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Abstract
We obtain that the set of indices of convergence for n by n reducible tournament matrices.
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1. INTRODUCTION

A Boolean matrix is a matrix over the binary Boolean algebra {0, 1}, where the (Boolean)addition and
(Boolean) multiplication in {0, 1} are defined as a + b = max{a, b}, ab = min{a, b}(we assume 0 < 1).

Let Bn denote the set of all n by n matrices over the Boolean algebra {0, 1}.Then Bn forms a finite
multiplicative semigroup of order 2n2

. Let B ∈ Bn. The sequence of powers B0 = I, B1, B2, · · · , clearly
forms a finite sub-semigroup of Bn, and then there exists a least nonnegative integer k = k(B) such that
Bk = Bk+t for some t ≥ 1, and there exists a least positive integer p = p(B) such that Bk = Bk+p. The
integer k = k(B) and p = p(B) are called the index of convergence of B and the period of convergence of B
respectively or simply the ”index”and ”period” of B.

For B ∈ Bn, if there is a permutation matrix P such that PBPT = A, then we say B is permutation similar
to a matrix A (written B ∼ A).

A matrix B ∈ Bn is reducible if B ∼
(

B1 0
C B2

)
, where B1 and B2 are square(non-vacuous), and B is

irreducible if it is not reducible.
A Boolean matrix B ∈ Bn is primitive if there is a nonnegative integer k such that Bk = J, the all-

ones matrix. The least such k is called the exponent of B, denoted by γ(B). It is easy to verify that if
B is a primitive matrix, then k(B) = γ(B). Hence, the concept of index of a Boolean matrix is in fact a
generalization of the concept of the primitive exponent of a primitive matrix.

It is well known that B is primitive if and only if B is irreducible and p(B) = 1.
A matrix A = [ai j] ∈ Bn is called tournament matrix if aii = 0(i = 1, 2, . . . , n) and ai j + a ji = 1(1 ≤ i <

j ≤ n). Let Tn denote the set of all n × n tournament matrices. Notice that a matrix Tn ∈ Tn satisfies the
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equation
An + AT

n = Jn − In

where Jn is the matrix of all 1′s and In is the identity matrix.
Our main interests are in the study of the index k(B). In particular, we are interested in the study of the

index set (set of the indices) for various classes of n by n Boolean matrices. The index (or exponent)set
problem of primitive Boolean matrices is already settled in [1]. In this paper we give the index set of
reducible tournament matrices.

2. PRELIMINARIES

The notation and terminology used in this paper will basically follow those in [1]. For convenience of the
reader, we will include here the necessary definitions and basic results in [3,5,6].

We use the following notations.

T̄n =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
1 0 0 1 · · · 0
...

. . .
. . .

. . .
. . .

...

1 · · · 1 0 0 1
1 · · · · · · 1 0 0


n×n

(n ≥ 3), Tl =



0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

1 · · · 1 0


l×l

,

T3m =



T̄3 0 · · · 0
J T̄3 · · · 0
...

. . .
. . .

...

J · · · J T̄3


, I3m =



I3 0 · · · 0
J I3 · · · 0
...

. . .
. . .

...

J · · · J I3


,

where J is the matrix of all 1′s, I3 is the identity matrix of order 3.
Lemma 2.1 ([2]): Let Tn ∈ Tn. Then

Tn ∼



A1 0 0 · · · 0
J A2 0 · · · 0
J J A3 · · · 0
...

...
...

. . .
...

J J J · · · Ak



,

where all the blocks J below the diagonal are matrices of 1’s, and the diagonal blocks A1, · · · , Ak are
irreducible components of Tn. Let Ai be ni by ni matrix, 1 ≤ i ≤ k, 1 ≤ ni ≤ n. Then k and ni are uniquely
determined by Tn.

It is obvious that the irreducible tournament matrix of order 1 is zero matrix of order 1, the irreducible
tournament matrix of order 2 is not exists, and the irreducible tournament matrix of order 3 is isomorphic to
T̄3. Hence, in Lemma2.1, the diagonal blocks Ai is zero matrix of order 1, or T̄3, or irreducible tournament
matrix of order mi(4 ≤ mi ≤ n). Let Ai , (0)1×1 (if there exists), Ai+1 = Ai+2 = . . . = Ai+li = (0)1×1, Ai+li+1 ,
(0)1×1(if there exists). Then



Ai+1 0 · · · 0
J Ai+2 · · · 0
...

...
. . .

...

