Oscillation and Nonoscillation Theorems for a Class of Fourth Order Quasilinear Difference Equations

LIU LanChu ${ }^{[a], *}$ and GAO Youwu ${ }^{[a]}$
${ }^{[a]}$ College of Science, Hunan Institute of Engineering, China.
* Corresponding author.
Address: College of Science, Hunan Institute of Engineering, 88 East Fuxing Road, Xiangtan 411104, China; E-Mail: llc0202@163.com

Supported by The NNSF of P.R. China and Science and Research Fund of Hunan Provincial Education Department.

Received: November 22, 2012/ Accepted: February 5, 2013/ Published: February 28, 2013

Abstract: In this paper,we consider certain quasilinear difference equations

$$
\begin{equation*}
\Delta^{2}\left(\left|\Delta^{2} y_{n}\right|^{\alpha-1} \Delta^{2} y_{n}\right)+q_{n}\left|y_{\tau(n)}\right|^{\beta-1} y_{\tau(n)}=0 \tag{A}
\end{equation*}
$$

where
(a) α, β are positive constants;
(b) $\left\{q_{n}\right\}_{n_{0}}^{\infty}$ are positive real sequences. $n_{0} \in N_{0}=\{1,2, \cdots\}$. Oscillation and nonoscillation theorems of the above equation is obtained.

Key words: Quasilinear difference equations; Oscillation and nonoscillation theorems; Four order

Liu, L., \& Gao, Y. (2013). Oscillation and Nonoscillation Theorems for a Class of Fourth Order Quasilinear Difference Equations. Studies in Mathematical Sciences, 6(1), 26-34. Available from http://www.cscanada.net/index.php/sms/article/view/j.sms. 1923845220130601. 563 DOI: 10.3968/j.sms.1923845220130601.563

1. INTRODUCTION

In this paper, we consider certain quasilinear difference equations (A) $\quad \Delta^{2}\left(\left|\Delta^{2} y_{n}\right|^{\alpha-1} \Delta^{2} y_{n}\right)+q_{n}\left|y_{\tau(n)}\right|^{\beta-1} y_{\tau(n)}=0$,
where
(a) α, β are positive constants;
(b) $\left\{q_{n}\right\}_{n_{0}}^{\infty}$ are positive real sequences. $n_{0} \in N_{0}=\{1,2, \cdots\}$.
(c) $\tau(n) \leq n$, and $\lim _{n} \rightarrow \infty \tau(n)=\infty$

The Equation (A) can also be expressed as

$$
\begin{equation*}
\Delta^{2}\left(\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}\right)+q_{n}\left(y_{\tau(n)}\right)^{\beta_{*}}=0 \tag{1.1}
\end{equation*}
$$

in terms of the asterisk notation

$$
\xi^{\gamma_{*}}=|\xi|^{\gamma} \operatorname{sgn} \xi=|\xi|^{\gamma-1} \xi, \quad \xi \in R, \quad \gamma>0 .
$$

It is clear that if $\left\{y_{n}\right\}$ is a eventually positive solution of (1.1), then $-\left\{y_{n}\right\}$ is a eventually negative solution of (1.1).

Lemma 1.1. Assume that $\left\{y_{n}\right\}$ is a eventually positive solution of (1.1). then one of the following two cases holds for all sufficiently large n :

$$
\begin{array}{llll}
\text { I : } & \Delta y_{n}>0, & \Delta^{2} y_{n}>0, & \Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}>0 \\
\text { II : } & \Delta y_{n}>0, & \Delta^{2} y_{n}<0, & \Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}>0
\end{array}
$$

Proof. From (1.1), we have $\Delta^{2}\left(\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}\right)<0$ for all large n. It follows that Δy_{n}, $\Delta^{2} y_{n}, \Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}$ are eventually monotonic and one-signed.
(A) if $\Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}<0$ eventually. Then combining this with $\Delta^{2}\left(\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}\right)<0$, we see that $\lim _{n \rightarrow \infty}\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}=-\infty$. That is $\Delta^{2} y_{n} \rightarrow-\infty$ for all large n. It follows that $\Delta y_{n} \rightarrow-\infty, y_{n} \rightarrow-\infty$, which contradicts the positivity of $\left\{y_{n}\right\}$.
(B) if $\Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}>0$ eventually. Then combining this with $\Delta^{2}\left(\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}\right)<0$, we see that $\Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}} \rightarrow 0$ or $\rightarrow a>0$ so

$$
\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}=\left(\Delta^{2} y_{N}\right)^{\alpha_{*}}+\sum_{N}^{n-1}\left(\Delta^{2} y_{n}\right)^{\alpha_{*}} .
$$

