
ISSN 1923-8444 [Print]
Studies in Mathematical Sciences ISSN 1923-8452 [Online]
Vol. 6, No. 1, 2013, pp. [26–34] www.cscanada.net
DOI: 10.3968/j.sms.1923845220130601.563 www.cscanada.org

Oscillation and Nonoscillation Theorems for a

Class of Fourth Order Quasilinear Difference

Equations

LIU LanChu[a],* and GAO Youwu[a]

[a] College of Science, Hunan Institute of Engineering, China.

* Corresponding author.
Address: College of Science, Hunan Institute of Engineering, 88 East Fuxing
Road, Xiangtan 411104, China; E-Mail: llc0202@163.com

Supported by The NNSF of P.R. China and Science and Research Fund of Hunan
Provincial Education Department.

Received: November 22, 2012/ Accepted: February 5, 2013/ Published: February
28, 2013

Abstract: In this paper,we consider certain quasilinear difference equa-
tions

(A) ∆2(| ∆2yn |α−1 ∆2yn) + qn | yτ(n) |β−1 yτ(n) = 0

where
(a) α, β are positive constants;
(b) {qn}∞n0

are positive real sequences. n0 ∈ N0 = {1, 2, · · · }. Oscillation and
nonoscillation theorems of the above equation is obtained.
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1. INTRODUCTION

In this paper, we consider certain quasilinear difference equations

(A) ∆2(| ∆2yn |α−1 ∆2yn) + qn | yτ(n) |β−1 yτ(n) = 0,
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where
(a) α, β are positive constants;
(b) {qn}∞n0

are positive real sequences. n0 ∈ N0 = {1, 2, · · · }.
(c) τ(n) ≤ n, and limn →∞τ(n) =∞
The Equation (A) can also be expressed as

∆2((∆2yn)α∗) + qn(yτ(n))
β∗ = 0, (1.1)

in terms of the asterisk notation

ξγ∗ =| ξ |γ sgnξ =| ξ |γ−1 ξ, ξ ∈ R, γ > 0.

It is clear that if {yn} is a eventually positive solution of (1.1), then −{yn} is a
eventually negative solution of (1.1).

Lemma 1.1. Assume that {yn} is a eventually positive solution of (1.1). then
one of the following two cases holds for all sufficiently large n:

I : ∆yn > 0, ∆2yn > 0, ∆(∆2yn)α∗ > 0

II : ∆yn > 0, ∆2yn < 0, ∆(∆2yn)α∗ > 0

Proof. From (1.1), we have ∆2((∆2yn)α∗) < 0 for all large n. It follows that ∆yn,
∆2yn, ∆(∆2yn)α∗ are eventually monotonic and one-signed.

(A) if ∆(∆2yn)α∗ < 0 eventually. Then combining this with ∆2((∆2yn)α∗) < 0,
we see that limn→∞(∆2yn)α∗ = −∞. That is ∆2yn → −∞ for all large n. It follows
that ∆yn → −∞, yn → −∞, which contradicts the positivity of {yn}.

(B) if ∆(∆2yn)α∗ > 0 eventually. Then combining this with ∆2((∆2yn)α∗) < 0,
we see that ∆(∆2yn)α∗ → 0 or → a > 0 so

(∆2yn)α∗ = (∆2yN )α∗ +

n−1∑
N

(∆2yn)α∗ .

If (∆2yn)α∗ > 0. That is ∆2yn > 0 is increasing and → C or ∞. It follows
that ∆yn > 0; If (∆2yn)α∗ < 0. That is ∆2yn < 0 is increasing and → d or 0. If
∆yn < 0, then yn → ∞, it is impossible, so ∆yn > 0. This complete the proof of
the lemma.

From Lemma (1.1), we know yn,∆yn,∆
2yn,∆(∆2yn)α∗ tend to finite or infinite

limits as n→∞. Let

lim
n→∞

∆iyn = ωi, i = 0, 1, 2, and lim
n→∞

∆(∆2yn)α∗ = ω3.

It is that ω3 is a finite nonnegative number. One can easily show that:
If yn satisfies I, then the set of its asymptotic values ωi falls into one of the

following three cases:
I1 : ω0 = ω1 = ω2 =∞, ω3 ∈ (0,∞);
I2 : ω0 = ω1 = ω2 =∞, ω3 = 0;
I3 : ω0 = ω1 =∞, ω2 ∈ (0,∞), ω3 = 0.
If yn satisfies II, then the set of its asymptotic values ωi falls into one of the

following three cases:
II1 : ω0 =∞, ω1 ∈ (0,∞), ω2 = ω3 = 0
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II2 : ω0 =∞, ω1 = ω2 = ω3 = 0
II3 : ω0 ∈ (0,∞), ω1 = ω2 = ω3 = 0.
Equivalent expressions for these six classes of positive solutions of (1.1) are as

follows:

I1 : lim
n→∞

yn

n2+
1
α

= const > 0;

I2 : lim
n→∞

yn

n2+
1
α

= 0, lim
n→∞

yn

n2
=∞;

I3 : lim
n→∞

yn

n2
= const > 0;

II1 : lim
n→∞

yn

n
= const > 0;

II2 : lim
n→∞

yn

n
= 0, lim

n→∞
yn =∞;

II3 : lim
n→∞

yn = const.

