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Abstract: Based on the probability generating function of stuttering
Poisson distribution (SPD), this paper considers some equivalent propositions
of SPD. From this, we show that some distributions in the application
of non-life insurance actuarial science are SPD, such as negative binomial
distribution, compound Poisson distribution etc.. By weakening condition
of equivalent propositions of SPD, we define the generalized SPD and prove
that any non-negative discrete random variable X with P{X = 0} > 0.5
obey generalized SPD. Then, we discuss the waiting time distribution of
generalized stuttering Poisson process. We consider cumulant estimation of
generalized SPD’s parameters. As an application, we use SPD with four
parameters (4th SPD) to fit auto insurance claim data. The fitting results
show that 4th SPD is more accurate than negative binomial and Poisson
distribution.
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Some Properties of the Generalized Stuttering Poisson Distribution and Its
Applications

1. INTRODUCTION

Stuttering Poisson distribution (SPD) is a non-negative discrete compound Poisson
distribution (see [1,2]), which has the feature that two or more events occur in a
very short time (arrive in group or batches). For example, a man may claim for
double or much compensation because he has two or more insurance policy from
the insurance company. In inventory management, a customer may buy more than
one goods of the same kind.

1.1. Stuttering Poisson Distribution

Definition 1.1 For a stochastic process {ξ(t), t ≥ 0}, let

Pn(t) = P{ξ(t) = n| ξ(0) = 0}.

Similarly to some properties of Poisson process [3], stuttering Poisson process ξ(t)
satisfies the following properties:

Property 1: ξ(0) = 0.
Property 2: ξ(t) has independent increments (i.e., the numbers of events that

occur in disjoint time intervals are independent) and stationary increments (i.e.,
the distribution of the number of events that occur in any interval of time depends
only on the length of the time interval).

Property 3: Counted occurrences may be simultaneous.

Pi(∆t) = λαi∆t+ o(∆t), (0 ≤ αi ≤ 1, i = 1, 2, · · · , r),

where 1 ≤ r ≤ +∞. The r equals to finite or infinite in the following part of this
paper.

Property 3 implies that stuttering Poisson process satisfies that the probability of
two or more events occur at a very short time interval is non-zero. The probability
is directly proportional to the length of time interval. When i = 0, according
to the properties of independent increments, stationary increments and Chapman-
Kolmogoroff equations, we have

P0(t+ ∆t) = P0(t)P0(∆t)

implying that

P0(∆t) = e−λ∆t = 1− λ∆t+ o(∆t), (λ > 0)

Add terms from P0(∆t) to Pr(∆t), that is

1 =

r∑
i=1

Pi(∆t) = 1− λ∆t+ o(∆t) +

r∑
i=1

λαi∆t+ o(∆t),

As ∆t→ 0, hence we obtain
∑r
i=1 αi = 1.

Definition 1.2 If ξ(t) satisfies Property 1, 2 and 3, then we say that ξ(t) obeys
the rth stuttering Poisson distribution. Denote

ξ(t) ∼ SP (α1λt, · · · , αrλt)

with parameters (α1λt, · · · , αrλt) ∈ Rr, (αr 6= 0).
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1.2. PDF and PGF of Stuttering Poisson Distribution

Similar to Poisson law of small numbers, SPD can be deduced from the limiting

distribution of univariate multinomial distribution [4]. Let pi =
αiλt

N
, then the

probability generating fubction (PGF) of stuttering Poisson distribution

P (s) = lim
Npi=αiλt
N→∞

[(1−
r∑
i=1

pi) +

r∑
i=1

pis
i]N

= lim
N→∞

[1 +
λt

N
(

r∑
i=1

αis
i −

r∑
i=1

αi)]
N = e

λt
r∑
i=1

αi(s
i−1)

.

where αi(i = 1, 2, · · · ) is probability density of an positive discrete distribution.

With Pn(t) =
P (n)(0)

n!
and Faà di Bruno fomula [5]

dn

dtn
g[f(t)] =

n∑
i=1

 ∑
k1+···+ku+···kn=i,ku∈N
1·k1+···+uku+···+nkn=n

n!g(i)f(t)

k1!k2! · · · kn!

(
f ′(t)

1!

)k1(f ′′(t)
2!

)k2
· · ·
(
f (n)(t)

n!