If $\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}>0$. That is $\Delta^{2} y_{n}>0$ is increasing and $\rightarrow C$ or ∞. It follows that $\Delta y_{n}>0$; If $\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}<0$. That is $\Delta^{2} y_{n}<0$ is increasing and $\rightarrow d$ or 0 . If $\Delta y_{n}<0$, then $y_{n} \rightarrow \infty$, it is impossible, so $\Delta y_{n}>0$. This complete the proof of the lemma.

From Lemma (1.1), we know $y_{n}, \Delta y_{n}, \Delta^{2} y_{n}, \Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}$ tend to finite or infinite limits as $n \rightarrow \infty$. Let

$$
\lim _{n \rightarrow \infty} \Delta^{i} y_{n}=\omega_{i}, \quad i=0,1,2, \quad \text { and } \quad \lim _{n \rightarrow \infty} \Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}=\omega_{3}
$$

It is that ω_{3} is a finite nonnegative number. One can easily show that:
If y_{n} satisfies I, then the set of its asymptotic values ω_{i} falls into one of the following three cases:
$\mathrm{I}_{1}: \omega_{0}=\omega_{1}=\omega_{2}=\infty, \omega_{3} \in(0, \infty) ;$
$\mathrm{I}_{2}: \omega_{0}=\omega_{1}=\omega_{2}=\infty, \omega_{3}=0$;
$\mathrm{I}_{3}: \omega_{0}=\omega_{1}=\infty, \omega_{2} \in(0, \infty), \omega_{3}=0$.
If y_{n} satisfies II, then the set of its asymptotic values ω_{i} falls into one of the following three cases:

$$
\mathrm{II}_{1}: \omega_{0}=\infty, \omega_{1} \in(0, \infty), \omega_{2}=\omega_{3}=0
$$

```
\(\mathrm{II}_{2}: \omega_{0}=\infty, \omega_{1}=\omega_{2}=\omega_{3}=0\)
\(\mathrm{II}_{3}: \omega_{0} \in(0, \infty), \omega_{1}=\omega_{2}=\omega_{3}=0\).
```

Equivalent expressions for these six classes of positive solutions of (1.1) are as follows:
$\mathrm{I}_{1}: \lim _{n \rightarrow \infty} \frac{y_{n}}{n^{2+\frac{1}{\alpha}}}=$ const $>0 ;$
$\mathrm{I}_{2}: \lim _{n \rightarrow \infty} \frac{y_{n}}{n^{2+\frac{1}{\alpha}}}=0, \lim _{n \rightarrow \infty} \frac{y_{n}}{n^{2}}=\infty$;
$\mathrm{I}_{3}: \lim _{n \rightarrow \infty} \frac{y_{n}}{n^{2}}=$ const >0;
$\mathrm{II}_{1}: \lim _{n \rightarrow \infty} \frac{y_{n}}{n}=$ const >0;
$\mathrm{II}_{2}: \lim _{n \rightarrow \infty} \frac{y_{n}}{n}=0, \lim _{n \rightarrow \infty} y_{n}=\infty$;
$\mathrm{II}_{3}: \lim _{n \rightarrow \infty} y_{n}=$ const.
Let y_{n} be a positive solution of (1.1) such that $y_{n}>0, y_{\tau(n)}>0$ for $n \geq N>n_{0}$. summing (1.1) from n to ∞ gives

$$
\begin{equation*}
\Delta\left(\Delta^{2} y_{n}\right)^{\alpha_{*}}=\omega_{3}+\sum_{s=n}^{\infty} q_{s}\left(y_{\tau(n)}\right)^{\beta}, \quad n \geq N \tag{1.2}
\end{equation*}
$$

If y_{n} is a solution of type $I_{i}(i=1,2,3)$, then sum (1.2) three times over [$N, n-1$] to obtain

$$
\begin{equation*}
y_{n}=k_{0}+k_{1}(n-N)+\sum_{s=N}^{n-1}(n-s)\left[k_{2}^{\alpha}+\sum_{r=n}^{s-1}\left(\omega_{3}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right)\right]^{\frac{1}{\alpha}} \tag{1.3}
\end{equation*}
$$

for $n \geq N$ where $k_{0}=y_{N}, k_{1}=\Delta y_{N}, k_{2}=\Delta^{2} y_{N}$ are nonnegative constants. The equality (1.3) gives a representation for a solution y_{n} of type $-I_{1}$. A type $-I_{2}$ solution y_{n} of (1.1) is expressed by (1.3) with $\omega_{3}=0$.

