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Abstract: In this paper, we consider certain system of delay difference
equations

Ayi(n) = p(n)yz2(n)

Ayz(n) = —f(n,y1(g(n)))
where p(n) € C[No, RT], yf(n,y) >0, f € C[No x R, R], y sup | f(n,y) |>
0 for any y # 0, g(n) € C[No, R], g(n) < n. o
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1. INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was intro-
duced by Stefan Hilger in his Ph.D. Thesis in 1988 in order to unify continuous and
discrete analysis [1]. A time scale T, is an arbitrary nonempty closed subset of the
reals, and the cases when this time scale is equal to the reals or to the integers rep-
resent the classical theories of differential and of difference equations. Many other
interesting time scales exist, and they give rise to many applications [9].

On any time scale T, we define the forward and backward jump operators by

o(t):=inf{s >t:se€ T}, p(t):=sup{s<t:seT}
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A point t € T, t > infT, is said to be left-dense if p(¢t) = t, right-dense if
t <supT and o(t) = t, left-scattered if p(t) < ¢ and right-scattered if o(t) > ¢. The
graininess function p for a time scale T is defined by wu(t) := o(t) — .

A function f : T — R is called rd-continuous function provided it is continuous
at right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd-continuous functions f : T — R is denoted by C,q = C,4(T) =
Cra(T,R).

Let f be a differentiable function on [a,b]. Then f is increasing, decreasing,
nondecreasing, and non-increasing on [a,b], if f2(t) > 0, f2(t) < 0, f2(t) >0,
and f2(t) <0 for all t € [a,b), respectively.

For a function f : T — R (the range R of f may be actually replaced by any
Banach space) the delta derivative is defined by

flo(®) = f(t)

o0 ===

(1)

if f is continuous at t and ¢ is right-scattered. We will make use of the following

product and quotient rules for the derivative of the product fg and the quotient ch
(where gg° # 0) of two differentiable functions f and g

(f9)® = f2g+ 179" = fg° + [29° (2)
f o 29— fg*

o 99° )

For to,b € T, and a differentiable function f, the Cauchy integral of f* is defined
by

b
‘KfA@A#:ﬂw—f%)

An integration by parts formula reads

b b
/t F®g2 At = [f(H)g®)], — /t FA ()9 (1AL (4)
and infinite integral is defined as
0o b
| rwac=pim [ rwar (5)

Our aim in this paper is to obtain sufficient conditions for existence of positive
solutions of system of delay difference equations

{ Ayi(n) = p(n)y2(n) (6)
Aya(n) = —f(n,y1(g9(n)))

where p(n) € C[No, R™], yf(n,y) >0, f € C[No x R,R], y sup | f(n,y) |> 0 for
>

n=no

n
P(n) = Y. p(i). First, we need the definition to use it for the general case.

1=ng
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Definition 1. A solution of (1) is said to be oscillatory (resp. weakly oscillatory)
if each component (resp. at least one component) has arbitrarily large zeros.

A solution of (1) is said to be nonoscillatory (resp. weakly nonoscillatory) if each
component (resp. at least one component) is eventually of constant sign.

Lemma 1. Let (y1(n),y2(n)) be a weakly nonoscillatory of (1). Then it is
nonoscillatory and there exist constants N > ng, k1 > 0, k2 > 0 such that

y1(n)y2(n) >0 for n> N,
kiP(n)yz(n) < [y1(n)] < k2P (n).

2. MAIN RESULTS

Theorem 1. Assume that f be either superlinear or sublinear, and

> | f(nkP(g(n))) |< oo

n=no

for some k # 0, then (1) has a nonoscillatory solution (y1(n), y2(n)) with the prop-
erties.

. oyi(n) ; —
Py =P ) =F
Proof. We give a proof for the case where f is sublinear and k£ > 0. The remaining
cases can treated similarly.
Take ni > ng so large that

N | o

S F(n kP(g(n))) <

and

n, = inf g(n) > ng
n>ni

Let C}, denote the linear space of all continuous vector functions

((n) = (y1(n), y2(n))

on [N, 00). Such that

Il = maz{ sup P72(n) | y2(n) |, sup | ya(n) [} < oo (7)

n>n, n>mn.

