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1. INTRODUCTIONS AND PRELIMINARIES

The concept of Z-open sets in topological spaces was introduced by EL-Magharabi
and Mubarki [1,2]. We continue to explore further properties and characterizations
of Z-irresolute and Z-open mappings. We also introduce and study properties and
characterizations of Z-closed, pre-Z-open and pre-Z-closed mappings.
A subset A of a topological space (X, 7) is called regular open (resp. regular
closed) [3] if
A = int(cl(A))(resp.A = cl(int(A))).

The delta interior [4] of a subset A of X is the union of all regular open sets of X
contained in A is denoted by d-int(A). A subset A of a space X is called J-open if it
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is the union of regular open sets. The complement of §-open set is called §-closed.
Alternatively, a set A of (X,7) is called d-closed [4] if A = §-cl(A), where

d—cl(A)={z e X : Anint(cl(U)) #0, Uerand z€U}.

Throughout this paper (X, 7) and (Y, o) (simply X and Y) represent non-empty
topological spaces on which no separation axioms are assumed unless otherwise
mentioned. For a subset A of a space (X, 7), cl(A), int(A) and X\A denote the
closure of A, the interior of A and the complement of A respectively. A subset A
of a space X is called d-semiopen [2] (resp. Z-open [1]) if

A C (6 —int(A)) (resp.A C cl(d — int(A)) Uint(cl(A))).

The complement of a Z-open set is called Z-closed. The intersection of all Z-
closed sets containing A is called the Z-closure of A and is denoted by Z-cl(A). The
union of all Z-open sets contained in A is called the Z-interior of A and is denoted
by Z-int(A). The Z-boundary [1] of A (briefly, Z-b(A)) is defined by

Z —b(A) =Z — cl(A) N Z — cl(X\A).

Z-Bd(A) = A\Z-int(A) is said to be Z-border of A. A point p € X is called a
Z-limit point of a set A CX [1] if every Z-open set G C X containing p contains a
point of A other than p. The set of all Z-limit points of A is called a Z-derived set
of A and is denoted by Z-d(A). The family of all Z-open (resp. Z-closed) is denoted
by ZO(X) (ZC(X)).

2. Z-IRRESOLUTE MAPPING
Definition 2.1. A mapping f: (X, 7) — (Y, o) is called Z-irresolute if
F7HU) € 20(X),

for each U € ZO(X).

Theorem 2.1. Let f: (X, 7) — (Y, o) be a mapping, then the followings are
equivalent:

( ) f is Z-irresolute,
The inverse image of each Z-closed in (Y, o) is Z-closed in (X, 7),
Z-el(f~'(B)) C /! (Z-cl(B))C f~(cI(B)), for each B C Y,
f(Z cl(A)) C Z-cl(f(A)) C cl(f(A)), for each A C X,
f~1(Z-int(B)) C Z mt(f L(B)), for each B C 'Y,
Z Bd(f 1(B)) € f~Y(Z-Bd(B)), for each B C Y,

( () Qfl( b(B)), for each B C Y,

Z-b(f(A)), for each A C X,
Z-cl(f(A)), for each A C X.

1)—(2). Obvious.
(3). Let BC Y and B C Z-cI(B) C cl(B). Then by (2)

Z—cl(f7(B) CZ—(fH(Z—d(B))) = fH(Z —cl(B)) C fH(cl(B)),
(3)—(4). Immediately by replacing B by f(A) in (3),
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(4)—=(1). Let W € ZO(Y) and F = Y\W € ZC(Y). Then by (4),
J(Z— A7 (E)) €2~ A(f(f~ (F) € Z— cA(F) = F.