If y_{n} is a solution of type I_{3}, then, first summing (1.1) from n to ∞ and then summing the resulting equation twice times over $[N, n-1]$ to obtain

$$
\begin{equation*}
y_{n}=k_{0}+k_{1}(n-N)+\sum_{s=N}^{n-1}(n-s)\left[\omega_{2}^{\alpha}-\sum_{r=s}^{\infty}(r-s) q_{r}\left(y_{\tau(r)}\right)^{\beta}\right]^{\frac{1}{\alpha}}, \quad n>N \tag{1.4}
\end{equation*}
$$

A representation for a solution y_{n} of type $I I_{1}$ is derived by summing (1.2) with $\omega_{3}=0$ twice from n to ∞ and then once from N to $n-1$:

$$
\begin{equation*}
y_{n}=k_{0}+\sum_{s=N}^{n-1}\left(\omega_{1}+\sum_{r=s}^{\infty}\left[\sum_{\sigma=r}^{\infty}(\sigma-r) q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right]\right)^{\frac{1}{\alpha}}, \quad n>N \tag{1.5}
\end{equation*}
$$

a representation for a solution y_{n} of type $I I_{2}$ is given by (1.5) with $\omega_{1}=0$. a representation for a solution y_{n} of type $I I_{3}$ is derived by summing (1.2) with $\omega_{3}=0$ three times from n to ∞ yield

$$
\begin{equation*}
y_{n}=\omega_{0}-\sum_{s=n}^{\infty}(s-n)\left[\sum_{r=s}^{\infty}(r-s) q_{r}\left(y_{\tau(r)}\right)^{\beta}\right]^{\frac{1}{\alpha}}, \quad n>N \tag{1.6}
\end{equation*}
$$

2. NONOSCILLATION CRITERIA

Theorem 1. The equation (1.1) has a positive of type $-I_{1}$ if and only if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n}(\tau(n))^{2+\frac{1}{\alpha}} \beta<\infty \tag{2.1}
\end{equation*}
$$

Proof. Necessary. Suppose that (1.1) has a positive of type $-I_{1}$, then, it satisfies (1.3) for $n \geq N$, which implies that

$$
\sum_{n=N}^{\infty} q_{n}\left(y_{\tau(n)}\right)^{\beta}<\infty
$$

This together with the asymptotic relation $\lim _{n \rightarrow \infty} \frac{y_{n}}{n^{2+\frac{1}{\alpha}}}=$ const >0; shows that the condition (2.1) is satisfied.

Sufficiently. Suppose now that (2.1) holds. Let $k>0$ be any given constant. Choose $N>n_{0}$ large enough so that

$$
\begin{equation*}
\left(\frac{\alpha^{2}}{(\alpha+1)(2 \alpha+1)}\right)^{\beta} \sum_{n=n_{0}}^{\infty} q_{n}(\tau(n))^{2+\frac{1}{\alpha}} \beta \leq \frac{(2 k)^{\alpha}-k^{\alpha}}{(2 k)^{\beta}} \tag{2.2}
\end{equation*}
$$

Put $N_{*}=\min \left\{N, \inf _{n>N} \tau(n)\right\}$, and define

$$
\begin{array}{ll}
G(n, N)=\sum_{s=N}^{n-1}(n-s)(s-N)^{\frac{1}{\alpha}}=\frac{\alpha^{2}}{(\alpha+1)(2 \alpha+1)}(n-N)^{\frac{2}{1+\alpha}} & n \geq N \\
G(n, N)=0 & n<N
\end{array}
$$

Let B_{N} be the Banach space of all real sequences $Y=\left\{y_{n}\right\}$, with the norm $\|Y\|=\sup _{n>n_{0}}\left|y_{n}\right|<\infty$ we define a closed, bounded and convex subset Ω of B_{N} as follows:

$$
\Omega=\left\{Y=\left\{y_{n}\right\} \in B_{N} \quad k G(n, N) \leq y_{n} \leq 2 k G(n, N), n \geq N_{*}\right\}
$$

