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Abstract: In this paper we investigate the local singularities of the con-
figuration space corresponding to an equiform motion in the Euclidean space
R3. The chaotic behavior of singularities are displayed through figures.
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1. INTRODUCTION

Recent advances in pattern recognition, computer vision, medical imaging, and
free-from shape design inspired a fresh interest in surface features associated with
singularities of the intrinsic geometric quantities on the surface. Intrinsic geometry
has been proposed and studied for smoothing surfaces or getting a hierarchical de-
scription of surfaces. Therefore, in order to describe a shape (think of wrinkles on a
face or think of the nose as a feature of facial shape) we use a characterization of a
certain types of singularities of a shape [13]. The simplest example of singularities
is given by the smoothing of a plane curve by its curvature. The main features of a
plane curve are its points of inflections where the curvature is zero and the vertices
where the curvature has a local maximum or minimum. For surfaces there are two
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principal curvatures and the features will be interested depend on the parabolic
curves where one of these curvature is zero (the Gaussian curvature vanishes), the
ridge or ravine curves where are them have a maximum or minimum on its cor-
responding line of curvature and umbilici points where they are equal. Parabolic
points are associated with inflections on object contours. Ridge and ravine curves
are very important for shape recognition. In particular, the principal curvatures are
non differentiable functions at umbilici points, hence umbilics will become singular
points depending on the variation of the principal curvatures. At parabolic points
the Gaussian curvature of a surface vanishes. They are the boundaries between el-
liptic and hyperbolic regions. Alternatively, they are the points where the tangent
planes have a specially higher order contact with the surface [4–6] and [8]. Also
pattern recognition depends on the local investigation of the paths around singular
points. For details of the configuration space and its dynamical system, we refer
the reader to [3] and [16]. Our analysis here differs significantly from that in [11,12]
and [14]. Instead of using the quantitative study for intrinsic properties of the con-
figuration space corresponding to the equiform motion, we use the qualitative study
to investigate the dynamics of the paths the motion.

The major part of this work is devoted to a study of dynamical systems qualita-
tively and geometrically for the configuration space corresponding to an equiform
motion. The local phase portraits and the qualitative behavior in a neighborhood
of the origen for the quadratic part of the vector fields define the motion are shown
through figures [1,2,7] and [9].

The outline of remainder of this paper is as follows. In section 2, constructions of
the configuration space for the equiform motion are present. In section 3, the local
representation of the configuration space is obtained. In section 4, we investigate
the height function for the configuration space. In section 5, special cases are
investigated. Finally, section 6 is devoted to conclusions.

2. CONFIGURATION SPACE

It’s well-known that the similar (equiform) motion is defined as Rigid motion with
scaling. This motion can be represented by a translation vector T and a rotation
matrix A as the following:

x = ρAx+ T (2.1)

where AtA = AAt = I, x, x ∈ R3 and ρ is the scaling factor [5] and [11]. Also the
space of all possible rigid transformations of an object constitute the configuration
space of the motion. Thus the configuration space is defined as the space of all
directions of any system. This space has the structure of a manifold which is called
configuration manifold of the motion. From (2.1), it is easy to see that the similar
motion can be defined through a linear mapping as in the following:(

x
1

)
=

(
ρA T
0 1

)(
x
1

)
(2.2)

The linear map (2.2) in question may be defined explicitly in the 3-dimensional
Euclidean space as

x(uα) = ρ(uβ)A(uβ)x(uβ) + T (uα) (2.3)
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for some fixed parameter uβ and α = 1, 2.
Without loss of generality, we consider the following representation of (2.3) as

follows:

x(u1, u2) = ρ(u2)Rz(u
2)x(u1) + T (u1, u2) (2.4)

where x = x(u1) = (f(u1), 0, h(u1)) is a regular representation of a curve C (the
profile curve) in the plane xz(y = 0) in R3, Rz(u

2) is the rotation matrix around
z−axis, ρ(u2) is the equiform factor and T is the translation vector.

The configuration space (2.1) has several forms as the following:
(i) Natural rigid motion, ρ = 1, T = const.
(ii) Natural rotation ρ = 1, T = 0.
(iii) Generalized rigid motion along rotation axis, ρ = 1, T = T (u2).
(iv) Helical motion ρ = 1, T = au1, a = const.
Consider the motion for which the translation along z−axis, i.e., T (u1, u2) =

t(u2)e3. Thus, as in [3] the parametric representation of the motion under consid-
eration is represented locally by:

F (u) = F (u1, u2) = ρ(u2)f(u1) cosu2, f(u1) sinu2, h(u1) + T̂ (u2), u ∈ D ⊂ R2(2.5)

where ρ 6= 0, T̂ =
T (u2)