So Z-cl(f~Y(F)) € f~Y(F) and hence, f~1(F) = X\f~1(W) € ZC(X), thus
f71(W) € ZO(X). Therefore f is Z-irresolute,

(1)=(5). Let B C Y. Then Z-int(B) is Z-open in Y. By (1) f~Y(Z-int(B)) is
Z-open in X. Hence f~!(Z-int(B)) = Z-int(f~*(Z-int(B))) C Z-int(f~1(B)),

(5)—(6). Let B C Y. Then by (5), f~(Z-int(B)) C Z—int( LB)) we have

Bzit](?)l?)\Z—int(ffl(B)) C f~YB)\f 1 (Z-int(B)). Therefore, Z-Bd(f~1(B)) C f~1(Z-

(6)—1(5) Let B C Y. Then by (6 ) Bd(f~ ( ) = fYB)\Z-int(f~ (B))
C f~YZ-Bd(B)) = f~}(B\Z-int(B)) = f~ ( )\f~!(int(B)) this implies f~1(Z-
() € iy (B)

(5)—(1). Let B C Y be Z-open. Then B = Z-int(B). Hence by (5) we have
éfl(B) 1: Y (Z-int(B)) C Z-int(f~1(B)). Thus f~(B) is Z-open in X. So, f is
-irresolute,
(1)=(7). Let BCY, by (3), we have Z- b( f1(B)) =Z-cl(f (B ))\Z int(f~1(B))
€ [~ (2-A(B)\Zint(~ (B)) € 5~ Z-b(B) U Znt(B)\Zrintlf~ (B)) € S 12
b(B) U Z-int(B)]\Z- int( H(Z-int(B ))) y (1) we have Z-b(f~1(B)) C (f~1(Z-b(B))
Uf T (Zint(B))\ fH (Zint(B)) = [~ (Z-b(B)),

(7)—(1). Let B € ZC(Y ) and Z- b( L(B)) C f~1(Z-b(B)). Then, Z-b (f~1(B))
C f~1(Z-cl(B)\Z-int(B)) = f~1(B\Z-int(B)) = f YZ-Bd(B)) € f~(B) by Theo-
rem 4.2 [1], we have, f‘l(B)EZC(X). Therefore f is Z-irresolute,

[
(7)—(8). Follows by replacing f(A) instead of B in (7),
(8)—(7). Let B C Y, by(8), we have f(Z-b(f~'(B))) C Z-b(f(f~1(B))) C Z-h(B)
and therefore Z-b(f~(B)) C f~!(Z-b(B)),
(1)=(9). Let A C X. Then by (4), f(Z-d(A)) C f(2Z- cl( )) C Z-cl(f(A)),
(9)—(1). Let F be a Z-closed set in Y, by (7), f(Z-d(f~'(F)) C Z-cl(f(f~'(F)))
C Z-cl(F) = F, then Z-d(f~*(F)) C f! ( ) by Theorem 4.4 [1], we have, f~!(F) €
ZC(X). Therefore f is Z-irresolute. O

Theorem 2.2. A mapping f : (X, 7) — (Y, o) is Z-irresolute if and only
if for each z in X, the inverse image of every Z-neighbourhood of f(z) is a Z-
neighbourhood of z.

Proof. Necessity. Let z € X and let B be Z-neighbourhood of f(z). Then there
exists U € ZO(Y) such that f(z) € U C B. This implies that z € f~1(U) C f~(B).
Since f is Z-irresolute, so f~1(U) € ZO(X). Hence f~!(B) is a Z-neighbourhood of
x.

Sufficiency. Let B € ZO(Y). Put A = f~1(B). Let x € A. Then f(z) € B. But
B being Z-open set is a Z-neighbourhood of f(x). So by hypothesis, A = f~1(B)
is a Z-neighbourhood of . Hence there exists A, € ZO(X) such that x € A, C A.
Thus A = U { A, : « € A}. Therefore f is Z-irresolute. O

Theorem 2.3. A function f : (X, 7) — (Y, o) is Z-irresolute if and only if
f(Z-d(A)) C f(A) U Z-d(f(A)), for each A C X.

Proof. Necessity. Let f: X — Y be Z-irresolute. Let A C X and ap € Z-d(A).
Assume that f(ag) ¢ f(A) and let V denote a Z-neighbourhood of f(ag). Since f is
Z-irresolute, so by Theorem 2.2, there exists a Z-neighbourhood U of ag such that
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f(U) C V. From ag € Z-d(A), it follows that U N A # ¢, therefore, at least one
element a € U N A such that f(a) € f(A) and f(a) € V. Since f(ag) ¢ f(A), we
have f(a) # f(ag). Thus every Z-neighbourhood of f(ap) contains an element of
f(A) different from f(ag), consequently, f(ag) € Z-d(f(A)). This proves necessity
of the condition.

