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1. INTRODUCTIONS AND PRELIMINARIES

The concept of Z-open sets in topological spaces was introduced by EL-Magharabi
and Mubarki [1,2]. We continue to explore further properties and characterizations
of Z-irresolute and Z-open mappings. We also introduce and study properties and
characterizations of Z-closed, pre-Z-open and pre-Z-closed mappings.

A subset A of a topological space (X, τ) is called regular open (resp. regular
closed) [3] if

A = int(cl(A))(resp.A = cl(int(A))).

The delta interior [4] of a subset A of X is the union of all regular open sets of X
contained in A is denoted by δ-int(A). A subset A of a space X is called δ-open if it
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is the union of regular open sets. The complement of δ-open set is called δ-closed.
Alternatively, a set A of (X,τ) is called δ-closed [4] if A = δ-cl(A), where

δ−cl(A) = {x ∈ X : A ∩ int(cl(U)) 6= ∅, U ∈ τ and x ∈ U} .

Throughout this paper (X, τ) and (Y, σ) (simply X and Y) represent non-empty
topological spaces on which no separation axioms are assumed unless otherwise
mentioned. For a subset A of a space (X, τ), cl(A), int(A) and X\A denote the
closure of A, the interior of A and the complement of A respectively. A subset A
of a space X is called δ-semiopen [2] (resp. Z-open [1]) if

A ⊆ cl(δ − int(A)) (resp.A ⊆ cl(δ − int(A)) ∪ int(cl(A))).

The complement of a Z-open set is called Z-closed. The intersection of all Z-
closed sets containing A is called the Z-closure of A and is denoted by Z-cl(A). The
union of all Z-open sets contained in A is called the Z-interior of A and is denoted
by Z-int(A). The Z-boundary [1] of A (briefly, Z-b(A)) is defined by

Z− b(A) = Z− cl(A) ∩ Z− cl(X\A).

Z-Bd(A) = A\Z-int(A) is said to be Z-border of A. A point p ∈ X is called a
Z-limit point of a set A ⊆X [1] if every Z-open set G ⊆ X containing p contains a
point of A other than p. The set of all Z-limit points of A is called a Z-derived set
of A and is denoted by Z-d(A). The family of all Z-open (resp. Z-closed) is denoted
by ZO(X) (ZC(X)).

2. Z-IRRESOLUTE MAPPING

Definition 2.1. A mapping f : (X, τ) → (Y, σ) is called Z-irresolute if

f−1(U) ∈ ZO(X),

for each U ∈ ZO(X).
Theorem 2.1. Let f : (X, τ) → (Y, σ) be a mapping, then the followings are

equivalent:
(1) f is Z-irresolute,
(2) The inverse image of each Z-closed in (Y, σ) is Z-closed in (X, τ),
(3) Z-cl(f−1(B)) ⊆ f−1(Z-cl(B))⊆ f−1(cl(B)), for each B ⊆ Y,
(4) f(Z-cl(A)) ⊆ Z-cl(f(A)) ⊆ cl(f(A)), for each A ⊆ X,
(5) f−1(Z-int(B)) ⊆ Z-int(f−1(B)), for each B ⊆ Y,
(6) Z-Bd(f−1(B)) ⊆ f−1(Z-Bd(B)), for each B ⊆ Y,
(7) Z-b(f−1(B)) ⊆ f−1(Z-b(B)), for each B ⊆ Y,
(8) f(Z-b(A)) ⊆ Z-b(f(A)), for each A ⊆ X,
(9) f(Z-d(A)) ⊆ Z-cl(f(A)), for each A ⊆ X.

Proof. (1)→(2). Obvious.
(2)→(3). Let B ⊆ Y and B ⊆ Z-cl(B) ⊆ cl(B). Then by (2)

Z− cl(f−1(B)) ⊆ Z− cl(f−1(Z− cl(B))) = f−1(Z− cl(B)) ⊆ f−1(cl(B)),

(3)→(4). Immediately by replacing B by f(A) in (3),
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(4)→(1). Let W ∈ ZO(Y) and F = Y\W ∈ ZC(Y). Then by (4),

f(Z− cl(f−1(F))) ⊆ Z− cl(f(f−1(F)) ⊆ Z− cl(F) = F.