ρ(u2)
. Thus F (u) defines some diffeomorphism 2-dimensional

surface F = F (u) in R3.
Remark 1
The kinematics of the equiform motion is given through the configuration space

governed by (2.5).
Here and in what follows we use the summation convention d’Einstein, i.e., we

sum over the repeated α, β, γ, ... indices from 1 to 2 unless otherwise indicated. Also,
we will use the same notation as in [10] and [11]. In particular, (gαβ) and (Lαβ)
denote respectively the metric and second fundamental form of the configuration
space and the mean curvature H and Gauss curvature G are given by

H = gαβLαβ = Lαα, G =
L

g
, L = Det(Lαβ) (2.6)

where gαβ is the α, β-entry of the inverse of the matrix.
Consider Guass-Weingarten equations for the configuration space as follows

Xαβ = ΓγαβXγ + lαβN

Nα = −LβαXβ , Xγ =
∂X

∂uγ
, Xαβ =

∂2X

∂uα∂uβ

(2.7)

where(Lβγ ) = (gαβLαγ) is the matrix of Weingarten map of the configuration space,

Lαβ =≺ Xαβ , N �, N =
X1 ×X2√

g
and the induced connection on M is given via

the Christoffel symbols

Γγαβ =
1

2
gγυ(

∂gβυ

∂uα
+
∂gαυ

∂uβ
−
∂gαβ

∂uυ
) (2.8)
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3. LOCAL REPRESENTATION OF THE CONFIGURATION
SPACE

For convenience, let u = u1, v = u2 and using the expansion of the regular functions
ρ(u2), h(u1), t(u2) and f(u1) in power serves around the point (u1, u2) = (0, 0) we
have

ρ(u2) = ρ(v) = civ
i, c0 = 1, ci =

ρ(i)(0)

i!

h(u1) = h(u) = aiu
i, ai =

h(i)(0)

i!
, a0 6= 0

t(u2) = t(v) = biv
i, bi =

t(i)(0)

i!

f(u1) = f(u) = fiu
i, fi =

f i(0)

i!
, f0 6= 0

(3.1)

where (i) denotes the ith derivative and without less of generality we take f(u1) =
f(u) = u.

The configuration space can be approximated by X = (p1, p2, p3), where pγ(γ =
1, 2, 3) are power series in the parameters u, v which are convergent uniformally
to the coordinates Xγ . The series pi are given by

p1 = uc1i v
i + o(v)5

p2 = uvc2i v
i + o(v)5

p3 = c3iju
ivj + o(u, v)5

(3.2)

where i, j = 1, 2, 3, 4 and c1i , c
2
i , c

3
ij are given through the constants ci, ai, bi as in

the following

c11 = c21 = c1, c
1
2 =

1

2
(c2 − 1), c22 =

1

6
(3c2 − 1)

c300 = a0 + b0, c
3
10 = a1, c

3
01 = a0c1 + b1

c320 =
a2

2
, c311 = a1c1

c302 =
1

2
(a0c2 + b2), c330 =

a3

6

and so on.
It is straightforward to compute the induced metric tensor locally as

gαβ =≺ Xα, Xβ �=

n∑
i=1

Pi,α Pi,βm
αβ +mαβ

γ uγ +mαβ
γυu

γuυ + o(u1, u2)3 (3.3)

where the notation ≺ . , . � denotes the ordinary scalar product of vectors in R3,
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and mαβ , mαβ
γ , mαβ

γυ are given through the constants ai, bi, ci as in the following

m11 = 1 + a21, m
21 = m12 = a1(c301) = a1(a0c1 + b1)

m22 = c32 = (c301)2 = (a0 c1 + b1)2

m11
1 = 2a1a2, m

11
2 = 2c1(1 + a21)

m11
11 = a22 + a1a3

m11
12 = 2c1(2a1a2) = 4a1c1a2

m11
22 = m11(c21 + c2) = (1 + a21)(c21 + c2)

and so on. The metric ḡ(u1, u2) is given locally by

ḡ(u1, u2) = Linear term + quadratic term + o(u, v)3 (3.4)

However, the perturbation for the function ρ, h, t simplify the subsequent anal-
ysis compared with that in [11] and [14].