Sufficiency. Assume that f is not Z-irresolute. Then by Theorem 2.2, there
exists ag € X and a Z-neighbourhood V of f(ag) such that every Z-neighbourhood
U of ag contains at least one element a € U for which f(a) ¢ V. Put A = {a € X:
f(a) ¢ V}. Then ag ¢ A since f(ag) € V, and therefore f(ag) ¢ f(A); also f(ag) ¢
Z-d(f(A)), since f(A) N (V\{f{a0)}) = ¢ . It follows that f(ao) € F(Z-d(A))\(F(A)
U Z-d(f(A))) # ¢, which is a contradiction to the given condition. O

Theorem 2.4. Let f : (X, 7) — (Y, 0) beal-1mapping. Then f is Z-irresolute
if and only if f(Z-d(A)) C Z-d(f(A)), for each A C X.

Proof. Necessity. Let f be Z-irresolute. Let A C X, ag € Z-d(A) and V be a Z-
neighbourhood of f(ag). Since f is Z-irresolute, so by Theorem 2.2, there exists a
Z-neighbourhood U of ag such that f(U) C V. But ag € Z-d(A), hence there exists
an element a € U N A such that a # ag, then f(a) € f(A) and, since f is 1 -
1, f(a) # f(ap). Thus every Z-neighbourhood V of f(ag) contains an element of
f(A) different from f(ag), consequently f(ag) € Z-d(f(A)). We have f(Z-d(A)) C
Z-d(f(A)).

Sufficiency. It follows from Theorem 2.3. [

Definition 2.2. [1] A mapping f : (X, 7) = (Y, o) is called Z-continuous if the
inverse image of each open set of (Y, o) is Z-open in (X, 7).

Theorem 2.5. Let f: (X, 7) — (Y, sigma) be a mapping, then the following
statements holds:

(1) go f is Z-irresolute if both f and g are Z-irresolute.

(2) go f is Z-continuous if f is Z-irresolute and g is Z-continuous.

Definition 2.3. A space (X, 7) is called:

(1) Z-T- Space if for any pair of distinct points x, y of X, there is a Z-open set
U C X such that x € U and y ¢ U and there is a Z-open set V C X such that y €
Vandx ¢ V.

(2) Z-Ts- Space if for each two distinct points x, y € X, there exists two disjoint
Z-open sets U, V withx € U, y € V.

Theorem 2.6. Let f: (X, 7) — (Y, o) be injective and Z-irresolute mapping.
Then the followings are hold:

(1) If Y is Z-T;-Space, then X is Z-T;-Space,

(2) 'Y is Z-Ts-Space, then X is Z-Ts-Space.

Proof. (1) Let x, y be any distinct points in X. Since f is injective and Y is a Z-T;-
Space, there exists two Z-open sets U and V in Y such that f(z) € U, f(y) ¢ U or
fly) €V, f(z) ¢ V with f(z) # f(y). By using Z-irresoluteness of f, then f=1(U)
and f~1(V) are Z-open sets in X such that # C f~}(U),y ¢ f~1(U) or z ¢ f~1(V),
y € f~1(V). Therefore, X is a Z-T;- Space.

(2) similar to (1). O

Definition 2.4. A space (X, 7) is said to be Z-compact (resp. Z-Lindelof) if
every Z-open cover of X has a finite (resp. countable) subcover.
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Theorem 2.7. Let f: (X, 7) = (Y, o) be surjection and Z-irresolute mapping.
Then the followings are hold:

(1) If X is Z-compact, then Y is Z-compact.

(2) If X is Z-Lindelof, then Y is Z-Lindeldf.

Proof. (1) Let f: (X, 7) — (Y, o) be surjection and Z-irresolute mapping and let
U = {U;: i € I} be a cover of Y by U; € ZO(Y, o), for each i € I. Then O = {f~!
(U;): 1 € I} is a cover of X. Since f is Z-irresolute, then O is a Z-open cover of
X which is Z-compact. Hence, there exists a finite subset I, of I such that X = U

K3
{f~Y(U;): i € I,} which implies X = f~}(U U;) and therefore Y = U {U; : i € L, }.