So Z-cl(f−1(F)) ⊆ f−1(F) and hence, f−1(F) = X\f−1(W) ∈ ZC(X), thus
f−1(W) ∈ ZO(X). Therefore f is Z-irresolute,

(1)→(5). Let B ⊆ Y. Then Z-int(B) is Z-open in Y. By (1), f−1(Z-int(B)) is
Z-open in X. Hence f−1(Z-int(B)) = Z-int(f−1(Z-int(B))) ⊆ Z-int(f−1(B)),

(5)→(6). Let B ⊆ Y. Then by (5), f−1(Z-int(B)) ⊆ Z-int(f−1(B)) we have
f−1(B)\Z-int(f−1(B))⊆ f−1(B)\f−1(Z-int(B)). Therefore, Z-Bd(f−1(B))⊆ f−1(Z-
Bd(B)),

(6)→(5). Let B ⊆ Y. Then by (6), Z-Bd(f−1(B)) = f−1(B)\Z-int(f−1(B))
⊆ f−1(Z-Bd(B)) = f−1(B\Z-int(B)) = f−1(B)\f−1(int(B)) this implies f−1(Z-
int(B)) ⊆ Z-int(f−1(B)),

(5)→(1). Let B ⊆ Y be Z-open. Then B = Z-int(B). Hence by (5) we have
f−1(B) = f−1(Z-int(B)) ⊆ Z-int(f−1(B)). Thus f−1(B) is Z-open in X. So, f is
Z-irresolute,

(1)→(7). Let B ⊆ Y, by (3), we have Z-b(f−1(B)) = Z-cl(f−1(B))\Z-int(f−1(B))
⊆ f−1(Z-cl(B))\Z-int(f−1(B)) ⊆ f−1[Z-b(B) ∪ Z-int(B)]\Z-int(f−1(B)) ⊆ f−1[Z-
b(B) ∪ Z-int(B)]\Z-int(f−1(Z-int(B))). By (1) we have Z-b(f−1(B))⊆ (f−1(Z-b(B))
∪f−1(Z-int(B)))\f−1(Z-int(B)) = f−1(Z-b(B)),

(7)→(1). Let B ∈ ZC(Y) and Z-b(f−1(B)) ⊆ f−1(Z-b(B)). Then, Z-b (f−1(B))
⊆ f−1(Z-cl(B)\Z-int(B)) = f−1(B\Z-int(B)) = f−1(Z-Bd(B)) ⊆ f−1(B) by Theo-
rem 4.2 [1], we have, f−1(B)∈ZC(X). Therefore f is Z-irresolute,

(7)→(8). Follows by replacing f(A) instead of B in (7),
(8)→(7). Let B ⊆ Y, by(8), we have f(Z-b(f−1(B))) ⊆ Z-b(f(f−1(B))) ⊆ Z-b(B)

and therefore Z-b(f−1(B)) ⊆ f−1(Z-b(B)),
(1)→(9). Let A ⊆ X. Then by (4), f(Z-d(A)) ⊆ f(Z-cl(A)) ⊆ Z-cl(f(A)),
(9)→(1). Let F be a Z-closed set in Y, by (7), f(Z-d(f−1(F)) ⊆ Z-cl(f(f−1(F)))

⊆ Z-cl(F) = F, then Z-d(f−1(F)) ⊆ f−1(F) by Theorem 4.4 [1], we have, f−1(F) ∈
ZC(X). Therefore f is Z-irresolute.

Theorem 2.2. A mapping f : (X, τ) → (Y, σ) is Z-irresolute if and only
if for each x in X, the inverse image of every Z-neighbourhood of f(x) is a Z-
neighbourhood of x.

Proof. Necessity. Let x ∈ X and let B be Z-neighbourhood of f(x). Then there
exists U ∈ ZO(Y) such that f(x) ∈ U ⊆ B. This implies that x ∈ f−1(U) ⊆ f−1(B).
Since f is Z-irresolute, so f−1(U) ∈ ZO(X). Hence f−1(B) is a Z-neighbourhood of
x.

Sufficiency. Let B ∈ ZO(Y). Put A = f−1(B). Let x ∈ A. Then f(x) ∈ B. But
B being Z-open set is a Z-neighbourhood of f(x). So by hypothesis, A = f−1(B)
is a Z-neighbourhood of x. Hence there exists Ax ∈ ZO(X) such that x ∈ Ax ⊆ A.
Thus A = ∪ { Ax : x ∈ A}. Therefore f is Z-irresolute.

Theorem 2.3. A function f : (X, τ) → (Y, σ) is Z-irresolute if and only if
f(Z-d(A)) ⊆ f(A) ∪ Z-d(f(A)), for each A ⊆ X.