)kn
we have

Pn(t) =αnλt+ · · ·+
∑

k1+···+ku+···kn=i,ku∈N
1·k1+···+uku+···+nkn=n

αk11 α
k2
2 · · ·αknn

k1!k2! · · · kn!
(λt)i + · · ·+ αn1 (λt)

n

n!

 e−λt
(1)

where λ > 0,
∑r
i=1 αi=1, αi ≥ 0 (i=1, 2, · · · )

Other methods to prove the expression of stuttering Poisson distribution can
be obtained by solving system of differential equations [6] or system of functional
equations [7]. The name of compound Poisson was used by W. Feller [8] and R. M.

Adelson [1] to discuss distribution which PGF is eλtΣ
r
i=1αi(s

i−1). When r=1, SPD
degenerates to Poisson distribution. When r ≥ 2, we call it non-degenerative SPD.
When r=2, C.D. Kemp and A.W. Kemp [9] named it Hermite distribution owing
to the PGF can be expanded in terms of Hermite polynomial. When r=3(4), Y. C.
Patel [4] said it triple (quadruple) stuttering Poisson distributions. H.P. Galliher et
al. [10] considered the demands ξ(t) obey SPD with parameters

((1− α)λ, (1− α)αλ, (1− α)α2λ, · · · )

of geometric distribution in inventory management theory and first name it stutter-
ing Poisson. T.S. Moothathu, C.S. Kumar [11] considered SPD with parameters of
binomial distribution. For more application in inventory management, see [12–14].
In queue theory, A. Kuczura [15] considered the situation that requests arrive
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in group or batches with constant service times. R. Mitchell [16] showed that
SPD is a more exact model than the Poisson model to fit observed demand
form actual historical data of several U.S. Air Force bases. D.E. Giles [17] used
Hermite distribution to fit the data of the number of banking and currency crises
in IMF-member countries.

2. EQUIVALENT PROPOSITIONS OF SPD

2.1. The Equivalent Proposition of Stuttering Poisson Distribution

Let P (k, p) be a family of non-negative discrete distributions, which is closed under
convolution operation, where p (denoting the mean value of the distribution) runs
over all non-negative real numbers. L. Janossy [7] showed that P (k, p) is SPD, the
equivalent proposition of SPD is deduced from PGF and it helps us to consider the
generalized stuttering Poisson distribution.

Theorem 2.1 For a discrete random variable X with P (s) =
∑r
i=0 pis

i(|s| ≤ 1).
Then, taking logarithm of PGF and expand it to a power series

gX(s)
∆
= ln(

r∑
i=0

pis
i) =

r∑
i=0

bis
i, |s| ≤ 1

with
∑r
i=1 bi = λ <∞, (bi ≥ 0), where gX(s) is cumulants generation function of a

discrete random variable. Then, if and only if the discrete random variable obeys
SPD.

Proof. Sufficiency. With
∑r
i=0 bis

i = ln(
∑r
i=0 pis

i) and
∑r
i=1 bi = λ <∞, we know

that gX(s) is absolutely convergent in |s| ≤ 1. Hence
∑r
i=0 bi = ln(

∑r
i=0 pi) = 0.

Let bi = aiλ, it yield to

P (s) = e

r∑
i=1

bis
i−

r∑
i=1

bi
= e

r∑
i=1

aiλ(si−1)
.

Set λ′t = λ, then X ∼ SP (λα1, λα2, · · · ).
Necessity. The parameters of SPD satisfy

∑r
i=1 bi = λ <∞.

Example 2.1 Negative binomial distribution (NBD):

Pk =

(
−r
k

)
pr(p− 1)k, (p ∈ (0, 1), k = 1, 2, · · · ).

The PGF of NBD is [
p

1− (1− p)s
]r. The logarithm of PGF is r ln p +

∞∑
i=1

r(1− p)i

i
si, (|s| ≤ 1), then we have

r∑
i=1

rqi

i
< r

r∑
i=1

qi = rq · 1− qr

1− q
<

rq

1− q
, (q = 1− p).

So the NBD is equivalent to SPD with parameters (rq,
rq2

2
, · · · ,

rqi

i
, · · · ). This

reveals the essential properties of NBD. NBD, which is a mixture distribution
of Poisson distribution and logarithmic distribution [18,21], is an important
distribution in automobile insurance.
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2.2. Compound Poisson Sums

W. Feller [8] named that the family of independent and identically distributed

(i.i.d.) non-negative random variables {Xi, i ≥ 1} whose sums YN=
∑N
i=1Xi with

N ∼ P (λt) (Xi is independent of N) is compound Poisson distribution (the accurate
name should be non-negative discrete compound Poisson distribution or SPD). The
PGF of is GX(s)=

∑r
i=0 bis

i, (|s| ≤ 1), by using double conditional expectation of
sYN , we have

E(E(sYN
∣∣N = n))=E([GX(s)]n)=eλ[GX(s)−1]=e

λ
r∑
i=1

bi(s
i−1)

.