Let yn be a positive solution of (1.1) such that yn > 0 , yτ(n) > 0 for n ≥ N > n0.
summing (1.1) from n to ∞ gives

∆(∆2yn)α∗ = ω3 +

∞∑
s=n

qs(yτ(n))
β , n ≥ N. (1.2)

If yn is a solution of type Ii(i = 1, 2, 3), then sum (1.2) three times over [N,n−1]
to obtain

yn = k0 + k1(n−N) +

n−1∑
s=N

(n− s)

[
k2
α +

s−1∑
r=n

(
ω3 +

∞∑
σ=r

qσ(yτ(σ))
β

)] 1
α

, (1.3)

for n ≥ N where k0 = yN , k1 = ∆yN , k2 = ∆2yN are nonnegative constants. The
equality (1.3) gives a representation for a solution yn of type − I1. A type − I2
solution yn of (1.1) is expressed by (1.3) with ω3 = 0.

If yn is a solution of type I3, then, first summing (1.1) from n to ∞ and then
summing the resulting equation twice times over [N,n− 1] to obtain

yn = k0 + k1(n−N) +

n−1∑
s=N

(n− s)

[
ω2

α −
∞∑
r=s

(r − s)qr(yτ(r))β
] 1
α

, n > N (1.4)

A representation for a solution yn of type II1 is derived by summing (1.2) with
ω3 = 0 twice from n to ∞ and then once from N to n− 1 :

yn = k0 +

n−1∑
s=N

(
ω1 +

∞∑
r=s

[ ∞∑
σ=r

(σ − r)qσ(yτ(σ))
β

]) 1
α

, n > N (1.5)

a representation for a solution yn of type II2 is given by (1.5) with ω1 = 0. a
representation for a solution yn of type II3 is derived by summing (1.2) with ω3 = 0
three times from n to ∞ yield

yn = ω0 −
∞∑
s=n

(s− n)

[ ∞∑
r=s

(r − s)qr(yτ(r))β
] 1
α

, n > N (1.6)
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2. NONOSCILLATION CRITERIA

Theorem 1. The equation (1.1) has a positive of type− I1 if and only if

∞∑
n=n0

qn(τ(n))2+
1
α β <∞ (2.1)

Proof. Necessary. Suppose that (1.1) has a positive of type − I1, then, it satisfies
(1.3) for n ≥ N , which implies that

∞∑
n=N

qn(yτ(n))
β <∞

This together with the asymptotic relation lim
n→∞

yn

n2+
1
α

= const > 0; shows that

the condition (2.1) is satisfied.

Sufficiently. Suppose now that (2.1) holds. Let k > 0 be any given constant.
Choose N > n0 large enough so that(

α2

(α+ 1)(2α+ 1)

)β ∞∑
n=n0

qn(τ(n))2+
1
α β ≤ (2k)α − kα

(2k)β
(2.2)

Put N∗ = min{N, inf
n>N

τ(n)}, and define

G(n,N) =

n−1∑
s=N

(n− s)(s−N)
1
α =

α2

(α+ 1)(2α+ 1)
(n−N)

2
1+α n ≥ N

G(n,N) = 0 n < N

Let BN be the Banach space of all real sequences Y = {yn}, with the norm
‖ Y ‖= sup

n>n0

| yn |<∞ we define a closed, bounded and convex subset Ω of BN as

follows:

Ω = {Y = {yn} ∈ BN kG(n,N) ≤ yn ≤ 2kG(n,N), n ≥ N∗}

Define the map T : Ω→ BN as follows:
Tyn =

n−1∑
N

(n− s)
[
s−1∑
N

(kα +
∞∑
σ=r

qσ(yτ(σ))
β)

] 1
α

, n ≥ N

Tyn = TyN , N∗ ≤ n ≤ N

(2.3)

I) T maps Ω into Ω. For yn ∈ Ω, then for n ≥ N

Tyn ≥ k
n−1∑
N

(n− s)(s−N)
1
α = kG(n,N)
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and

Tyn ≤
n−1∑
N

(n− s)

[
s−1∑
N

(
kα +

∞∑
σ=r

qσ(2kτ(τ(σ), N)β)

)] 1
α

≤
n−1∑
N

(n− s)