Define the map $T: \Omega \rightarrow B_{N}$ as follows:

$$
\left\{\begin{array}{l}
T y_{n}=\sum_{N}^{n-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right)\right]^{\frac{1}{\alpha}}, \quad n \geq N \tag{2.3}\\
T y_{n}=T y_{N}, \quad \quad N_{*} \leq n \leq N
\end{array}\right.
$$

I) T maps Ω into Ω. For $y_{n} \in \Omega$, then for $n \geq N$

$$
T y_{n} \geq k \sum_{N}^{n-1}(n-s)(s-N)^{\frac{1}{\alpha}}=k G(n, N)
$$

Oscillation and Nonoscillation Theorems for a Class of Fourth Order Quasilinear
and

$$
\begin{aligned}
T y_{n} & \leq \sum_{N}^{n-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(2 k \tau(\tau(\sigma), N)^{\beta}\right)\right)\right]^{\frac{1}{\alpha}} \\
& \leq \sum_{N}^{n-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\left(\frac{2 k \alpha^{2}}{(\alpha+1)(2 \alpha+1)}\right)^{\beta}\right) \sum_{\sigma=r}^{\infty} q_{\sigma}(\tau(\sigma))^{\left(2+\frac{1}{\alpha}\right) \beta}\right]^{\frac{1}{\alpha}} \\
& \leq 2 k \sum_{N}^{n-1}(n-s)(s-N)^{\frac{1}{\alpha}}=2 k G(n, N)
\end{aligned}
$$

II) T is continuous. Let $y^{(k)} \in \Omega$ such that $\lim _{k \rightarrow \infty}\left\|y^{(k)}-y\right\|=0$

$$
\begin{aligned}
& \left|\left(T y^{(k)}\right)_{n}-(T y)_{n}\right| \\
= & \sum_{N}^{n-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(y_{\tau(\sigma)}^{(k)}\right)^{\beta}\right)\right]^{\frac{1}{\alpha}} \\
& -\sum_{N}^{n-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right)\right]^{\frac{1}{\alpha}}
\end{aligned}
$$

by using Lebesgue's dominated convergence theorem, we can conclude that

$$
\lim _{n \rightarrow \infty}\left\|T y^{(k)}-T y\right\|=0
$$

III) T is uniformly-cauchy, $\forall n_{1}, n_{2}>N_{*}$

$$
\begin{aligned}
\left|T y_{n_{1}}-T y_{n_{2}}\right|= & \sum_{N}^{n_{2}-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right)\right]^{\frac{1}{\alpha}} \\
& -\sum_{N}^{n_{1}-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right)\right]^{\frac{1}{\alpha}} \\
= & \sum_{n_{1}}^{n_{2}-1}(n-s)\left[\sum_{N}^{s-1}\left(k^{\alpha}+\sum_{\sigma=r}^{\infty} q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right)\right]^{\frac{1}{\alpha}}
\end{aligned}
$$

Therefore, by the Schauder fixed point theorem, there exists a fixed $T y=y$, which satisfies (1.1). This completes the proof.

Theorem 2. The equation (1.1) has a positive of type $-I_{3}$ if and only if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n q_{n}(\tau(n))^{2 \beta}<\infty \tag{2.4}
\end{equation*}
$$

Proof. Necessary. Suppose that (1.1) has a positive of type $-I_{3}$, then, it satisfies (1.4) for $n \geq N$, which implies that

$$
\sum_{n=N}^{\infty}(n-N) q_{n}\left(y_{\tau(n)}\right)^{\beta}<\infty
$$

This together with the asymptotic relation $\lim _{n \rightarrow \infty} \frac{y_{n}}{n^{2}}=$ const >0; shows that the condition (2.2) is satisfied.