J J · · · Ai+li


= Tli =



0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

1 · · · 1 0


li×li
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Let A j , T̄3 (if there exists), A j+1 = A j+2 = . . . = A j+qi = T̄3, A j+qi+1 , T̄3(if there exists). Then



A j+1 0 · · · 0
J A j+2 · · · 0
...

...
. . .

...

J J · · · A j+qi


= T3qi =



T̄3 0 · · · 0
J T̄3 · · · 0
...

. . .
. . .

J · · · J T̄3


3qi×3qi

.

We have
Lemma 2.2: Let Tn ∈ Tn. Then

Tn ∼



B1 0 0 · · · 0
J B2 0 · · · 0
J J B3 · · · 0
...

...
...

. . .
...

J J J · · · Bg



,

where all the blocks J below the diagonal are matrices of 1’s, and the diagonal blocks Bi is T3qi , or Tli , or
irreducible Tmi ∈ Tmi , 4 ≤ mi ≤ n, 1 ≤ i ≤ g, 0 ≤ 3qi, li ≤ n, and qi, li,mi, g are uniquely determined by Tn.

Clearly, p(Tli ) = p(Tmi ) = 1, p(T3qi ) = 3 in Lemma2.2. Hence we have
Lemma 2.3: Let Tn ∈ Tn. Then p(Tn) = 1 or 3.
Lemma 2.4 ([3]): If Tn ∈ Tn and n ≥ 4. Then Tn is primitive if and only if Tn is irreducible.

It is obvious that 3 × 3 tournament matrix is not primitive, the primitive exponent of 4 × 4 irreducible
tournament matrix is 9. For n > 4, we have
Lemma 2.5 ([3]): If Tn ∈ Tn and n ≥ 5, then γ(Tn) ≤ n + 2.
Lemma 2.6 ([5]): Let n ≥ 5 ,then γ(T̄n) = n + 2.
Lemma 2.7([5]): If n ≥ 5,Tn ∈ Tn is irreducible. Then γ(Tn) = n + 2 if and only if Tn is isomorphic
to T̄n.
Lemma 2.8 ([3]): If 3 ≤ e ≤ n + 2 and n ≥ 6, then there exists an irreducible Tn ∈ Tn such that γ(Tn) = e.

For n by n tournament matrices, the set of primitive exponents is {3, 4, · · · , n+2}(n ≥ 6) in [3]. We have
that the set of indices of convergence for n × n reducible tournament matrices with period p.

3. THE SET OF INDICES OF CONVERGENCE FOR REDUCIBLE
TOURNAMENT MATRICES

We use the following notations.
TIn: irreducible matrices in Tn,
TRn: reducible matrices in Tn,
TI(n, p): matrices with period p in TIn,
TR(n, p): matrices with period p in TRn,
IT I(n, p): indices of convergence of matrices in TI(n, p),
ITR(n, p): indices of convergence of matrices in TR(n, p).
ITR(n): indices of convergence of matrices in TRn.

Theorem 3.1: Let Tn ∈ TR(n, p) and n ≥ 10. Then k(Tn) ≤ n − p + 2.
Proof: Let Tn ∈ TR(n, p). It is obvious that k(Tn) = max1≤i≤g{k(Bi)}
=max1≤i≤g{li, k(Bmi)}=max1≤i≤g{li,mi + 2} in Lemma 2.2, where n ≥ 10 and 4 ≤ mi < n. By Lemma 2.3,
p(Tn) = 1 or 3.

If p(Tn) = 1. There does not exist Bi that is T3qi , 1 ≤ i ≤ g, 1 ≤ 3qi, in Lemma 2.2. Hence k(Tn) =

max1≤i≤g{li,mi + 2} ≤ n − 1 + 2 = n − p + 2.
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If p(Tn) = 3. There exists Bi that is T3qi , 1 ≤ i ≤ g, 1 ≤ 3qi, in Lemma 2.2. Hence k(Tn) =

max1≤i≤g{li,mi + 2} ≤ n − 3 + 2 = n − p + 2.

Let T (1)
n =

(
0 0
J T̄n−1

)
and T (2)

n =

(
T̄3 0
J T̄n−3

)
. Then T (1)

n ∈ TR(n, 1) and T (2)
n ∈ TR(n, 3). By

Lemma2.6, k(T (1)
n ) = k(T̄n−1) = n − 1 + 2 = n + 1 and k(T (2)

n ) = k(T̄n−3) = n − 3 + 2 = n − 1. where n ≥ 10.
We complete the proof.
Theorem 3.2: Let n ≥ 2. Then

ITR(n, 1) =



{n} n = 2, 3, 4,
{5, 9} n = 5,
{4, 6, 7, 9} n = 6,

[3, 9] n = 7,
[3, n + 1] n ≥ 8.

where [3, n + 1] = {3, 4, · · · , n + 1}.
Proof: Note that Tl ∈ TR(n, 1) and k(Tl) = l(l ≥ 1), hence n(≥ 2) ∈ ITR(n, 1). It is easily verified that

IT I(5, 1) = {4, 6, 7}. Now let T̃5 =

(
0 0
J T4

)
, where T4 ∈ TI(4, 1), then T̃5 ∈ TR(5, 1) and k(T̃5) =

k(T4) = 9.