[
s−1∑
N

(
kα + (

2kα2

(α+ 1)(2α+ 1)
)β
) ∞∑
σ=r

qσ(τ(σ))(2+
1
α )β

] 1
α

≤ 2k

n−1∑
N

(n− s)(s−N)
1
α = 2kG(n,N)

II) T is continuous. Let y(k) ∈ Ω such that lim
k→∞

‖ y(k) − y ‖= 0∣∣∣(Ty(k))n − (Ty)n

∣∣∣
=

n−1∑
N

(n− s)

[
s−1∑
N

(
kα +

∞∑
σ=r

qσ(y
(k)
τ(σ))

β

)] 1
α

−
n−1∑
N

(n− s)

[
s−1∑
N

(
kα +

∞∑
σ=r

qσ(yτ(σ))
β

)] 1
α

by using Lebesgue’s dominated convergence theorem, we can conclude that

lim
n→∞

‖ Ty(k) − Ty ‖= 0

III) T is uniformly-cauchy, ∀n1, n2 > N∗

|Tyn1 − Tyn2 | =
n2−1∑
N

(n− s)

[
s−1∑
N

(
kα +

∞∑
σ=r

qσ(yτ(σ))
β

)] 1
α

−
n1−1∑
N

(n− s)

[
s−1∑
N

(
kα +

∞∑
σ=r

qσ(yτ(σ))
β

)] 1
α

=

n2−1∑
n1

(n− s)

[
s−1∑
N

(
kα +

∞∑
σ=r

qσ(yτ(σ))
β

)] 1
α

Therefore, by the Schauder fixed point theorem, there exists a fixed Ty = y,
which satisfies (1.1). This completes the proof.

Theorem 2. The equation (1.1) has a positive of type− I3 if and only if

∞∑
n=n0

nqn(τ(n))2β <∞ (2.4)

Proof. Necessary. Suppose that (1.1) has a positive of type − I3, then, it satisfies
(1.4) for n ≥ N , which implies that

∞∑
n=N

(n−N)qn(yτ(n))
β <∞

30



Liu, L., & Gao, Y./Studies in Mathematical Sciences, 6 (1), 2013

This together with the asymptotic relation lim
n→∞

yn
n2 = const > 0; shows that the

condition (2.2) is satisfied.
Sufficiently. Suppose now that (2.2) holds. Let k > 0 be any given constant.

Choose N > n0 large enough so that

∞∑
n=N

nqn(τ(n))2β ≤ (2k)α − kα

(k)β
(2.5)

Put N∗ = min{N, inf
n>N

τ(n)}. Let BN be the Banach space of all real sequences

Y = {yn}, with the norm ‖ Y ‖= sup
n>n0

| yn |< ∞ we define a closed, bounded and

convex subset Ω of BN as follows:

Ω = {Y = {yn} ∈ BN
2

k
(n−N)2+ ≤ yn ≤ k(n−N)2+, n ≥ N∗}

where n − N+ = n − N if n ≥ N, and n − N+ = 0 if n ≤ N . Define the map
T : Ω→ BN as follows:

Tyn =
n−1∑
N

(n− s)
[
2kα −

∞∑
r=s

(r − s)qr(yτ(r))β
] 1
α

, n ≥ N

Tyn = TyN N∗ ≤ n ≤ N
The proof is similar to that of Theorem 1 and there exists an element y such that

y = Ty, which is a type− I3 solution of (1.1) with the property that lim
n→∞

∆2yn =

2k > 0. This completes the proof.

Theorem 3. The equation (1.1) has a positive of type− II1 if and only if

∞∑
n=N

[ ∞∑
s=n

(s− n)qs(τ(s))β

] 1
α

<∞ (2.6)

Proof. Necessary. Suppose that (1.1) has a positive of type− II1, then, it satisfies
(1.4) for n ≥ N , which implies that

∞∑
n=N

(n−N)qn(yτ(n))
β <∞

This together with the asymptotic relation lim
n→∞

yn

n
= const > 0; shows that the

condition (2.6) is satisfied.
Sufficiently. Suppose now that (2.6) holds. Let k > 0 be any given constant.

Choose N > n0 large enough so that

∞∑
n=N

[ ∞∑
s=n

(s− n)qsyτ(s)
β

] 1
α

< 2
−β
α k1−

β
α

Put N∗ = min{N, inf
n>N

τ(n)}. Let BN be the Banach space of all real sequences

Y = {yn}, with the norm ‖ Y ‖= sup
n>n0

|yn| < ∞, we define a closed, bounded and

convex subset Ω of BN as follows:

Ω = {Y = {yn} ∈ BN kn ≤ yn ≤ 2kn, n ≥ N∗}
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Define the map T : Ω→ BN as follows: Tyn = kn+
n−1∑
N

∞∑
s

[∞∑
r

(σ − r)qσ(yτ(σ))
β

] 1
α

, n ≥ N

Tyn = kn N∗ ≤ n ≤ N
(2.7)

The proof is similar to that of Theorem 1 and there exists an element y such that
y = Ty, which is a type− II1 solution of (1.1) with the property that lim

n→∞
∆yn =

k > 0; This completes the proof.