Proof. Necessity. Let f : X → Y be Z-irresolute. Let A ⊆ X and a0 ∈ Z-d(A).
Assume that f(a0) /∈ f(A) and let V denote a Z-neighbourhood of f(a0). Since f is
Z-irresolute, so by Theorem 2.2, there exists a Z-neighbourhood U of a0 such that
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f(U) ⊆ V. From a0 ∈ Z-d(A), it follows that U ∩ A 6= ϕ, therefore, at least one
element a ∈ U ∩ A such that f(a) ∈ f(A) and f(a) ∈ V. Since f(a0) /∈ f(A), we
have f(a) 6= f(a0). Thus every Z-neighbourhood of f(a0) contains an element of
f(A) different from f(a0), consequently, f(a0) ∈ Z-d(f(A)). This proves necessity
of the condition.

Sufficiency. Assume that f is not Z-irresolute. Then by Theorem 2.2, there
exists a0 ∈ X and a Z-neighbourhood V of f(a0) such that every Z-neighbourhood
U of a0 contains at least one element a ∈ U for which f(a) /∈ V. Put A = {a ∈ X:
f(a) /∈ V}. Then a0 /∈ A since f(a0) ∈ V, and therefore f(a0) /∈ f(A); also f(a0) /∈
Z-d(f(A)), since f(A) ∩ (V\{f(a0)}) = ϕ . It follows that f(a0) ∈ f(Z-d(A))\(f(A)
∪ Z-d(f(A))) 6= ϕ, which is a contradiction to the given condition.

Theorem 2.4. Let f : (X, τ)→ (Y, σ) be a 1 - 1 mapping. Then f is Z-irresolute
if and only if f(Z-d(A)) ⊆ Z-d(f(A)), for each A ⊆ X.

Proof. Necessity. Let f be Z-irresolute. Let A ⊆ X, a0 ∈ Z-d(A) and V be a Z-
neighbourhood of f(a0). Since f is Z-irresolute, so by Theorem 2.2, there exists a
Z-neighbourhood U of a0 such that f(U) ⊆ V. But a0 ∈ Z-d(A), hence there exists
an element a ∈ U ∩ A such that a 6= a0, then f(a) ∈ f(A) and, since f is 1 -
1, f(a) 6= f(a0). Thus every Z-neighbourhood V of f(a0) contains an element of
f(A) different from f(a0), consequently f(a0) ∈ Z-d(f(A)). We have f(Z-d(A)) ⊆
Z-d(f(A)).

Sufficiency. It follows from Theorem 2.3.

Definition 2.2. [1] A mapping f : (X, τ) → (Y, σ) is called Z-continuous if the
inverse image of each open set of (Y, σ) is Z-open in (X, τ).

Theorem 2.5. Let f : (X, τ) → (Y, sigma) be a mapping, then the following
statements holds:

(1) g ◦ f is Z-irresolute if both f and g are Z-irresolute.
(2) g ◦ f is Z-continuous if f is Z-irresolute and g is Z-continuous.
Definition 2.3. A space (X, τ) is called:
(1) Z-T1- Space if for any pair of distinct points x, y of X, there is a Z-open set

U ⊆ X such that x ∈ U and y /∈ U and there is a Z-open set V ⊆ X such that y ∈
V and x /∈ V.

(2) Z-T2- Space if for each two distinct points x, y ∈ X, there exists two disjoint
Z-open sets U, V with x ∈ U, y ∈ V.

Theorem 2.6. Let f : (X, τ) → (Y, σ) be injective and Z-irresolute mapping.
Then the followings are hold:

(1) If Y is Z-T1-Space, then X is Z-T1-Space,
(2) If Y is Z-T2-Space, then X is Z-T2-Space.

Proof. (1) Let x, y be any distinct points in X. Since f is injective and Y is a Z-T1-
Space, there exists two Z-open sets U and V in Y such that f(x) ∈ U, f(y) /∈ U or
f(y) ∈ V, f(x) /∈ V with f(x) 6= f(y). By using Z-irresoluteness of f , then f−1(U)
and f−1(V) are Z-open sets in X such that x ⊆ f−1(U), y /∈ f−1(U) or x /∈ f−1(V),
y ∈ f−1(V). Therefore, X is a Z-T1- Space.

(2) similar to (1).

Definition 2.4. A space (X, τ) is said to be Z-compact (resp. Z-Lindelöf) if
every Z-open cover of X has a finite (resp. countable) subcover.
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Theorem 2.7. Let f : (X, τ) → (Y, σ) be surjection and Z-irresolute mapping.
Then the followings are hold:

(1) If X is Z-compact, then Y is Z-compact.
(2) If X is Z-Lindelöf, then Y is Z-Lindelöf.