Sufficiently. Suppose now that (2.2) holds. Let $k>0$ be any given constant. Choose $N>n_{0}$ large enough so that

$$
\begin{equation*}
\sum_{n=N}^{\infty} n q_{n}(\tau(n))^{2 \beta} \leq \frac{(2 k)^{\alpha}-k^{\alpha}}{(k)^{\beta}} \tag{2.5}
\end{equation*}
$$

Put $N_{*}=\min \left\{N, \inf _{n>N} \tau(n)\right\}$. Let B_{N} be the Banach space of all real sequences $Y=\left\{y_{n}\right\}$, with the norm $\|Y\|=\sup _{n>n_{0}}\left|y_{n}\right|<\infty$ we define a closed, bounded and convex subset Ω of B_{N} as follows:

$$
\Omega=\left\{Y=\left\{y_{n}\right\} \in B_{N} \quad \frac{2}{k}(n-N)_{+}^{2} \leq y_{n} \leq k(n-N)_{+}^{2}, n \geq N_{*}\right\}
$$

where $n-N_{+}=n-N$ if $n \geq N$, and $n-N_{+}=0$ if $n \leq N$. Define the map $T: \Omega \rightarrow B_{N}$ as follows:

$$
\left\{\begin{array}{lr}
T y_{n}=\sum_{N}^{n-1}(n-s)\left[2 k^{\alpha}-\sum_{r=s}^{\infty}(r-s) q_{r}\left(y_{\tau(r)}\right)^{\beta}\right]^{\frac{1}{\alpha}}, & n \geq N \\
T y_{n}=T y_{N} & N_{*} \leq n \leq N
\end{array}\right.
$$

The proof is similar to that of Theorem 1 and there exists an element y such that $y=T y$, which is a type $-I_{3}$ solution of (1.1) with the property that $\lim _{n \rightarrow \infty} \Delta_{2} y_{n}=$ $2 k>0$. This completes the proof.

Theorem 3. The equation (1.1) has a positive of type $-I I_{1}$ if and only if

$$
\begin{equation*}
\sum_{n=N}^{\infty}\left[\sum_{s=n}^{\infty}(s-n) q_{s}(\tau(s))^{\beta}\right]^{\frac{1}{\alpha}}<\infty \tag{2.6}
\end{equation*}
$$

Proof. Necessary. Suppose that (1.1) has a positive of type $-I I_{1}$, then, it satisfies (1.4) for $n \geq N$, which implies that

$$
\sum_{n=N}^{\infty}(n-N) q_{n}\left(y_{\tau(n)}\right)^{\beta}<\infty
$$

This together with the asymptotic relation $\lim _{n \rightarrow \infty} \frac{y_{n}}{n}=$ const >0; shows that the condition (2.6) is satisfied.

Sufficiently. Suppose now that (2.6) holds. Let $k>0$ be any given constant. Choose $N>n_{0}$ large enough so that

$$
\sum_{n=N}^{\infty}\left[\sum_{s=n}^{\infty}(s-n) q_{s} y_{\tau(s)}\right]^{\frac{1}{\alpha}}<2^{\frac{-\beta}{\alpha}} k^{1-\frac{\beta}{\alpha}}
$$

Put $N_{*}=\min \left\{N, \inf _{n>N} \tau(n)\right\}$. Let B_{N} be the Banach space of all real sequences $Y=\left\{y_{n}\right\}$, with the norm $\|Y\|=\sup _{n>n_{0}}\left|y_{n}\right|<\infty$, we define a closed, bounded and convex subset Ω of B_{N} as follows:

$$
\Omega=\left\{Y=\left\{y_{n}\right\} \in B_{N} \quad k n \leq y_{n} \leq 2 k n, n \geq N_{*}\right\}
$$

Define the map $T: \Omega \rightarrow B_{N}$ as follows:

$$
\left\{\begin{array}{lc}
T y_{n}=k n+\sum_{N}^{n-1} \sum_{s}^{\infty}\left[\sum_{r}^{\infty}(\sigma-r) q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right]^{\frac{1}{\alpha}}, & n \geq N \tag{2.7}\\
T y_{n}=k n & N_{*} \leq n \leq N
\end{array}\right.
$$

The proof is similar to that of Theorem 1 and there exists an element y such that $y=T y$, which is a type $-I I_{1}$ solution of (1.1) with the property that $\lim _{n \rightarrow \infty} \Delta y_{n}=$ $k>0$; This completes the proof.