4. HIGHT FUNCTION OF THE CONFIGURATION SPACE

In [3,4] we introduce the configuration space of an equiform motion globally, but in
this work we study the same problem locally. For concreteness and easy of compu-
tation, in this section we will adopt a local graph representation of the configuration
space under investigation as in the following

F (u, v) ≈ (pi(u, v)) (4.1)

where pi(u, v) are polynomials defined locally near the point (u, v) = (0, 0).
The perturbed normal vector field N is given by

N = N i ei, N
i = niα u

α + niαβ u
α uβ (4.2)

where niα and niαβ are constants depend on the first derivatives of the polynomials

pi. Thus the perturbed 2nd fundamental quantities Lαβ are given by

Lαβ = Pi,αβ(niγ u
γ + niµυ u

µ uυ) = lαβγ uγ + lαβµυ u
µ uυ (4.3)

Using the well known formula (2.6) for the Gauss and mean curvatures we have
the perturbations

G = Gα u
α +Gαβ u

α uβ ,

H = Hα u
α +Hαβ u

α uβ
(4.4)

where Gα, Gαβ , Hα and Hαβ are constants depends on the perturbed invariants
gαβ , Lαβ . Thus the Guass and mean curvatures are computed locally from the per-
tured Weingarten matrix gγβ Lβα in the case where the quantities gαβ , g

αβ , Lαβ
are perturbed to quadratic polynomials. The surface and its Guass image are dis-
played locally in Figures 1(a) and 1(b) respectively. From these figures it follows the
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chaotic behavior of the singularities of the configuration space. Also the curved re-
gions on the configuration space are displayed from the perturbed Gauss and mean
curvatures through the Figures 2(a), 2(b).

Definition 1
Consider the immersion F : M → R3 of the surface M in the space R3. For any

unit vector field v ∈ R3. We define the function Πv : M → R. Which is called the
orthogonal projection on the line generated by the unit vector v as the following

Πv(p) =≺ F (p), v �, p ∈ U ⊂ R3.

This projection is called the height function in the direction v.
Using this definition, we get the height functions

≺ F (p), ei �= pi(u
1, u2) (4.5)

along the directions ei({ei} is the orthogonal base for R3). Thus

pi(u
1, u2) = ci (constants) (4.6)

represent the level sets on the coordinate surfaces

y1 = (p1(u1, u2), u1, u2) (4.7a)

y2 = (u1, p2(u1, u2), u2) (4.7b)

y3 = (u1, u2, p3(u1, u2)) (4.7c)

The perturbed surfaces along the line ei and their level sets ci corresponding
to the height functions pi = pi(u

1, u2) are displayed in Figures 3(a), 3(b), 4(a),
4(b) and 5(a), 5(b) respectively. These figures represent the approximation of the
given surface X = X(u1, u2) near the origin. These approximations characterize
the qualitative behavior near the origin for the equiform motion.

5. CONFIGURATION SPACE OF THE NATURAL ROTA-
TION

In this case ρ = 1, T = 0, so ci = 0, c � 0, bi = 0, ∀ i. Thus the perturbed height
functions pi are given as

p1 = u(1−
v2

2
+
v4

4
+ o(v6))

p2 = u(v −
v3

6
+ o(v5))

p3 = ai u
i, a0 6= 0

The perturbed surfaces and level sets corresponding to the height functions
p1, p2, p3 are displayed through the Figures 6(a), 6(b), 7(a), 7(b) and 8(a), 8(b)
respectively. The perturbed height functions P3 is a power series in one variable,
thus the corresponding perturbed level set is degenerate to a family of curves as we
see in Figure 8. From these figures it follows that these surfaces of type ruled and
translation surface.
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Remark 2
For surfaces of revolution every plane containing the z-axis, is a plane of sym-

metry, so all the meridians are ridges. Along a circle of latitude corresponding to
inflection of the profile curve, the principal curvature associated to the meridian
ridges is constant nonzero. Along a latitude corresponding to an extremum of the
profile curve the principal curvature associated to the meridian ridges is identically
zero.

6. CONCLUSION

In the local study, the singularities on the surface and its approximation also the
projections and its level sets reflects the significant of the singularities on the surface
itself. In this study it follows that the paths of the equiform motion on the first
projection consist of 1-period stable path and a fixed point as in Figure 3(b). In the
second direction e2, there exists a periodic bifurcation stable path, where the paths
consist of 2-island as in Figure 4(b). But in the third direction e3, it is easy to see
that the paths of the equiform motion consist of 1-island, i.e., i-period stable path
as in Figure 5(a). The perturbation of the configuration space in case of natural
rotation (surface of revolution) are displayed through Figures 6, 7 and 8.
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APPENDIX

(a) (b)

Figure 1
Perturbed Surface and Its Gauss Image

(a) (b)

Figure 2
Perturbed Gauss and Mean Curvatures

(a) (b)

Figure 3
Perturbed Surface Along e1
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(a) (b)

Figure 4
Perturbed Surface Along e2

(a) (b)

Figure 5
Perturbed Surface Along e3

(a) (b)

Figure 6
Perturbed Ruled Surface P1
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(a) (b)

Figure 7
Perturbed Ruled Surface P2

(a) (b)

Figure 8
Perturbed Translation Surface P3
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