Proof. (1) Let f : (X, τ) → (Y, σ) be surjection and Z-irresolute mapping and let
U = {Ui: i ∈ I} be a cover of Y by Ui ∈ ZO(Y, σ), for each i ∈ I. Then O = {f−1

(Ui): i ∈ I} is a cover of X. Since f is Z-irresolute, then O is a Z-open cover of
X which is Z-compact. Hence, there exists a finite subset Io of I such that X = ∪

i

{f−1(Ui): i ∈ Io} which implies X = f−1(∪
i

Ui) and therefore Y = ∪ {Ui : i ∈ Io}.
This shows that Y is Z-compact.

(2) similar to (1).

Definition 2.5. A space (X, τ) is said to be Z-connected if it cannot be written
as a union of two non-empty disjoint Z-open sets.

Theorem 2.8. Let f : (X, τ) → (Y, σ) be Z-irresolute and X is Z-connected.
Then Y is Z-connected.

Proof. Suppose that Y is not connected. Then there exist two non-empty disjoint
Z-open sets U and V in X such that Y = U ∪ V. Then f−1(U) and f−1(V) are
non-empty disjoint Z-open sets in X with X = f−1(U) ∪ f−1(V) which contradicts
the fact that X is Z-connected.

3. Z-OPEN AND Z-CLOSED MAPPINGS

Definition 3.1. A mapping f : (X, τ) → (Y, σ) is said to be:
(1) Z-open if the image of each open set in (X, τ) is Z-open sets in (Y, σ).
(2) Z-closed if the image of each closed set in (X, τ) is Z-closed sets in (Y, σ).
Theorem 3.1. For a Z-open (resp. Z-closed) mapping. If W ⊆ Y and F ⊆

X is a closed (resp. open) set containing f−1(W), then there exists Z-closed (resp.
Z-open) set H ⊆ Y containing W such that f−1(H) ⊆ F.

Proof. Let H = Y\f(X\F). Since f−1(W) ⊆ F which is a closed set and W ⊆ H, X\F
is an open set. Since f is Z-open mapping, then f(X\F) is Z-open set. Therefore
H is Z-closed and f−1(H) = X\f−1f(X\F) ⊆ F.

While the second side of the theorem can be proved in the same manner.

Theorem 3.2. Let f : (X, τ) → (Y, σ) be Z-open and let B ⊆ Y. Then
f−1(Z-cl(Z-int(Z-cl(B)))) ⊆ cl(f−1(B)).

Proof. Since cl(f−1(B)) is closed in X containing f−1(B), then by Theorem 3.1,
there exists a Z-closed set B ⊆ H ⊆ Y, such that f−1(H) ⊆ cl(f−1(B)). Thus,
f−1(Z-cl(Z-int(Z-cl(B))) ⊆ f−1(Z-cl(Z-int(Z-cl(H)))) ⊆ f−1(H) ⊆ cl(f−1(B)).

Theorem 3.3. For a mapping f : (X, τ) → (Y, σ) the following statements are
equivalent:

(1) f is Z-open,
(2) For each x ∈ X and each nbd U of X, there exists W ∈ ZO(X) containing

f(x) such that W ⊆ f(U),
(3) f−1(int(δ-cl(B))) ∩f−1(cl(int(B))) ⊆ cl(f−1(B)), for each B ⊆ Y,
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(4) If f is bijective, then int(δ-cl(f(A))) ∩ cl(int(f(A)))⊆ f(cl(A)), for each A
⊆ X.

Proof. (1) ↔ (2). is immediately,

(1) → (3). Let B ⊆ Y and f is Z-open mapping. Then by Theorem 3.1,
there exists Z-closed set V ⊆ Y containing B such that cl(f−1(B)) ⊇ f−1(B)
⊇ f−1(int(δ-cl(V))) ∩f−1(cl(int(V))) ⊇ f−1(int(δ-cl(B))) ∩f−1(cl(int(B))) and
therefore f−1(int(δ-cl(B))) ∩f−1(cl(int(B))) ⊆ cl(f−1(B)),

(3) → (4). Let f be a bijective mapping and f(A) ⊆ Y by (3) f−1(int(δ-
cl(f(A)))) ∩f−1(cl(int(f(A)))) ⊆ cl(f−1(f(A))) = cl(A). Hence int(δ-cl(f(A))) cap
cl(int(f(A))) ⊆ f(cl(A)),

(4) → (1). Let V ∈ τ , by (4), f(cl(X\V)) = f(X\V) ⊇ int(δ-cl(f(X\V))) ∩
cl(int(f(X\V))). By bijection f , we have f(V) ⊆ cl(δ-int(f(V))) ∪ int(cl(f(V)))
and so f is Z-open.