SPD have infinitely divisible property via its PGF. A non-negative discrete
distribution is called infinitely divisible for any n > 1, its PGF can be represented
as the nth power of some other PGF. Thus a SPD with PGF eλtΣ

r
i=1αi(s

i−1) can
be represented as the nth power of the other PGF e

λt
n Σri=1αi(s

i−1). The expression
e
λt
n Σri=1αi(s

i−1) is SPD with parameters (α1λt
n , · · · , αrλtn ).

Next, we obtain “compound compound Poisson” sums is also SPD in Theorem
2.2.

Theorem 2.2 The family of non-negative random variables {Xi, i ≥ 1} is i.i.d..
WhenN ∼ SP (α1λt, · · · , αrλt) andXi is independent ofN , “compound compound

Poisson” sums YN=
∑N
i=1Xi is SPD.

Proof. GX(s) =
∑∞
i=0 bis

i, (|s| ≤ 1), using double conditional expectation of sYN ,
we have

PYN (s) = E(sYN ) = EN (E(sYN
∣∣N = n))

= EN ([GX(s)]n)=e
λ

r∑
i=1

αi[G(s)i−1]
.

Noticed that |GX(s)| ≤
∑∞
i=0 bi = 1, hence

λ

r∑
i=1

∣∣∣αi[GX(s)
i − 1]

∣∣∣ ≤ λ r∑
i=1

αi|GX(s)|i + λ ≤ 2λ.

So PYN (s) is absolutely convergent in |s| ≤ 1,

λ

r∑
i=1

αi[G(s)
i − 1] = λ

r∑
i=1

αi(b0 + b1s+ b2s
2 + · · · )i − λ

=

∞∑
i=1

λcis
i −

r∑
j=1

λαj(1− bj0)

where ci are derived from multinomial expand. We don’t need to have the accurate
expression of ci. Let Σrj=1αj(1− b

j
0)=c, then

PYN (s) = e
λ
∞∑
i=1

ci(s
i−1)

,

∞∑
i=1

λci = c.

Noticed that ci > 0 and
∑r
i=1 λci = c < ∞, YN is SPD by using Theorem

2.1.
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In Theorem 2.2, a discrete compound Poisson distribution (or SPD) is a special
case of discrete compound SPD (compound compound Poisson distribution) when
N ∼ P (λt). Theorem 2.2 concludes that “compound · · · compound Poisson
distribution” is SPD. In practice, many claims may be from superimposed events.
That explains why some distributions in non-life insurance are equivalent to SPD.
Besides SPD, other generalized Poisson model have wide applications in non-life
insurance actuarial model and risk model such as mixed Poisson process [2,18], and
doubly stochastic Poisson processes [2].

3. GENERALIZED STUTTERING POISSON DISTRIBU-
TION

In this chapter, general stuttering Poisson is defined by weakening conditions of
Theorem 2.1. Furthermore, we show that any non-negative discrete random variable
X with P{X = 0} > 0.5 obeys generalized SPD.

3.1. Generalized Stuttering Poisson Model

L. Janossy [7] used independent increments, stationary increments and Chapman-
Kolmogoroff equations to construct the system of functional equation

Pi(t+ ∆t) =

i∑
k=0

Pk(∆t)Pi−k(t), (i = 0, 1, · · · ) (2)

Solving (2) from one to one will deduce to (1).
When i = 0, we have P0(t + ∆t) = P0(t)P0(∆t), the solution of P0(t) is

P0(t)=e−λt.
When i = 1, we have P1(t + ∆t) = P0(t)P1(∆t) + P1(t)P0(∆t), the solution is

P1(t) = α1te
−λt.

When i = 2, · · · , by the system of functional equations (2) we have

Pn(t) =

[αnλt+ · · ·+
∑

k1+···+ku+···kn=i,ku∈N
1·k1+···+uku+···+nkn=n

αk11 α
k2
2 · · ·αknn

k1!k2! · · · kn!
(λt)i + · · ·+ αn1 (λt)

n

n!
]e−λt, (3)

where λ ≥ 0, αi ∈ R, n=0, 1, 2, · · · , r. L. Janossy [7] proved (3) by mathematical
induction.

There are no nonnegative restriction in (3), implies

Pi(∆t) = λαi∆t+ o(∆t), (i = 1, 2, · · · )

then we obtain
∑∞
i=1 αi = 1.