This shows that Y is Z-compact.
(2) similar to (1). O

Definition 2.5. A space (X, 7) is said to be Z-connected if it cannot be written
as a union of two non-empty disjoint Z-open sets.

Theorem 2.8. Let f: (X, 7) — (Y, o) be Z-irresolute and X is Z-connected.
Then Y is Z-connected.

Proof. Suppose that Y is not connected. Then there exist two non-empty disjoint
Z-open sets U and V in X such that Y = U U V. Then f~1(U) and f~1(V) are
non-empty disjoint Z-open sets in X with X = f~*(U) U f~(V) which contradicts
the fact that X is Z-connected. O

3. Z-OPEN AND Z-CLOSED MAPPINGS

Definition 3.1. A mapping [ : (X, 7) — (Y, o) is said to be:

(1) Z-open if the image of each open set in (X, 7) is Z-open sets in (Y, o).

(2) Z-closed if the image of each closed set in (X, 7) is Z-closed sets in (Y, o).

Theorem 3.1. For a Z-open (resp. Z-closed) mapping. If W C Y and F C
X is a closed (resp. open) set containing f~*(W), then there exists Z-closed (resp.
Z-open) set H C Y containing W such that f~1(H) C F.

Proof. Let H=Y\ f(X\F). Since f~}(W) C F which is a closed set and W C H, X\F
is an open set. Since f is Z-open mapping, then f(X\F) is Z-open set. Therefore
H is Z-closed and f~'(H) = X\f~1f(X\F) C F.

While the second side of the theorem can be proved in the same manner. O]

Theorem 3.2. Let f : (X, 7) — (Y, o) be Z-open and let B C Y. Then
JH(ZA(Z-nt(Z-1(B))) € cl(f(B)).

Proof. Since cl(f~1(B)) is closed in X containing f~!(B), then by Theorem 3.1,
there exists a Z-closed set B C H C Y, such that f~1(H) C cl(f~(B)). Thus,
[N (Z-el(Z-nt(Z-cl(B))) C f~(Z-cl(Zeint(ZecI(H)))) € f~1(H) € d(f1(B)). O

Theorem 3.3. For a mapping f : (X, 7) = (Y, o) the following statements are
equivalent:

(1) f is Z-open,

(2) For each x € X and each nbd U of X, there exists W € ZO(X) containing
f(z) such that W C f(U),

(3) f~Y(int(5-cI(B))) Nf~L(cl(int(B))) C cl(f~1(B)), for each B C Y,
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(4) If f is bijective, then int(d-cl(f(A))) N cl(int(f(A)))C f(cl(A)), for each A
c X.

Proof. (1) + (2). is immediately,

(1) = (3). Let B C Y and f is Z-open mapping. Then by Theorem 3.1,
there exists Z-closed set V. C Y containing B such that cl(f~1(B)) 2 f~1(B)
D f(int(5-cl(V))) Nf~(cl(int(V))) D f~(int(5-cl(B))) Nf~(cl(int(B))) and
therefore f~1(int(d-cl(B))) Nf~*(cl(int(B))) C cl(f~(B)),

(3) — (4). Let f be a bijective mapping and f(A) C Y by (3) f~!(int(s-
A(F(A))) NfHel(int(F(A)) € cl(f~ (F(A))) = cI(A). Hence int(6-cl(F(A)) cap
cl(int(£(A) € F(cl(A));

(4) = (1). Let V€7, by (4), f(cI(X\V)) = F(X\V) 2 int(5-cI(f(X\V))
cl(int(f}X\V))). By bijection f, we have f(V) C cl(6-int(f(V))) U int(cl(f(V))
and so f is Z-open. O

~—

n
)

Remark 3.1. The bijection condition in Theorem 3.3 (4) is necessary as shown
by the following example.

Example 3.1. Let Y be the usual space of real numbers and X = (0,1) be
an open sub space of Y. The mapping f : X — Y defined by f(x) = x, for every
z € X. Put M = X, then cl(d-int(f(M))) = [0,1] and f(cl(M)) = X. Therefore
l(d-int(F(M))) N int(cl(f(M))) C cl(3-int(£(M)))  F(cI(M)).