Remark 3.1. The bijection condition in Theorem 3.3 (4) is necessary as shown
by the following example.

Example 3.1. Let Y be the usual space of real numbers and X = (0,1) be
an open sub space of Y. The mapping f : X → Y defined by f(x) = x, for every
x ∈ X. Put M = X, then cl(δ-int(f(M))) = [0,1] and f(cl(M)) = X. Therefore
cl(δ-int(f(M))) ∩ int(cl(f(M))) ⊆ cl(δ-int(f(M))) 6⊆ f(cl(M)).

Theorem 3.4. A mapping f : (X, τ)→ (Y, σ) is Z-open if and only if f(int(A))
⊆ Z-int(f(A)), for each A ⊆ X.

Proof. (1) Let f be a Z-open mapping and A ⊆ X, then Z-int(f(int(A))) = f(int(A))
∈ ZO(Y). Therefore Z-int(f(int(A))) = f44(int(A)) ⊆ Z-int(f(A)).

Conversely. Let U ∈ τ , and f(U) = f(int(U)) ⊆ Z-int(f(U)). Then f(U) =
Z-int(f(U)). Thus, f(U) is Z-open in Y. Therefore, f is Z-open.

We remark that the equality does not hold in the preceding theorem as the
following example.

Example 3.2. Let X = Y = {1, 2}. Suppose is the indiscrete topology on X
and is the discrete topology on Y. Let f : (X, τ) → (Y, σ) the identity mappings
and A = {1}. Then ϕ = f(int(A)) ⊆ Z-int(f(A)) = {1}.

Theorem 3.5. A mapping f : (X, τ) → (Y, σ) is Z-open if and only if
int(f−1(B)) ⊆ f−1(Z-int(B)), for each B ⊆ Y.

Proof. Necessity. Let B ⊆ Y. Since int(f−1(B) is open in X and f is Z-open, then
f(int(f−1(B))) is Z-open in Y. Also, we have f(int(f−1(B))) ⊆ f(f−1(B)) ⊆ B.
Hence, f(int(f−1(B))) ⊆ Z-int(B). Therefore, int(f−1(B)) ⊆ f−1(Z-int(B)).

Sufficiency. Let A ⊆ X. Then f(A) ⊆ Y. Hence by hypotheses, we obtain int(A)
⊆ int(f−1(f(A))) ⊆ f−1(Z-int(f(A))). Thus f(int(A)) ⊆ Z-int(f(A)), for each A ⊆
X. Hence by Theorem 3.4, we have f is Z-open.

Theorem 3.6. A mapping f : (X, τ) → (Y, σ) is Z-open if and only if −1(Z-
Bd(A)) ⊆ Bd(f−1(A)), for each A ⊆ X.

Proof. It follows from Theorem 3.5.
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Theorem 3.7. A mapping f : (X, τ) → (Y, σ) is Z-open if and only if

f−1(Z− cl(B)) ⊆ cl(f−1(B)),

for each B ⊆ Y.

Proof. Necessity. Let B ⊆ Y and let f be Z-open. Let x ∈ f−1(Z-cl(B)). Then
f(x) ∈ Z-cl(B). Assume that U ∈ τ such that x ∈ U. Since f is Z-open, then f(U)
is a Z-open set in Y. Hence, B ∩f(U) 6= ϕ. Thus U ∩f−1(B) 6= ϕ. Therefore x ∈
cl(f−1(B)). f−1(Z-cl(B)) ⊆ cl(f−1(B)).

Sufficiency. Let B ⊆ Y. Then Y\B ⊆ Y. By hypotheses, f−1(Z-cl(Y\B)) ⊆
cl(f−1(Y\B)) and hence X\cl(X\f−1(B))⊆X\f−1(Z-cl(Y\B)) = f−1(Y\(Z-cl(Y\B)))
we obtain int(f−1(B)) ⊆ f−1(Z-int(B)). By Theorem 3.5, we have f is Z-open.

Theorem 3.8. A mapping f : (X, τ) → (Y, σ) is Z-closed if and only if

Z− cl(f(A)) ⊆ f(cl(A)),

for each A ⊆ X.

Proof. Necessity. Let f be Z-closed mapping and A ⊆ X. Then f(A) ⊆ f(cl(A)).
But f(cl(A)) is a Z-closed in Y. Therefore, Z-cl(f(A)) ⊆ f(cl(A)).