Since αi are not necessarily to be nonnegative, we suppose that αi may take
negative value and satisfy

∑∞
i=1 αi = 1 to have a new distribution family.

Definition 3.1 Generalized stuttering Poisson distribution (GSPD): For a
discrete random variable X(P{X = i} = pi, i = 0, 1, 2, · · · ), the form of PGF
is

e
λt
∞∑
i=1

αi(s
i−1)

=

∞∑
i=0

pis
i, (pi ≥ 0, |s| ≤ 1)
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and satisfies λ > 0,
∑∞
i=1 αi = 1.

When αi ≡ 0, if αi ≥ r + 1, we name it rth generalized stuttering Poisson
distribution (GSPD). Denote

ξ(t) ∼ GSP (α1λt, α2λt, · · · )

with parameters (α1λt, α2λt, · · · ) ∈ R∞ (
∑∞
i=1 αi=1 ). It is obvious that SPD is a

subfamily of GSPD.
Theorem 3.1 Any non-negative discrete random variable X(P{X = i} =

pi, i = 0, 1, 2, · · · ) with P{X = 0} > 0.5 obeys GSPD.

Proof. The PGF of X is P (s) =
∞∑
i=0

pis
i (|s| ≤ 1). Let Q(s) =

p1

p0
s +

p2

p0
s2 + · · · ,

expand ln[P (s)] with Taylor series at zero, that is

ln[P (s)] = ln[1 +Q(s)] + ln p0 = ln p0 +

∞∑
i=1

(−1)
i−1

i
Qi(s)

∆
=

∞∑
i=0

bis
i.

Noticed that |Q(s)| ≤ p−1
0 (p1 +p2 + · · · ). If p−1

0 (p1 +p2 + · · · ) < 1, then we have∑∞
i=1 bis

i, which is absolutely convergent in |s| ≤ 1. Solving the inequality, we get
p0 > 0.5. On the other hand

∞∑
i=1

bi
− ln p0

=
ln[P (1)]− ln p0

− ln p0
= 1

judging from Definition 3.1, X obeys GSPD.

3.2. Zero-Inflated Model

The zero-inflated model is a random event containing excess zeros count data in
the unit time [19]. For example, the number of claims to an insurance company is
almost zero, otherwise substantial losses will lead insurance company to bankrupt.
Zero-inflated model has too much count data that Poisson distribution is disable to
forecast. It is obvious that condition in Theorem 3.1 satisfies zero-inflated model
for P{X = 0} > 0.5.

Example 3.1 and Theorem 3.1 show that the probability of zero occurrence is
more than positive occurrences. For example, the cumulant of Bernoulli distribution
P (s) = p+ (1− p)s, (p > 0.5) is

ln[p+ (1− p)s] = − ln p+
1− p
p

s− 1

2
(
1− p
p

)2s2+
1

3
(
1− p
p

)3s3+ · · · .

Let t=1, thus the other form of PDF is P (s)=e− ln pΣ∞i=1[− 1
i ln p ( p−1

p )
i
(si−1)]. The

possibility of counted occurrences at a given instant is

Pi(∆t) =
−1

i

(
p− 1

p

)i
∆t+ o(∆t), (i = 1, 2, · · · )

Intuitive explanation: The possibility of two or more counted occurrences at a
given instant is permitted with negative and positive probability in turn. Have a
“negative probability” in an instant can be considered that demands leave and arrive
alternatively in group or superposition. Leaving and arriving with same probability
can be seen as zero probability.
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3.3. Waiting Time Distributions of Generalized Stuttering Poisson
Process

Akin to the properties and statement of the waiting time distributions of Poisson
process [3], we obtain distribution of the waiting time untill the nth event by two
methods.

Definition 3.2 Generalized stuttering Poisson process ξ(t) satisfies the following
properties:

Property 1: ξ(0) = 0.
Property 2: ξ(t) has independent increments and stationary increments .
Property 3: The number of events ξ(t) in any interval of length t is generalised

stuttering Poisson distributed (SPD is a special case of it).
In Example 3.1, we may consider the number of events ξ(t) in any interval of

length t with P{ξ(t)=0}=p, P{ξ(t)=0}=1 − p (p > 0). The others number of
events do not occur. Or we just consider the number of events ξ(t) obeys SPD. We
denote the time of the first event by T1, and Tn denote the waiting time between the
(n− 1)th event and the nth event. We shall not directly determine the distribution
of the Tn. Another quantity of interest is Wn=Σni=1Tn (n ≥ 1), the waiting time
until the nth event (the arrival time of the nth event).