Theorem 3.4. A mapping f : (X, 7) — (Y, o) is Z-open if and only if f(int(A))
C Z-int(f(A)), for each A C X.

Proof. (1) Let f be a Z-open mapping and A C X, then Z-int(f(int(A))) = f(int(A))
€ ZO(Y). Therefore Z-int(f(int(A))) = f44(int(A)) C Z-int(f(A)).

Conversely. Let U € 7, and f(U) = f(int(U)) C Z-int(f(U)). Then f(U) =
Z-int(f(U)). Thus, f(U) is Z-open in Y. Therefore, f is Z-open.

We remark that the equality does not hold in the preceding theorem as the
following example. O

Example 3.2. Let X =Y = {1, 2}. Suppose is the indiscrete topology on X
and is the discrete topology on Y. Let f : (X, 7) — (Y, o) the identity mappings
and A = {1}. Then ¢ = f(int(A)) C Z-int(f(A)) = {1}.

Theorem 3.5. A mapping f : (X, 7) — (Y, o) is Z-open if and only if
int(f~1(B)) C f~1(Z-int(B)), for each B C Y.

Proof. Necessity. Let B C Y. Since int(f~!(B) is open in X and f is Z-open, then
f(int(f~1(B))) is Z-open in Y. Also, we have f(int(f~1(B))) € f(f~*(B)) C B.
Hence, f(int(f~1(B))) C Z-int(B). Therefore, int(f~*(B)) C f~(Z-int(B)).
Sufficiency. Let A C X. Then f(A) C Y. Hence by hypotheses, we obtain int(A)
Cint(f~1(f(A))) C f~Y(Z-int(f(A))). Thus f(int(A)) C Z-int(f(A)), for each A C
X. Hence by Theorem 3.4, we have f is Z-open. O

Theorem 3.6. A mapping f : (X, 7) — (Y, o) is Z-open if and only if ~!(Z-
Bd(A)) C Bd(f~1(A)), for each A C X.

Proof. Tt follows from Theorem 3.5. O
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Theorem 3.7. A mapping f: (X, 7) — (Y, o) is Z-open if and only if

fHZ = (B)) Ca(f(B)),
for each B C Y.

Proof. Necessity. Let B C Y and let f be Z-open. Let # € f~1(Z-cl(B)). Then
f(z) € Z-cI(B). Assume that U € 7 such that = € U. Since f is Z-open, then f(U)
is a Z-open set in Y. Hence, B Nf(U) # ¢. Thus U Nf~Y(B) # ¢. Therefore x €
(f 1 (B)). 1 (Z-cl(B)) C cl(f~!(B)).

Sufficiency. Let B C Y. Then Y\B C Y. By hypotheses, f~!(Z-cl(Y\B)) C
(£~} (Y\B)) and hence X\cl(X\ f1(B)) C X\ f~}(Z-cI(Y\B)) = f~1(Y\(Z-<I(Y\B)))
we obtain int(f~1(B)) C f~!(Z-int(B)). By Theorem 3.5, we have f is Z-open. [

Theorem 3.8. A mapping f: (X, 7) = (Y, o) is Z-closed if and only if

Z —cl(f(A)) C f(cl(A)),
for each A C X.

Proof. Necessity. Let f be Z-closed mapping and A C X. Then f(A) C f(cl(A)).
But f(cl(A)) is a Z-closed in Y. Therefore, Z-cl(f(A)) C f(cl(A)).

Conversely, suppose that Z-cl(f(A)) C f(cl(A)), for each A C X. Let A C X
be a closed. Then Z-cl(f(A)) C f(cl(A)) = f(A). Hence f(A) is Z-closed in Y.
Therefore, f is Z-closed. O

Theorem 3.9. Let f: (X, 7) — (Y, o) be Z-closed. Then

Z —int(Z — cl(f(A))) C f(cl(A)),
for each A C X.