Conversely, suppose that Z-cl(f(A)) ⊆ f(cl(A)), for each A ⊆ X. Let A ⊆ X
be a closed. Then Z-cl(f(A)) ⊆ f(cl(A)) = f(A). Hence f(A) is Z-closed in Y.
Therefore, f is Z-closed.

Theorem 3.9. Let f : (X, τ) → (Y, σ) be Z-closed. Then

Z− int(Z− cl(f(A))) ⊆ f(cl(A)),

for each A ⊆ X.

Proof. Suppose f is a Z-closed mappings and A ⊆ X. Then f(cl(A)) is Z-closed
in Y. Then Z-int(Z-cl(cl(f(A)))) ⊆ f(cl(A)). But Z-int(Z-cl(f(A))) ⊆ Z-int(Z-
cl(cl(f(A)))). Therefore, Z-int(Z-cl(f(A))) ⊆ f(cl(A)).

Theorem 3.10. Let f : (X, τ) → (Y, σ) be Z-closed and B, C ⊆ Y.
(1) If U is an open neighbourhood of f−1(B), then there exists a Z-open neigh-

bourhood V of B such that f−1(B) ⊆ f−1(V) ⊆ U.
(2) If f is onto, then if f−1(B) and f−1(C) have disjoint open neighbourhood

so have B and C.

Proof. (1) Let V = Y\f(X\U). Then Vc = Y\V = f(Uc). Since f is Z-closed, so V
is a Z-open set. Since f−1(B) ⊆ U, we have Vc = f(Uc) ⊆ f(f−1(Bc)) ⊆ Bc. Hence,
B ⊆ V and thus V is a Z-open neighbourhood of B. Further Uc ⊆ f−1(f(Uc)) =
f−1(Vc) = (f−1(V))c. Therefore, f−1(V) ⊆ U.

(2) If f−1(B) and f−1(C) have disjoint open neighbourhood M and N, then by
(1), we have Z-open neighbourhoods U and V of B and C respectively such that
f−1(B) ⊆ f−1(U) ⊆ Z-int(M) and f−1(C) ⊆ f−1(V) ⊆ Z-int(N). Since M and N
are disjoint, so are Z-int(M) and Z-int(N) and hence so f−1(U) and f−1(V) are
disjoint as well. It follows that U and V are disjoint too as f is onto.
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Theorem 3.11. For a bijective mapping f : (X, τ) → (Y, σ) the following are
equivalent:

(1) f−1 is Z-continuous,

(2) f is Z-open,

(3) f is Z-closed.

Proof. (1) → (2). Let V ∈ τ and f−1 be Z-continuous, by bijective of f . Then
(f−1)−1(V) = f(V) ∈ ZO(Y) and therefore f is Z-open mapping,

(2) → (3). Let V be closed in X. Then X\U is open in X, by (2), f(X\U) is
Z-open in Y. But f(X\U) = f(X)\f(U) = Y\f(U). Thus f(U) is Z-closed in Y.
Therefore f is Z-closed.

(3) → (1). Let V ∈ τ , by (3), we have f(X\V) is Z-closed in Y and hence, f(V)
= (f−1)−1(V) ∈ ZO(Y). Therefore, f−1 is Z-continuous.

Remark 3.2. The composition of two Z-open (resp. Z-closed) mapping may
not be Z-open (resp. Z-closed). The following example shows this fact.

Example 3.3. Let X = {a, b, c, d, e, h} and Y = Z = {a, b, c, d, e} with
topology τx = {ϕ, {a, e}, X}, an indiscrete topology (Y, =) and τz = {ϕ, {a, b},
{c, d}, {a, b, c, d}, Z}. A mapping f : (X, τx) → (Y, =) defined as f(a) = a, f(b)
= b, f(c) = c, f(d) = f(h) = d, f(e) = e and the identity mapping g : (Y, =) →
(Z, τz). It is clear of f and g is Z-open but g ◦ f is not Z-open.

Theorem 3.12. Let f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z, τZ) be two
mappings. Then the following statements hold:

(1) If f is surjective open (resp. closed) and g is Z-open, then g ◦ f is Z-open
(resp. Z-closed),

(2) If g ◦ f is Z-open (resp. Z-closed) and f is surjective continuous, then g is
Z-open (resp. Z-closed),

(3) If g◦f is open (resp. closed) and g is injective Z-continuous, then f is Z-open
(resp. Z-closed).

Theorem 3.13. Let f : (X, τ) → (Y, σ) be a Z-open bijection. Then the
following are hold

(1) If X is Z-T1-Space, then Y is Z-T1-Space,

(2) If X is Z-T2-Space, then Y is Z-T2-Space.