It is easily seen that the nth event will occur prior to or at time t if and only if
the number of events occurring by time t is at least n. Hence,

FWn = P{Wn ≤ t} = P{N(t) ≥ n} =

∞∑
i=n

Pi(t) = 1−
n−1∑
i=0

Pi(t)

fWn
= F ′Wn

= −
n−1∑
i=0

Pi
′(t) (4)

Next, we deduce Pi
′(t) from (2). Substitute Pk(∆t)=λαk∆t+o(∆t) (k=1, 2, · · · )

and P0(∆t)=1− λ∆t+ o(∆t) to (2), then

Pi(t+∆t) = [1−λ∆t+o(∆t)]Pi(t)+[λα1∆t+o(∆t)]Pi−1(t)+· · ·+[λαi∆t+o(∆t)]P0(t)

Rewrite this relation in the form

Pi(t+ ∆t)− Pi(t)
∆t

= λ[−Pi(t) + α1Pi−1(t) + · · ·+ αi−1P1(t) + αiP0(t)] + o(∆t)

As ∆t→ 0, the limit of the left side exsists, yields

Pi
′(t) = λ[−Pi(t) + α1Pi−1(t) + · · ·+ αi−1P1(t) + αiP0(t)].

Set Sn=Σni=0Pi(t). Substituting Pi
′(t) to (4), then we have

fWn =

n−1∑
i=0

λPi(t)−
n−1∑
i=1

λ[α1Pi−1(t) + α2Pi−2(t) + · · ·+ αiP0(t)]

= λ[Sn−1 −
n−1∑
i=1

αiSn−1−i]

18
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A special case: When α1 = 1, Wn obeys Erlang distribution, that is

fWn
= λ(Sn−1 − α1Sn−2) = λPn−1(t) = λe−λt

(λt)
n−1

(n− 1)!

In the following theorem, fWn
is obtained by PGF of the GSDP’s tailed

distribution. It yields to distribution of the waiting time untill the nth event by
higher-order partial and mixed derivatives.

Theorem 3.2 Set the tailed distribution of GSPD Qn(t)=Σ∞i=nPi(t) (n ≥ 1).

Let P (s, t)=Σ∞n=0Pn(t)si=e
λt
∞∑
i=1

ai(s
i−1)

|s| ≤ 1. Write F (s, t) =
∞∑
n=1

Qn(t)sn |s| ≤

1, the tailed probatility generating function of Qn(t). Then

F (s, t) =
s

1− s
[1− e

λt
∞∑
i=1

ai(s
i−1)

],

hence

fWn
=

1

n!
·
∂n+1

∂sn∂t

(
s

1− s
[1− e

λt
∞∑
i=1

ai(s
i−1)

]

)∣∣∣∣∣
s=0

.

Proof. The tailed probatility generating function of Qn(t) is

F (s, t) =

∞∑
n=1

Qn(t)sn

= [P1(t) + P2(t) + · · · ]s+ [P2(t) + P3(t) + · · · ]s2 + · · ·

sF (s, t) = [P1(t) + P2(t) + · · · ]s2 + [P2(t) + P3(t) + · · · ]s3 + · · · .

Then, we have

F (s, t)− sF (s, t) = [1− P0(t)]s− P1(t)s2 − P2(t)s3 − · · · = s[1− P (s, t)]

⇒ F (s, t) =
s

1− s
[1− P (s, t)] =

s

1− s
[1− e

λt
∞∑
i=1

ai(s
i−1)

].

Since
∂F (s, t)

∂t
=
∞∑
n=1

Qn
′(t)sn |s| ≤ 1, hence

fWn
= Qi

′(t) =
1

n!
· ∂

n

∂sn

(
∂F (s, t)

∂t

)∣∣∣∣
s=0

=
1

n!
· ∂

n+1

∂sn∂t

(
s

1− s
[1− e

λt
∞∑
i=1

ai(s
i−1)

]

)∣∣∣∣∣
s=0
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4. STATISTIC OF GENERALIZED STUTTERING POIS-
SON DISTRIBUTION

Cumulants κn, moments mn and central moments cn of GSPD are deduced from
probability generating function and moment generating function. It can be used in
SPD too.

A discrete random variableX has PGF P (s)=
∑∞
i=0 bis

i (|s| < 1), where moment
generating function is MX(s)=P (es). Expanding esX with Taylor series at zero, we
have

MX(s) = E(

∞∑
n=0

(sX)
n

n!
) =

∞∑
n=0

EXn

n!
sn

∆
=

∞∑
n=0

mk

n!
sn, (|s| ≤ 1),

where mk is kth moment (k=0, 1, 2, · · · ).