Proof. Suppose f is a Z-closed mappings and A C X. Then f(cl(A)) is Z-closed
in Y. Then Z-int(Z-cl(cl(f(A)))) € f(cl(A)). But Z-int(Z-cl(f(A))) C Z-int(Z-
cl(cl(f(A)))). Therefore, Z-int(Z-cl(f(A))) C f(cl(A)). O

Theorem 3.10. Let f: (X, 7) — (Y, o) be Z-closed and B, C C Y.

(1) If U is an open neighbourhood of f~!(B), then there exists a Z-open neigh-
bourhood V of B such that f~1(B) C f~1(V) C U.

(2) If f is onto, then if f~1(B) and f~!(C) have disjoint open neighbourhood
so have B and C.

Proof. (1) Let V.= Y\ f(X\U). Then V¢ = Y\V = f(U®). Since f is Z-closed, so V
is a Z-open set. Since f~1(B) C U, we have V¢ = f(U¢) C f(f~1(B¢)) C B¢. Hence,
B C V and thus V is a Z-open neighbourhood of B. Further U¢ C f~1(f(U¢)) =
F7H(Ve) = (f71(V))c. Therefore, f~1(V) C U.

(2) If f=1(B) and f~(C) have disjoint open neighbourhood M and N, then by
(1), we have Z-open neighbourhoods U and V of B and C respectively such that
f7Y(B) C f~Y(U) C Z-int(M) and f~1(C) C f~1(V) C Z-int(N). Since M and N
are disjoint, so are Z-int(M) and Z-int(N) and hence so f~}(U) and f~1(V) are
disjoint as well. It follows that U and V are disjoint too as f is onto. O
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Theorem 3.11. For a bijective mapping f : (X, 7) — (Y, o) the following are
equivalent:

(1) f~1 is Z-continuous,

(2) f is Z-open,

(3) f is Z-closed.

Proof. (1) — (2). Let V € 7 and f~! be Z-continuous, by bijective of f. Then
(F~H"YV) = f(V) € ZO(Y) and therefore f is Z-open mapping,

(2) = (3). Let V be closed in X. Then X\U is open in X, by (2), f(X\U) is
Z-open in Y. But f(X\U) = f(X)\f(U) = Y\f(U). Thus f(U) is Z-closed in Y.
Therefore f is Z-closed.

(3) = (1). Let V € 7, by (3), we have f(X\V) is Z-closed in Y and hence, f(V)
= (f~H7Y(V) € ZO(Y). Therefore, f~1 is Z-continuous. O

Remark 3.2. The composition of two Z-open (resp. Z-closed) mapping may
not be Z-open (resp. Z-closed). The following example shows this fact.

Example 3.3. Let X = {a, b, ¢, d, e, h} and Y = Z = {a, b, ¢, d, e} with
topology 7. = {¢, {a, e}, X}, an indiscrete topology (Y, &) and 7, = {¢, {a, b},
{c, d}, {a, b, ¢, d}, Z}. A mapping [ : (X, 1) = (Y, Q) defined as f(a) = a, f(b)
=b, f(c) =c, f(d) = f(h) =d, f(e) = e and the identity mapping g : (Y, &) —
(Z, 7). Tt is clear of f and g is Z-open but g o f is not Z-open.

Theorem 3.12. Let f: (X, 7x) — (Y, 7v) and g : (Y, 7v) — (Z, 72) be two
mappings. Then the following statements hold:

(1) If f is surjective open (resp. closed) and g is Z-open, then g o f is Z-open
(resp. Z-closed),

(2) If go f is Z-open (resp. Z-closed) and f is surjective continuous, then g is
Z-open (resp. Z-closed),

(3) If go f is open (resp. closed) and g is injective Z-continuous, then f is Z-open
(resp. Z-closed).

Theorem 3.13. Let f : (X, 7) — (Y, o) be a Z-open bijection. Then the
following are hold

(1) If X is Z-T;-Space, then Y is Z-T;-Space,

(2) If X is Z-T2-Space, then Y is Z-Ts-Space.

Theorem 3.14. Let f : (X, 7) — (Y, o) be a Z-open bijection. Then the
following are hold

(1) If Y is Z-compact, then X is Z-compact.

(2) If Y is Z-Lindelof, then X is Z-Lindelof.