Theorem 3.14. Let f : (X, τ) → (Y, σ) be a Z-open bijection. Then the
following are hold

(1) If Y is Z-compact, then X is Z-compact.

(2) If Y is Z-Lindelöf, then X is Z-Lindelöf.

Theorem 3.15. Let f : (X, τ) → (Y, σ) be a Z-open surjection and Y is
Z-connected. Then X is Z-connected.

4. PRE-Z-OPEN AND PRE-Z-CLOSED MAPPING

Definition 4.1. A mapping f : (X, τ) → (Y, σ) is said to be pre-Z-open (resp.
pre-Z-closed) if f(V) ∈ ZO(Y, σ) (resp. ZC(Y, σ)), for each V ∈ ZO(X, τ) (resp.
ZC(X, τ)).

Theorem 4.1. A mapping f : (X, τ) → (Y, σ) is pre-Z-closed if and only if for
each S ⊆ Y and each U ⊆ ZO(X, τ) containing f−1(S), there exists V ∈ ZO(Y, σ)
containing S such that f−1(V) ⊆ U.
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Proof. Let S ⊆ Y and f−1(S) ⊆ U. Put V = Y\f(X\U), then V ∈ ZO(Y, σ).
Since f−1(S) ⊆ U, then f(X\U) ⊆ ff−1(Y\S) ⊆ Y\S and therefore f−1(V) ⊆ U.
Conversely, let F be a Z-closed in (X, τ). For any y ∈ Y\f(F), then f−1(y) ∈ X\F
∈ ZO(X, τ). Hence there exists Vy ∈ ZO(Y, σ) containing y such that f−1(Vy)
⊆ X\F, which implies y ∈ Vy ⊆ Y\f(F). So Y\f(F) = ∪ {Vy: y ∈ Y\f(F)} and
therefore f(F), F is Z-closed in (Y, σ).

Theorem 4.2. A mapping f : (X, τ) → (Y, σ) is pre-Z-open if and only if
f(Z-int(A)) ⊆ Z-int(f(A)), for each A ⊆ X.

Proof. The proof is similar as Theorem 3.4.

We remark that the equality does not hold in Theorem 4.3, as the following
example shows.

Example 4.1. Let X = {1, 2}. suppose that (X, τ1) is the indiscrete space and
(X, τ2) is the discrete space. Let f = Id : (X, τ1) → (X, τ1). Let A = {1}. Then ∅
= f(Z-int(A)) 6= Z-int(f(A)) = {1}.

Theorem 4.3. A mapping f : (X, τ) → (Y, σ) is pre-Z-open if and only if
Z-int(f−1(B)) ⊆ f−1(Z-int(B)), for all B ⊆ Y.

Proof. The proof is similar as Theorem 3.5.

Theorem 4.4. A mapping f : (X, τ) → (Y, σ) is pre-Z-open if and only if
f−1(Z-Bd(B)) ⊆ Z-Bd(f−1(B)), for all B ⊆ Y.

Proof. It follows from Theorem 4.3.

Theorem 4.5. A mapping f : (X, τ) → (Y, σ) is pre-Z-open if and only if
f−1(Z-cl(B)) ⊆ Z-cl(f−1(B)), for all B ⊆ Y.

Proof. The proof similar as Theorem 3.7.

Theorem 4.6. Let f : (X, τ) → (Y, σ) be a mapping such that f(Z-int(A)) ⊆
cl(δ-int(f(A))), for every subset A of X. Then f is pre-Z-open.

Proof. Suppose A is an Z-open set in X. Then by hypothesis, we have

f(A) = f(Z− int(A)) ⊆ cl(δ − int(f(A))).

Take B = δ-int(f(A)). Then B is δ-open in Y. Also it implies that B ⊆ f(A) ⊆
cl(B). Hence f(A) is δ-semiopen in Y. Since δSO(Y) ⊆ ZO(Y). Thus f(A) is Z-open
in Y. This implies that f is pre-Z-open.

Theorem 4.7. A mapping f : (X, τ) → (Y, σ) is pre-Z-closed if and only if
Z-cl(f(A)) ⊆ f(Z-cl(A)), for all A ⊆ X.

Proof. Necessity. Suppose f is a pre-Z-closed mapping and A is an arbitrary subset
of X. Then f(Z-cl(A)) is Z-closed in Y. Since f(A) ⊆ f((Z-cl(A)), we obtain

Z− cl(f(A)) ⊆ f(Z− cl(A)).