4.1. Cumulants of Generalized Stuttering Poisson Distribution

Definition 4.1 Cumulants generating function of a random variable is

gX(s)
∆
= ln(MX(s)) =

∞∑
n=0

κn
sn

n!
, (|s| ≤ 1)

where coefficients κn (n = 0, 1, 2, · · · ) is nth cumulants. It is explicit that κ0 = 0.
Theorem 4.1 ξ(t) ∼ GSP (α1λt, · · · , αrλt), then the nth cumulant of ξ(t) is

κn =

r∑
i=1

αiλti
n. (5)

Proof. Cumulants generating function of GSPD is gX(s) =
∑r
i=1 αiλt(e

is − 1).
Expanding esX with Taylor series at zero, that is

r∑
i=1

αiλt(e
is − 1)

=− λt+ λt[α1(1 +
∞∑
j=1

sj

j!
) + α2(1 +

∞∑
j=1

(2s)
j

j!
) + · · ·+ αr(1 +

∞∑
j=1

(rs)
j

j!
)]

=(

r∑
i=1

αiλti)s+ (

r∑
i=1

αiλti
2)
s2

2!
+ · · ·+ (

r∑
i=1

αiλti
l)
sl

l!
+ · · · .

Comparing coefficients of tn, we have κn =
∑r
i=1 αiλti

n. When r → ∞, κn may
divergence.

4.2. Moments of Generalized Stuttering Poisson Distribution

The moments of generalized stuttering Poisson distribution are deduced from
cumulants.

Theorem 4.2 If ξ(t) ∼ GSP (α1λt, · · · , αrλt), then the recursion formula of
nth moments mn is

mn+1 =

n∑
j=0

(
n
r

)
κn+1−jmj , (κ1 = m1 =

r∑
i=1

αiλti). (6)

20



Zhang, H., Chu, L., & Diao, Y./Studies in Mathematical Sciences, 5 (1), 2012

Proof. Expanding ln[MX(s)] with Taylor series at zero, that is

ln[MX(s)] = ln(1 +

∞∑
n=1

mn

n!
sn)

=

∞∑
n=1

mn

n!
sn − 1

2
(

∞∑
n=1

mn

n!
sn)2 + · · ·+ (−1)

i−1

i
(

∞∑
n=1

mn

n!
sn)i + · · ·

= m1s+
m2 −m2

1

2!
s2 +

m3 − 3m1m2 + 2m3
1

3!
s3

+
m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1

4!
s4 + · · · .

By the definition of cumulant, we have

κ1 = m1 = EX =

r∑
i=1

αiλti⇒ m1 =

r∑
i=1

αiλti,

κ2 = m2 −m2
1 = E(X − EX)2 =

r∑
i=1

αiλti
2 ⇒ m2 =

r∑
i=1

αiλti
2 + (

r∑
i=1

αiλti)
2,

κ3 = m3− 3m1m2 + 2m3
1 = E(X − EX)3=

r∑
i=1

αiλti
3 ⇒ m3 = κ3 + 3m1m2− 2m3

1,

κ4 = m4− 4m1m3− 3m2
2 + 12m2

1m2− 6m4
1 = E(X − EX)4− 3[E(X − EX)2]2, · · ·

By taking the derivative of both side of MX(s)=egX(s) again and again with
respect to s, using Leibniz formula we obtain

M
(n+1)
X (s) =

n∑
i=0

(
n
i

)[
g

(1)
X (s)

](n−i)
M

(i)
X (s). (7)

Substitute s = 0 to the nth derivatives of gX(s) and MX(s), hence

M
(n)
X (s)

∣∣∣
s=0

= mn, g
(n)
X (t)

∣∣∣
s=0

= κn.

Substituting cumulants and moments into (6), we have

mn+1 =

n∑
j=1

(
n
j

)
κn+1−jmj =

n∑
j=1

(
n
i

)
(

r∑
i=1

αiλti
n+1−j)mj . (8)

The relationship between cumulants and moment is

κn = mn −
n−1∑
j=1

(
n− 1
i

)
κn−jmj , (κ1 = m1) (9)

∆
= f(m1,m2, · · · ,mn). (10)
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Remark Higher cumulants (n ≥ 4) are different to central moment. Arguing

from κn =
dn

dtn
ln[MX(s)]

∣∣∣∣∣
s=0

and Faà Di Bruno formula, it can deduce to κn too.