It is dear that C), becomes a Banach space under the norm defined by (7). Define
a set F' by

F ={(y1,y2) € Cp : kP(n) < y1(n)
<2kP(n),k <ya(n) < 2k,n > n,}
Obviously, F' is a bounded, convex, and closed subset of C),.

Let @ designate the operator which assigns to every element ¢ = (y1,y2) of F a
vector function ®¢ = (Py;, Pys) defined by

ni—1 n—1

(@y1)(n) = ya(no) Z p(s) + Z p(8)y2(8)s > n.

S=MN s s=nj
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k+ > F(s,0(9(5), 5> i
(®ya) (n) = =
k+ :Z f(s,91(9(s))),  no < s<m.

(i) ® maps F into F.
The following inequalities are obvious:

kP(n) <(®y1)(n) < 2kP(n)
(Pya)(n) > k
Using the sublinearity of f, we see that
(Py2)(n) < ’”Z y1(9(n)) f(n, y19(n))
y19(n)

k+22kP ”kf;() n))

IN

< k+ QZf(n, kP(n))

ni

< Qk, > Ty

(it) @ is continuous.
Let ¢, = (Y1n,Y2n) be a sequence of elements of F' converging to an element
¢ = (y1,y2) of F. lim ||(, — ¢|| = 0. It is easy to verify that for n > n,,
n—oo

P=2(n) | (@y1n)(n) = (2y1)(n) | < P7'(no) sup | yon(s) —u2(s) | (8)

S>MN .

| (@y2n)(n) — (Ry2)(n) |< ZF (9)

T

where
Fo(s) =] f(s,y1n(9(s)) — f(s,91(9(s)) | -

Evidently, the right-hand side of (3) tends to zero as n — oco. Since F,(s) <
4f(s,kP(g(s))), Fn(s) — 0 as m — oo for s > n,, the Lebesgue dominated
convergence theorem implies that the right side of (4) tends to zero as n — oo and
it follows that lim ||®¢, — ®¢|| = 0.

n—oo

(#i7) ®F is precompact.

By a theorem of Levitan, it’s sufficient to show that when (y1, y2) ranges over F,
the family of functions {P~2®y;} and {®ys} are uniformly bound and equicauchy
on [n,,00), since the uniform boundedness is clear, we need only to demonstrate
the equicauchy. This will be done if it is shown that, for any given € > 0. Let
(y1,y2) € F, then, we have for ng > n; > n*.

| (P72®y1)(n2) — (P72®y1)(ma) |

ni

< P_2("2)ZP(5)y2(5) +P_2(n1)ZP(S)y2(s)

n
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< 4kPY(ny)

| (Pya)(n2) — (Bya)(m1) | < D f(s,51(9(5)))

IN

2> f(s,kp(g(s)))-

Therefore, for any given € > 0, there exists no > ny > n,, such that
| (P72®y1)(ng) — (P 2®@y1)(n1) [< &

| (Py2)(n2) — (Py2)(n1) < e (10)

The above inequalities ensure that there exists a § = d(¢) > 0, such that (10)
holds for any ny,ng € [Ny, oo} with 0 < ng —ny < 9.

We now apply the Schaulder fixed point theorem to the operator ® has a fixed
point ¢ = (y1,y2) € F. It is easily checked that this fixed point provides a solution
of the system (1) with the asymptotic property (2). O

Theorem 2. Assume that f be either superlinear or sublinear, and

o0

S P() | f(n,k) |< o0

n=nogo

for some k # 0. Then (1) has a nonoscillatory solution (y;(n),y2(n)) with the
properties.

pulm =kl sl =0
Proof. The proof is similar to the proof of Theorem 1, as long as an operator ® is
defined which assigns to every £(n) = (y1(n),y2(n)) € F and F = {(y1,¥2) € C) :

k
E < yi(n) < 2k,0 < ya(n) < ——,n > ny1} a vector function ¢ = (Pyq, Pys)

: P(n)
given by N
k422 p(s)y2(s) n=n
@m={ "
k + S_Z;ﬁ p(s)y2(s) ne <n<m
2 f(s,91(g(9))) n>n*
@)y =3 "
S femls)  m<n<m

Then there exists a fixed point ¢ = (y1,y2) € F, which is a solution of (1). This
completes the proof. O
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