Theorem 4. The equation (1.1) has a positive of type− II3 if and only if

∞∑
n=n0

n

[ ∞∑
s=n

(s− n)qs

] 1
α

<∞ (2.8)

Proof. Necessary. Suppose that (1.1) has a positive of type− II3, then, it satisfies
(1.6) for n ≥ N , which implies that

∞∑
n=N

n

[ ∞∑
s=n

(s− n)qs(yτ(s))
β

] 1
α

<∞ (2.9)

This together with the asymptotic relation lim
n→∞

yn = const > 0; shows that the

condition (2.8) is satisfied.

Sufficiently. Suppose now that (2.8) holds. Let k > 0 be any given constant.
Choose N > n0 large enough so that

∞∑
n=N

n

[ ∞∑
s=n

(s− n)qsyτ(s)
β

] 1
α

<
1

2
k1−

β
α (2.10)

Put N∗ = min{N, inf
n>N

τ(n)}. Let BN be the Banach space of all real sequences

Y = {yn}, with the norm ‖ Y ‖= sup
n>n0

|yn| < ∞, we define a closed, bounded and

convex subset Ω of BN as follows:

Ω = {Y = {yn} ∈ BN
k

2
≤ yn ≤ k, n ≥ N∗}

Define the map T : Ω→ BN as follows:
Tyn = k −

∞∑
n

(s− n)

[ ∞∑
r=s

(r − s)qr(yτ(r))β
] 1
α

, n ≥ N

Tyn = TyN N∗ ≤ n ≤ N

(2.11)

The proof is similar to that of Theorem 1 and there exists an element y such that
y = Ty, which is a type− II1 solution of (1.1) with the property that lim

n→∞
∆yn =

k > 0; This completes the proof.
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Theorem 5. The equation (1.1) has a positive of type− I2 if

∞∑
n=n0

qn(τ(n))(2+
1
α )β ≤ ∞ (2.12)

and
∞∑

n=n0

nqn(τ(n))2β =∞ (2.13)

Proof. Suppose now that (2.12) holds. Choose N > n0 large enough so that

∞∑
n=N

qn(τ(n))(2+
1
α )β ≤ 1

2α+1

(
(α+ 1)(2α+ 1)

α2

)α
(2.14)

Put N∗ = min{N, inf
n>N

τ(n)}. Let BN be the Banach space of all real sequences

Y = {yn}, with the norm ‖ Y ‖= sup
n>n0

|yn| < ∞, we define a closed, bounded and

convex subset Ω of BN as follows:

Ω = {Y = {yn} ∈ BN
1

21+
1
α

(n−N)2+ ≤ yn ≤ n2+
1
α n ≥ N∗}

Define the map T : Ω→ BN as follows:
Tyn =

n−1∑
N

(n− s)

[
1

2

s−1∑
N

∞∑
σ=r

(σ)qσ(yτ(σ))
β

] 1
α

, n ≥ N

Tyn = 0 N∗ ≤ n ≤ N

(2.15)

The proof is similar to that of Theorem 1 and there exists an element y such
that y = Ty, which is a type− I2 solution of (1.1) This completes the proof.

Theorem 6. The equation (1.1) has a positive of type− II2 if

∞∑
n

n

[ ∞∑
n

(s− n)qs(τ(s))β

] 1
α

<∞ (2.16)

and
∞∑

n=n0

[ ∞∑
n

(s− n)qs

] 1
α

=∞ (2.17)

Proof. Suppose now that (2.16) holds. Choose N > n0 large enough so that

∞∑
N

n

[ ∞∑
n

(s− n)qs(τ(s))β

] 1
α

≤ 2
−β
α k1−

β
α (2.18)

Put N∗ = min{N, inf
n>N

τ(n)}. Let BN be the Banach space of all real sequences

Y = {yn}, with the norm ‖ Y ‖= sup
n>n0

|yn| < ∞, we define a closed, bounded and

convex subset Ω of BN as follows:

Ω = {Y = {yn} ∈ BN k ≤ yn ≤ 2kn, n ≥ N∗}
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Define the map T : Ω→ BN as follows:
Tyn = k +

n−1∑
N

∞∑
s

[ ∞∑
σ=r

(σ − r)qσ(yτ(σ))
β

] 1
α

, n ≥ N

Tyn = k N∗ ≤ n ≤ N

(2.19)

The proof is similar to that of Theorem 1 and there exists an element y such
that y = Ty, which is a type− II2 solution of (1.1). This completes the proof.
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