Sufficiency. Suppose F is an arbitrary Z-closed set in X. By hypothesis, we
obtain f(F) ⊆ Z-cl(f(F)) ⊆ f(Z-cl(F)) = f(F). Hence f(F) = Z-cl(f(F)). Thus
f(F) is Z-closed in Y. It follows that f is pre-Z-closed.
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Theorem 4.8. Let f : (X, τ) → (Y, σ) be a pre-Z-closed function, and B, C ⊆
Y.

(1) If U is a Z-open neighbourhood of f−1(B), then there exists a Z-open neigh-
bourhood V of B such that f−1(B) ⊆ f−1(V) ⊆ U.

(2) If f is also onto, then if f−1(B) and f−1(C) have disjoint neighborurhoods,
so have B and C.

Proof. The proof is similar as Theorem 3.9.

Theorem 4.9. Let f : (X, τ) → (Y, σ) be a bijection. Then the following are
equivalent:

(1) f is pre-Z-closed,
(2) f is pre-Z-open,
(3) f−1 is Z-irresolute.

Proof. (1) → (2) Let U ∈ ZO(X, τ). Then X\U is Z-closed in X. By (1), f(X\U) is
Z-closed in Y. But f(X\U) = f(X)\f(U) = Y\f(U). Thus f(U) is Z-open in Y .

(2)→ (3) Let A ⊆ X. Since f is pre-Z-open, so by Theorem 4.2, f−1(Z-cl(f(A)))
⊆ Z-cl (f−1(f(A))). It implies that Z-cl(f(A)) ⊆ f(Z-cl(A)). Thus Z-cl((f−1)−1(A))
⊆ (f−1)−1(Z-cl(A)), for all A ⊆ X. Then by Theorem 4.2, it follows that f−1 is
Z-irresolute.

(3) → (1) Let A be an arbitrary Z-closed set in X. Then X\A is Z-open in
X. Since f−1 is Z-irresolute, (f−1)−1(X\A) is Z-open in Y. But (f−1)−1(X\A) =
f(X\A) = Y\f(A). Thus f(A) is Z-closed in Y.

Theorem 4.10. Let f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z, τZ) be two
mappings such that g ◦ f : (X, τX) → (Z, τZ) is Z-irresolute. Then:

(1) If g is a pre-Z-open injection, then f is Z-irresolute.
(2) If f is a pre-Z-open surjection, then g is Z-irresolute.

Proof. (1) Let U ∈ ZO(Y, τY ). Then g(U) ∈ ZO(Z, τZ), since g is pre-Z-open.
Also g ◦ f is Z-irresolute. Therefore, (g ◦ f)−1(g(U)) ∈ ZO(X, τX). Since g is an
injection, so we have (g ◦ f)−1(g(U)) = (f−1 ◦ g−1)(g(U)) = f−1(g−1(g(U))) =
f−1(U). Consequently f−1(U) is Z-open in X. This proves that f is Z-irresolute.

(2) Let V ∈ ZO(Z, τZ). Then (g◦f)−1(V) ∈ ZO(X, τX), since g◦f is Z-irresolute.
Also f is pre-Z-open, f((g ◦ f)−1(V)) is Z-open in Y. Since f is surjective, we note
that f((g◦f)−1(V)) = (f ◦(g◦f)−1)(V) = (f ◦(f−1◦g−1))(V) = ((f ◦f−1)◦g−1)(V)
= g−1(V). Hence g is Z-irresolute.

Theorem 4.11. For a mappings f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z,
τZ), then

(1) g ◦ f is pre-Z-open (resp. pre-Z-closed) if both f and g are pre-Z-open (resp.
pre-Z-closed).

(2) g ◦ f is Z-open (resp. Z-closed) if f is Z-open (resp. Z-closed) and g are
pre-Z-open (resp. pre-Z-closed).

(3) If f is Z-continuous surjection and g ◦ f is pre-Z-open (resp. pre-Z-closed),
then g is Z-open (resp. Z-closed).

Proof. It is clear.
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Theorem 4.12. Let f : (X, τ) → (Y, σ) be a pre-Z-open bijection. Then the
following are hold

(1) If X is Z-T1-Space, then Y is Z-T1-Space,
(2) If X is Z-T2-Space, then Y is Z-T2-Space.
Theorem 4.13. Let f : (X, τ) → (Y, σ) be a pre-Z-open bijection. Then the

following are hold
(1) If Y is Z-compact, then X is Z-compact.
(2) If Y is Z-Lindelöf, then X is Z-Lindelöf.
Theorem 4.15. Let f : (X, τ) → (Y, σ) be be a pre-Z-open bijection and Y is

Z-connected. Then X is Z-connected.
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