Let T̃6 =

(
0 0
J T5

)
, where T5 ∈ TI(5, 1), then T̃6 ∈ TR(6, 1) and k(T̃6) = k(T5). Let T̂6 =

(
T2 0
J T4

)
,

where T4 ∈ TI(4, 1), then T̂6 ∈ TR(6, 1) and k(T̂6) = k(T4). Hence ITR(6, 1) = {4, 6, 7, 9}. By Lemma 2.8,
it is obvious that ITR(7, 1) = [3, 9].

For n ≥ 8, let T̃n =

(
0 0
J T̄n−1

)
, where T̄n−1 ∈ TI(n − 1, 1), then T̃n ∈ TR(n, 1) and k(T̃n) = k(T̄n−1).

By Lemma 2.8, ITR(n, 1) = [3, n + 1]. We complete the proof.
Theorem 3.3: Let n ≥ 4. Then

ITR(n, 3) =



{1} n = 4,
{1, 2} n = 5,
{0, 2, 3} n = 6,
{1, 2, 4, 9} n = 7,

{2, 3, 4, 5, 6, 7, 9} n = 8,
[0, 9] n = 9,

[0, n − 1] n > 10 and 3 | n,
[1, n − 1] n ≥ 10 and 3 - n.

where [0, n − 1] = {0, 1, 2, 3, · · · , n − 1}.
Proof: Note that k(T3qi ) = 0(3qi > 0), hence 0 ∈ ITR(n, 3), where n ≥ 3 and 3 | n.

Let T̃4 =

(
0 0
J T̄3

)
, then k(T̃4) = 1 ∈ ITR(4, 3).

Let T̃5 =

(
T2 0
J T̄3

)
, then k(T̃5) = 2 ∈ ITR(5, 3) and let T̂5 =


0 0 0
J T̄3 0
J J 0

, then k(T̂5) = 1 ∈

ITR(5, 3).

Let T̃6 =

(
T3 0
J T̄3

)
, then k(T̃6) = 3 ∈ ITR(6, 3) and let T̂6 =


T2 0 0
J T̄3 0
J J 0

, then k(T̂6) = 2 ∈

ITR(6, 3). It is easy to see that ITR(7, 3) = {1, 2, 4, 9}, ITR(8, 3) = {2, 3, 4, 5, 6, 7, 9} and ITR(9, 3) = [0, 9].
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Suppose n ≥ 10. Let T̃n =

(
T3 0
J Tn−3

)
, where Tn−3 ∈ TI(n − 3, 1), by Lemma 2.8, T̃n ∈ TR(n, 3) and

k(T̃n) = k(T̃n−3) ∈ [3, n − 1].
If n = 3m. Let

T̃n =



T1 0 0 0 0 0
J T̄3 0 0 0 0
J J T1 0 0 0
J J J T̄3 0 0
J J J J T1 0
J J J J J T3(m−3)



,

and

T̂n =



T1 0 0 0
J T̄3 0 0
J J T2 0
J J J T3(m−2)


,

then k(T̃n) = 1, and k(T̂n) = 2.

If n = 3m + 1. Let T̃n =

(
T1 0
J T3m

)
, and

T̂n =



T2 0 0 0
J T̄3 0 0
J J T2 0
J J J T3(m−2)


,

then k(T̃n) = 1, and k(T̂n) = 2.

If n = 3m + 2. Let T̃n =



T1 0 0 0
J T̄3 0 0
J J T1 0
J J J T3(m−1)


, and T̂n =

(
T2 0
J T3m

)
, then k(T̃n) = 1, and

k(T̂n) = 2. Hence If n ≥ 10, then

ITR(n, 3) =

{
[0, n − 1] n > 10 and 3 | n,
[1, n − 1] n ≥ 10 and 3 - n.

We complete the proof.
By Theorem 3.2 and Theorem 3.3, we have

Corollary 3.4 Let n ≥ 8. Then

ITR(n) =

{
[0, n + 1] n > 10 and 3 | n,
[1, n + 1] n ≥ 10 and 3 - n.
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