Theorem 3.15. Let f : (X, 7) — (Y, o) be a Z-open surjection and Y is
Z-connected. Then X is Z-connected.

4. PRE-Z-OPEN AND PRE-Z-CLOSED MAPPING

Definition 4.1. A mapping f : (X, 7) — (Y, o) is said to be pre-Z-open (resp.
pre-Z-closed) if f(V) € ZO(Y, o) (resp. ZC(Y, o)), for each V € ZO(X, 7) (resp.
ZC(X, 7)).

Theorem 4.1. A mapping f : (X, 7) = (Y, o) is pre-Z-closed if and only if for
each S C Y and each U C ZO(X, 7) containing f~1(S), there exists V € ZO(Y, o)
containing S such that f~1(V) C U.
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Proof. Let S C Y and f~1(S) C U. Put V = Y\f(X\U), then V € ZO(Y, o).
Since f~1(S) C U, then f(X\U) C ff~1(Y\S) C Y\S and therefore f~1(V) C U.
Conversely, let F be a Z-closed in (X, 7). For any y € Y\ f(F), then f~(y) € X\F
€ ZO(X, 7). Hence there exists V,, € ZO(Y, o) containing y such that f~'(V,)
C X\F, which implies y € V, € Y\ f(F). So Y\f(F) = U {V,: y € Y\f(F)} and
therefore f(F), F is Z-closed in (Y, o). O

Theorem 4.2. A mapping f : (X, 7) = (Y, o) is pre-Z-open if and only if
f(Z-int(A)) C Z-int(f(A)), for each A C X.

Proof. The proof is similar as Theorem 3.4. O

We remark that the equality does not hold in Theorem 4.3, as the following
example shows.

Example 4.1. Let X = {1, 2}. suppose that (X, 71) is the indiscrete space and
(X, 72) is the discrete space. Let f =1d : (X, 71) = (X, 71). Let A = {1}. Then
— J(Z-int(A)) # Z-nt(f(A)) = {1}.

Theorem 4.3. A mapping f : (X, 7) — (Y, o) is pre-Z-open if and only if
Z-int(f~1(B)) C f~!(Z-int(B)), for all B C Y.

Proof. The proof is similar as Theorem 3.5. O

Theorem 4.4. A mapping f : (X, 7) — (Y, o) is pre-Z-open if and only if
f~Y(Z-Bd(B)) C Z-Bd(f~(B)), for all B C Y.

Proof. Tt follows from Theorem 4.3. O

Theorem 4.5. A mapping f : (X, 7) — (Y, o) is pre-Z-open if and only if
[7Y(Z-cI(B)) C Z-cl(f~1(B)), for all B C Y.

Proof. The proof similar as Theorem 3.7. O
-

Theorem 4.6. Let f: (X, 7) — (Y, o) be a mapping such that f(Z-int(A))
cl(6-int(f(A))), for every subset A of X. Then f is pre-Z-open.

Proof. Suppose A is an Z-open set in X. Then by hypothesis, we have

F(A) = F(Z—int(A)) € cl(6 — int(F(A))).

Take B = §-int(f(A)). Then B is d-open in Y. Also it implies that B C f(A) C
cl(B). Hence f(A) is d-semiopen in Y. Since §SO(Y) C ZO(Y). Thus f(A) is Z-open
in Y. This implies that f is pre-Z-open. O

Theorem 4.7. A mapping f : (X, 7) — (Y, o) is pre-Z-closed if and only if
Z-cl(f(A)) C f(Z-cl(A)), for all A C X.

Proof. Necessity. Suppose f is a pre-Z-closed mapping and A is an arbitrary subset
of X. Then f(Z-cl(A)) is Z-closed in Y. Since f(A) C f((Z-cl(A)), we obtain

Z— (f(A)) C F(Z— cI(A)).

Sufficiency. Suppose F is an arbitrary Z-closed set in X. By hypothesis, we
obtain f(F) C Z-cl(f(F)) C f(Z-cl(F)) = f(F). Hence f(F) = Z-cl(f(F)). Thus
f(F) is Z-closed in Y. It follows that f is pre-Z-closed. O
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Theorem 4.8. Let f: (X, 7) — (Y, o) be a pre-Z-closed function, and B, C C
Y.