Example 4.2 An alternative approach to compute the mean and variance of
Bernoulli distribution

κn =

∞∑
i=1

αiλi
n =

∞∑
i=1

(1− p)i

−ipi ln p
(− ln p)in =

∞∑
i=1

(
1− p
p

)
i

in−1

⇒EX=
∞∑
i=1

(
1− p
p

)
i

=1− p, DX =
∞∑
i=1

i(
1− p
p

)
i

= p− p2.

4.3. Central Moments of Generalized Stuttering Poisson Distribution

The moments of generalized stuttering Poisson distribution are deduced from
cumulants. Expanding esX with Taylor series at zero, we have

MX−EX(s) = E(

∞∑
n=0

(s(X − EX))
n

n!
) =

∞∑
n=0

E(X − EX)n

n!
sn

∆
=

∞∑
n=0

ck
n!
sn, (|s| ≤ 1),

where ck is kth central moment (k = 0, 1, 2, · · · ).
Theorem 4.3 If ξ(t) ∼ GSP (α1λt, · · · , αrλt), then the recursion formula of

nth moments cn is

cn+1 =

n∑
j=0

(
n
i

)
κ∗n+1−jcj ,

(
c0 = 1, c1 = 1, κ∗n =

{
κn, n 6= 1
0, n = 1

)
(11)

Proof. Expanding ln[MX−EX(s)] with Taylor series at zero and comparing the
coefficients of cumulant generating function, we obtain

κ∗1 = 0, κ∗2 =

r∑
i=1

αiλti
2,

κ∗3 =

r∑
i=1

αiλti
3, κ∗4 =

r∑
i=1

αiλti
4 + 3(

r∑
i=1

αiλti
2)2, · · ·

Since

M
(n+1)
X−EX(s) =

n∑
i=0

(
n
i

)
[g

(1)
X−EX(s)]

(n−i)
M

(i)
X−EX(s),

Substitute s = 0 to the nth derivatives of gX−EX(s) and MX−EX(s), hence

M
(n)
X−EX(s)

∣∣∣
s=0

= cn, g
(n)
X−EX(s)

∣∣∣
s=0

= κ∗n.

Similarly to the proof in Theorem 4.2, displacing κn with κ∗n, we have (11).
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5. CUMULANT ESTIMATION OF GENERALIZED STUT-
TERING POISSON DISTRIBUTION

5.1. Cumulant Estimation

Y.C. Patel [20] gave moment estimator of the parameters of Hermite distribution.
Y.C. Patel [4] estimated the parameters of the triple and quadruple stuttering
Poisson distributions with maximum likelihood estimation moment estimation, and
mixed moment estimation of the parameter. Use sample moments m̂1 and central
moments ĉ2 and ĉ3, let λt=1, then m̂1

ĉ2
ĉ3

 ∆
=

 1 2 3
1 4 9
1 8 27

 α̂1

α̂2

α̂3


⇒

 α̂1

α̂2

α̂3

 =

 3 −5
2

1
2−3

2 2 −1
2

1
3

−1
2

1
6

 m̂1

ĉ2
ĉ3

 ,

(12)

where Eα̂i = αi +O( 1
n ) , (i = 1, 2, 3).

When n ≥ 4, from the computing in the proof of Theorem 4.2, higher cumulants
are different to central moment or moment. Central moment or moment are
nonlinear combination of αi(i = 1, 2, · · · ). Thus it is difficult to estimate the
parameters by using central moment or moment estimation.

Theorem 4.1 implies that κn is linear combination of αi(i = 1, 2, · · · ). Therefore,
firstly, we use sample moment κn to calculate in (5). From (5), when r < ∞, κn
is convergence. Secondly, by solving the following system of linear equations of
α̂i(i = 1, 2, · · · , n) by means of 0th to nth cumulants formula

κ̂0

κ̂1

...
κ̂n

 ∆
=


1 1 · · · 1
0 1 · · · n
...

...
. . .

...
0 1n · · · nn



−1
α̂1

...
α̂n

 , (13)

where the coefficients matrix in (13) is invertible Vandermonde matrix. By solving
the linear system equation we have

α̂i =

n∑
j=1

bij κ̂j
∆
= Ti(ξ1, ξ2, · · · , ξl), (i = 1, 2, · · · , n) (14)

Thus (14) is the cumulant estimation of GSPD, Ti(ξ1, ξ2, · · · , ξl) is a statistic of
the samples ξi (i=1, 2, · · · , l).