Theorem 4. The equation (1.1) has a positive of type - $I I_{3}$ if and only if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n\left[\sum_{s=n}^{\infty}(s-n) q_{s}\right]^{\frac{1}{\alpha}}<\infty \tag{2.8}
\end{equation*}
$$

Proof. Necessary. Suppose that (1.1) has a positive of type $-I I_{3}$, then, it satisfies (1.6) for $n \geq N$, which implies that

$$
\begin{equation*}
\sum_{n=N}^{\infty} n\left[\sum_{s=n}^{\infty}(s-n) q_{s}\left(y_{\tau(s)}\right)^{\beta}\right]^{\frac{1}{\alpha}}<\infty \tag{2.9}
\end{equation*}
$$

This together with the asymptotic relation $\lim _{n \rightarrow \infty} y_{n}=$ const >0; shows that the condition (2.8) is satisfied.

Sufficiently. Suppose now that (2.8) holds. Let $k>0$ be any given constant. Choose $N>n_{0}$ large enough so that

$$
\begin{equation*}
\sum_{n=N}^{\infty} n\left[\sum_{s=n}^{\infty}(s-n) q_{s} y_{\tau(s)}\right]^{\frac{1}{\alpha}}<\frac{1}{2} k^{1-\frac{\beta}{\alpha}} \tag{2.10}
\end{equation*}
$$

Put $N_{*}=\min \left\{N, \inf _{n>N} \tau(n)\right\}$. Let B_{N} be the Banach space of all real sequences $Y=\left\{y_{n}\right\}$, with the norm $\|Y\|=\sup _{n>n_{0}}\left|y_{n}\right|<\infty$, we define a closed, bounded and convex subset Ω of B_{N} as follows:

$$
\Omega=\left\{Y=\left\{y_{n}\right\} \in B_{N} \quad \frac{k}{2} \leq y_{n} \leq k, n \geq N_{*}\right\}
$$

Define the map $T: \Omega \rightarrow B_{N}$ as follows:

$$
\begin{cases}T y_{n}=k-\sum_{n}^{\infty}(s-n)\left[\sum_{r=s}^{\infty}(r-s) q_{r}\left(y_{\tau(r)}\right)^{\beta}\right]^{\frac{1}{\alpha}}, & \tag{2.11}\\ T y_{n}=T y_{N} & \\ N_{*} \leq n \leq N\end{cases}
$$

The proof is similar to that of Theorem 1 and there exists an element y such that $y=T y$, which is a type $-I I_{1}$ solution of (1.1) with the property that $\lim _{n \rightarrow \infty} \Delta y_{n}=$ $k>0$; This completes the proof.

Theorem 5. The equation (1.1) has a positive of type $-I_{2}$ if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n}(\tau(n))^{\left(2+\frac{1}{\alpha}\right) \beta} \leq \infty \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n q_{n}(\tau(n))^{2 \beta}=\infty \tag{2.13}
\end{equation*}
$$

Proof. Suppose now that (2.12) holds. Choose $N>n_{0}$ large enough so that

$$
\begin{equation*}
\sum_{n=N}^{\infty} q_{n}(\tau(n))^{\left(2+\frac{1}{\alpha}\right) \beta} \leq \frac{1}{2^{\alpha+1}}\left(\frac{(\alpha+1)(2 \alpha+1)}{\alpha^{2}}\right)^{\alpha} \tag{2.14}
\end{equation*}
$$

Put $N_{*}=\min \left\{N, \inf _{n>N} \tau(n)\right\}$. Let B_{N} be the Banach space of all real sequences $Y=\left\{y_{n}\right\}$, with the norm $\|Y\|=\sup _{n>n_{0}}\left|y_{n}\right|<\infty$, we define a closed, bounded and convex subset Ω of B_{N} as follows:

$$
\Omega=\left\{Y=\left\{y_{n}\right\} \in B_{N} \quad \frac{1}{2^{1+\frac{1}{\alpha}}}(n-N)_{+}^{2} \leq y_{n} \leq n^{2+\frac{1}{\alpha}} \quad n \geq N_{*}\right\}
$$

Define the map $T: \Omega \rightarrow B_{N}$ as follows:

$$
\left\{\begin{array}{lrl}
T y_{n} & =\sum_{N}^{n-1}(n-s)\left[\frac{1}{2} \sum_{N}^{s-1} \sum_{\sigma=r}^{\infty}(\sigma) q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right]^{\frac{1}{\alpha}}, & n \geq N \tag{2.15}\\
T y_{n} & =0 & N_{*} \leq n \leq N
\end{array}\right.
$$

The proof is similar to that of Theorem 1 and there exists an element y such that $y=T y$, which is a type $-I_{2}$ solution of (1.1) This completes the proof.

