = 0.

To obtain the cell problems we simplify (13) as follows

A1u1 = (∇y · (A∇x))u0 (x)−∇yp0.
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By linearity u1 must be of the form

u1 = v1(x, y)
∂u0
∂x1

+ v2(x, y)
∂u0
∂x2

+ v0 (x)

and so

A1

(
v1(x, y)

∂u0
∂x1

+ v2(x, y)
∂u0
∂x2

+ v0 (x)

)
= ∇y · (A∇x)u0 (x)−∇yp0

−∇y · (A∇y)

(
v1(x, y)

∂u0
∂x1

+ v2(x, y)
∂u0
∂x2

+ v0 (x)

)
= ∇y ·

(
Ae1

∂u0
∂x1

)
+∇y ·

(
Ae2

∂u0
∂x1

)
−∇yp0.

Grouping like terms we obtain

−∇y ·
(
Ae1

∂u0
∂x1

)
−∇y · (A∇y) v1(x, y)

∂u0
∂x1

= 0

−∇y ·
(
Ae2

∂u0
∂x1

)
−∇y · (A∇y) v2(x, y)

∂u0
∂x2

= 0

−∇y · (A∇y) v0 (x) +∇yp0 = 0.

This simplifies to the following cell problems

∇y · (A (∇yv1 + e1)) = 0 (14)

∇y · (A (∇yv2 + e2)) = 0

−∇y · (A∇yv0) +∇yp0 = 0.

From (7) we have

A3u0 +A1u2 +A2u1 = f −∇xp0 −∇yp1.

Averaging over Y we have∫
Y

(A3u0 +A1u2 +A2u1) dy =

∫
Y

(f −∇xp0 −∇yp1) dy.

But
∫
Y
A1u2dy = 0 and

∫
∇yp1dy = 0 by Y-periodicity (since u2 and p1 are

periodic in Y). This reduces the last equation to∫
Y

(A2u1 +A3u0) dy =

∫
Y

(f −∇xp0) dy

or ∫
Y

− [∇x · (A∇yu1) +∇y · (A∇xu1)] dy −
∫
Y

∇x · (A∇xu0) dy

=

∫
Y

(f −∇xp0) dy.
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Now
∫
Y
∇y · (A∇xu1) dy = 0 since A∇xu1 is periodic in Y . We thus, have∫

Y

−∇x · (A∇yu1) dy −
∫
Y

∇x · (A∇xu0) dy = |Y | f −∇x

∫
Y

p0 (x, y) dy,

i. e.,

∫
Y

−∇x ·
[
A∇y

(
v1(x, y)

∂u0
∂v1

+ v2(x, y)
∂u0
∂v2

+ v0 (x)

)]
dy

−
∫
Y

∇x ·
(
A

(
∂u0
∂x1

e1 +
∂u0
∂x1

e2

))
dy

= |Y | f −∇x

∫
Y

p0 (x, y) dy,

or

∇x ·
{
−∂u0
∂x1

∫
Y

A (∇yv1 + e1) dy − ∂u0
∂x2

∫
Y

A (∇yv2 + e2) dy

= |Y | f −∇x

∫
Y

p0 (x, y) dy +∇x ·
∫
Y

A∇yv0 (x) dy.

Since ∇x ·
∫
Y
A∇yv0 (x) dy = 0, If we let

∫
Y
p0 (x, y) dy = p̃0 (x) and |Y | = 1

then we have the following homogenized equation

∇x ·
{
∂u0
∂x1

(
b11 (x)
b21 (x)

)
+
∂u0
∂x2

(
b12 (x)
b22 (x)

)}
= f −∇xp̃0 (x)

∇x ·

{(
b11 (x) b12 (x)
b21 (x) b22 (x)

)( ∂u0

∂x1
∂u0

∂x2

)}
= f −∇xp̃0 (x) .

In a more compact form the homogenized equation can be written as

∇x · {B (x)∇u0} = f −∇xp̃0 (x) , (15)

where the matrix B (x) is a matrix function defined by B (x) = bij (x) in terms of
v1 and v2 as (

b11 (x)
b21 (x)

)
= −

∫
Y

[A (∇yv1 + e1)] dy, (16)(
b12 (x)
b22 (x)

)
= −

∫
Y

[A (∇yv2 + e2)] dy,

If we let
A0 = ∇x · {B (x)∇} ,

(15) can be written as
A0u0 = f −∇xp̃0 (x) in Ω. (17)
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Combining (11) and (17) the homogenized boundary value problem of (1) is
given by

A0u0 = f −∇xp̃0 (x) in Ω

divxu0 (x) = 0 in Ω

u0(x) = 0 on Γ.

3. CONCLUSION

We have proved that an approximate solution of equation (1) can be obtained by
following the algorithm below.

1. Solve the three local problems (14).

2. Insert the solutions of the local problems into (16) and compute the homoge-
nized coefficient B (x).

3. Insert B (x) into the homogenized equation (15), which corresponds to the
approximate solution for (1), and solve for u0.
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