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The numerical investigation of these solitons: Eqs. (3.1) and (3.2) can be solved through the split-step 
beam propagation method (BPM). The integration of the partial differential equations (3) with respect to the 
propagation parameter z is similar to the initial-input propagation along the coordinate z. This input can be 
considered as the static w(x) and v(x) solutions to (4.1) and (4.2), which was calculated for different values 
of a in this paper. By little perturbation, we consider these solutions as the initial conditions of (3) and inves-
tigate their progress along the axis z. The studies suggest that the wave amplitudes of w(x) and v(x) tend to 
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Figure. 5
Analytical Solutions to (24), (26), and (32) and 
Numerical Solutions at =6

Figure. 6
Analytical Solutions to (24), (26), and (32) and 
Numerical Solutions at =10
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Figure. 7
Analytical Solutions to (24), (26), and (32) and 
Numerical Solutions at =13

Figure. 8
Analytical Solutions to (24), (26), and (32) and 
Numerical Solutions at =15
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Figure. 9
Analytical Solutions to (24), (26), and (32) and 
Numerical Solutions at =20
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their initial non-perturbational values by inputting perturbation, which results in soliton stability.
Both the cubic ((3)) and ((2)) quadratic non-linear effects can be present in the medium. This matter 

arises from the situation that there is always a little(3) in a quadratic nonlinear medium. These effects affect 
the dynamics of wave nonlinear propagation.

The spatial bright solitons ( 1r s= = + ) were studied in this paper. The dark ( 1r s= = − ) or double 

(( 1, 1r s= + = − ), ( 1, 1r s= − = + )) solitons can be studied in the future.
Given that considering SHG of type I led to two coupled motion equations, SHG of type II can be em-

ployed to investigate three coupled equations.
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