Theorem 6. The equation (1.1) has a positive of type $-I I_{2}$ if

$$
\begin{equation*}
\sum_{n}^{\infty} n\left[\sum_{n}^{\infty}(s-n) q_{s}(\tau(s))^{\beta}\right]^{\frac{1}{\alpha}}<\infty \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty}\left[\sum_{n}^{\infty}(s-n) q_{s}\right]^{\frac{1}{\alpha}}=\infty \tag{2.17}
\end{equation*}
$$

Proof. Suppose now that (2.16) holds. Choose $N>n_{0}$ large enough so that

$$
\begin{equation*}
\sum_{N}^{\infty} n\left[\sum_{n}^{\infty}(s-n) q_{s}(\tau(s))^{\beta}\right]^{\frac{1}{\alpha}} \leq 2^{\frac{-\beta}{\alpha}} k^{1-\frac{\beta}{\alpha}} \tag{2.18}
\end{equation*}
$$

Put $N_{*}=\min \left\{N, \inf _{n>N} \tau(n)\right\}$. Let B_{N} be the Banach space of all real sequences $Y=\left\{y_{n}\right\}$, with the norm $\|Y\|=\sup _{n>n_{0}}\left|y_{n}\right|<\infty$, we define a closed, bounded and convex subset Ω of B_{N} as follows:

$$
\Omega=\left\{Y=\left\{y_{n}\right\} \in B_{N} \quad k \leq y_{n} \leq 2 k n, n \geq N_{*}\right\}
$$

Define the map $T: \Omega \rightarrow B_{N}$ as follows:

$$
\left\{\begin{array}{lrl}
T y_{n} & =k+\sum_{N}^{n-1} \sum_{s}^{\infty}\left[\sum_{\sigma=r}^{\infty}(\sigma-r) q_{\sigma}\left(y_{\tau(\sigma)}\right)^{\beta}\right]^{\frac{1}{\alpha}}, & n \geq N \tag{2.19}\\
T y_{n} & =k & \\
N_{*} \leq n \leq N
\end{array}\right.
$$

The proof is similar to that of Theorem 1 and there exists an element y such that $y=T y$, which is a type $-I I_{2}$ solution of (1.1). This completes the proof.

REFERENCES

[1] Zhang, B. G., \& Zhou, Y. (2001). Oscillation of a kind of two-variable function equation. Computers and Mathematics with application, 42, 369-378.
[2] Zhang, B. G., \& Yang, B. (1999). Oscillation in higher order nonlinear difference equation. Chznese Ann. Math., 20, 71-80.
[3] Zhang, B. G., \& Wong, H. (1996). The existence of oscillatory and nonoscillatory solution of neutral difference equation. Chinese J. Math., 24, 377-393.
[4] Zhou, Y. (1999). Oscillation of neutral difference equations. Kyungpook Math. J., 39, 283-291.
[5] Zhou, Y. (2001). Oscillation of higher-order linear difference equations, advance of diflerence equations III. Special Issue of Computers Math. Applic., 42, 323-331.
[6] Lalli, B. S., \& Zhang, B. G. (1992). On existence of positive solutions and bounded oscillations for neutral difference equations. J. Math. Anal. Appl., 166, 272-287.
[7] Zhang, B. G., \& Zhou, Y. (2000). Oscillation and nonoscillation of second order linear difference equation. Computers Math. Application, 39(1/2), 1-7.
[8] Erbe, L., \& Peterson, A. (2002). Oscillation criteria for second order matrix dynamic equations on a time scale. In R. P. Agarwal, M. Bohner, \& D. O'Regan (Eds.), Special Issue on "Dynamic Equations on Time Scales", J. Comput. Appl. Math., 141, 169-185.
[9] Erbe, L., \& Peterson, A. (2004). Boundedness and oscillation for nonlinear dynamic equations on a time scale. Proc. Amer. Math. Soc., 132, 735-744.
[10] Erbe, L., Peterson, A., \& Saker, S. H. (2003). Oscillation criteria for secondorder nonlinear dynamic equations on time scales. J.London Math. Soc., 67, 701-714.
[11] Hilger, S. (1990). Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math., 18, 18-56.
[12] Saker, S. H. (2004). Oscillation of nonlinear dynamic equations on time scales. Appl. Math. Comp., 148, 81-91.
[13] Saker, S. H. (2005). Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comp. Appl. Math., 177, 375-387.