5.2. Consistent Estimation

Assuming the samples to the power of n, ξni (i=1, 2, · · · , l) are i.i.d.. Let samples
nth moment Aln= 1

lΣ
l
i=1ξ

n
i , arguing from Khintchine’s law of large numbers, for all

ε > 0, n=0, 1, 2 · · · , we obtain

lim
l→∞

P{|Aln −mn| ≥ ε} = 0
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From the relationship between cumulants and moment (4), f(x1, x2, · · · , xn) is
continuous of several variables from (9),(10), then

κn = f(m1,m2 · · · ,mn), κ̂ln = f(Al1, Al2 · · · , Aln).

It implies

lim
l→∞

P{|κn − κ̂ln| ≥ ε} = 0 (15)

by the convergence in probability properties of transformation [21]. Using the linear
relation in (14), we have

{|αi − α̂i| ≥ ε} = {
n∑
i=1

bij |κi − κ̂li| ≥ ε} ⊂
n⋃
i=1

{bij |κi − κ̂li| ≥
ε

n
}

then

lim
l→∞

P{|αi − α̂i| ≥ ε} ≤
n∑
i=1

lim
l→∞

P{|κi − κ̂li| ≥
ε

bijn
= ε′} = 0.

Thus we prove cumulant estimation of αi (i = 1, 2, · · · ) is consistent estimator.

6. APPLICATIONS

R.M. Adelson [1] put forward the recursion formula of SPD’s probability density
function by using Leibniz formula

Pj+1(t) =
1

j + 1
[α1λPj(t) + 2α2λPj−1(t) + · · ·+ (j + 1)αj+1λP0(t)],

P0(t) = e−λt,

(16)

(16) avoids tediously computing the sum of much index in (1) by recursion relation.
There are no nonnegative restriction to αi(i = 1, 2, · · · ), so (16) can be used in
GSPD.

Now we use SPD to fit auto insurance claims data [22] (the car insurance claims
data from the following Table 1), and then we compare the goodness of fit with
some other distributions.

From data in Table 1, total insurance policies are n=106974. The probability of
zero claim policies is far greater than 0.5. Obviously it is zero-inflated data. The
number of the insurance policy of ith is xj (j=1, 2, · · · , 106974), so the mean value
and the 2th and the 3th central moment of the insurance policy claims rate is

m1 = 0.1010806364, c2 = 0.1074468102, c3 = 0.1216468798.

According to (9) and (12), we have

α̂1 = 0.97255, α̂2 = 0.02496, α̂3 = 0.00249.

Thus we can infer that the probability of claims of customer who buy two copies
of the same insurance is only 2.496%, and three copies of the same insurance is only
0.249%. Employing recursion relation (16) and (9), we obtain p̂i. And then we
figure out np̂i. Analogously, consider quadruple SPD fitting, in this case we have

α̃1 = 0.97151, α̃2 = 0.02703, α̃3 = 0.00112, α̃4= 0.00034.
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In Table 1, we assume the data come from Poisson distribution (PD), triple
SPD (compute by recursion formula (16)), quadruple SPD (compute by recursion
formula (16)), negative binomial distribution, respectively, and then estimate the
probability of different numbers of claims.

Table 1
The Comparison of Auto Insurance Claims Data of
Different Distributions Fitting Effect (Moment Estimation
or Cumulant Estimation)

i Methods 0 1 2 3 4 i > 4

vi Observed frequency 96978 9240 704 43 9 0

np̂i Estimate by PD 96689.5 9773.5 494.5 16.6 0.4 0

np̂i Estimate by triple SPD 96974.1 9256.0 679.2 60.4 4.0 0.3

np̂i Estimate by quadruple SPD 96977.3 9243.2 697.6 49.1 6.1 0.7

np̂i Estimate by NPD 96985.4 9222.5 711.7 50.7 3.5 0.2

Constructing test statistical: η =
4∑
i=0

v2
i

np̂i
− n, by calculating, we get

ηPD = 345.1250, η3−SPD = 12.5786,

η4−SPD = 2.8963, ηNBD = 10.1294.

From Pearson’s chi-squared test theory, in one hand, χ2
4(0.01) = 12.277, given

significant level of 0.1 we accept that claims data obey quadruple SPD or negative
binomial distribution. In the other hand, χ2

4(0.5) = 3.357, given significant
level of 0.5 we accept that claims data obey quadruple SPD fitting. It is thus
clear that quadruple SPD fitting effect is better than that of negative binomial
distribution fitting effect, and NBD is better than triple SPD. The goodness of
Poisson distribution model is worst in those four distributions.
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