(1) If U is a Z-open neighbourhood of f~!(B), then there exists a Z-open neigh-
bourhood V of B such that f~1(B) C f~1(V) C U.

(2) If f is also onto, then if f~!(B) and f~!(C) have disjoint neighborurhoods,
so have B and C.

Proof. The proof is similar as Theorem 3.9. O

Theorem 4.9. Let f: (X, 7) — (Y, o) be a bijection. Then the following are
equivalent:

(1) f is pre-Z-closed,

(2) f is pre-Z-open,

(3) f~1 is Z-irresolute.

Proof. (1) — (2) Let U € ZO(X, 7). Then X\U is Z-closed in X. By (1), f(X\U) is
Z-closed in Y. But f(X\U) = f(X)\f(U) = Y\ f(U). Thus f(U) is Z-open in Y .

(2) — (3) Let A C X. Since f is pre-Z-open, so by Theorem 4.2, f~1(Z-cl(f(A)))
C Z-cl (f~1(f(A))). It implies that Z-cl(f(A)) C f(Z-cl(A)). Thus Z-cl((f~1)~1(A))
C (f~Y)"Y(Z-cl(A)), for all A C X. Then by Theorem 4.2, it follows that f~! is
Z-irresolute.

(3) — (1) Let A be an arbitrary Z-closed set in X. Then X\A is Z-open in
X. Since f~! is Z-irresolute, (f~!)71(X\A) is Z-open in Y. But (f~1)"}(X\A) =
F(X\A) = Y\f(A). Thus f(A) is Z-closed in Y. O

Theorem 4.10. Let f: (X, 7x) — (Y, 7v) and g : (Y, 7v) = (Z, 72) be two
mappings such that go f: (X, 7x) — (Z, 7z) is Z-irresolute. Then:

(1) If g is a pre-Z-open injection, then f is Z-irresolute.

(2) If f is a pre-Z-open surjection, then g is Z-irresolute.

Proof. (1) Let U € ZO(Y, 7v). Then g(U) € ZO(Z, 7z), since g is pre-Z-open.
Also g o f is Z-irresolute. Therefore, (g o ) Lg(U)) € ZO(X, TX) Since ¢ is an
injection, so we have (g 0 )~ (g(U) = (/" 0 g~ )(g(U)) = [~ 1(g~(9(V))) =
f71(U). Consequently f~1(U) is Z-open in X. This proves that f is Z-irresolute.
(2) Let V € ZO(Z, 7z). Then (gof)~1(V) € ZO(X, 7x), since go f is Z-irresolute.
Also f is pre-Z-open, f((go f)~1(V)) is Z-open in Y. Since f is surjective, we note
that f((go )~ (V) = (fo(gof)™)(V) = (fo(ftog™"))(V) = ((fof ) og™")(V)
= g~ 1(V). Hence g is Z-irresolute. O

Theorem 4.11. For a mappings f: (X, 7x) = (Y, 7v) and g : (Y, 7v) — (Z,
Tz), then

(1) go f is pre-Z-open (resp. pre-Z-closed) if both f and g are pre-Z-open (resp.
pre-Z-closed).

(2) go f is Z-open (resp. Z-closed) if f is Z-open (resp. Z-closed) and g are
pre-Z-open (resp. pre-Z-closed).

(3) If f is Z-continuous surjection and g o f is pre-Z-open (resp. pre-Z-closed),
then ¢ is Z-open (resp. Z-closed).

Proof. 1t is clear. O
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Theorem 4.12. Let f : (X, 7) — (Y, o) be a pre-Z-open bijection. Then the
following are hold

(1) If X is Z-T;-Space, then Y is Z-T;-Space,

(2) If X is Z-Ty-Space, then Y is Z-Ty-Space.

Theorem 4.13. Let f : (X, 7) — (Y, o) be a pre-Z-open bijection. Then the
following are hold

(1) If Y is Z-compact, then X is Z-compact.

(2) 'Y is Z-Lindelof, then X is Z-Lindelof.

Theorem 4.15. Let f: (X, 7) — (Y, o) be be a pre-Z-open bijection and Y is
Z-connected. Then X is Z-connected.
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