On the Set of Indices of Convergence for Reducible Tournament Matrices

CHEN Xiaogen ${ }^{[\mathrm{ab]}, *}$
${ }^{[a]}$ School of Information Science and Technology, Zhanjiang Normal University Zhanjiang 524048, People's Republic of China. *Corresponding author.
Address: School of Information Science and Technology, Zhanjiang Normal University Zhanjiang 524048, People's Republic of China.
Supported by Guangdong Provinial Natural Science Foundation of China(No:9151027501000039)
Received 20 October, 2011; accepted 10 January, 2012

Abstract

We obtain that the set of indices of convergence for n by n reducible tournament matrices.

\section*{Key words}

Boolean matrix; Reducible tournament matrix; Primitive exponent; Convergent index

CHEN Xiaogen (2012). On the Set of Indices of Convergence for Reducible Tournament Matrices. Studies in Mathematical Sciences, 4(2), 48-53. Available from: URL: http://www.cscanada.net/index.php/sms/article/view/j.sms. 1923845220120402.2001 DOI: http://dx.doi.org/10.3968/j.sms. 1923845220120402.2001

1. INTRODUCTION

A Boolean matrix is a matrix over the binary Boolean algebra $\{0,1\}$, where the (Boolean)addition and (Boolean) multiplication in $\{0,1\}$ are defined as $a+b=\max \{a, b\}, a b=\min \{a, b\}$ (we assume $0<1$).

Let \mathfrak{B}_{n} denote the set of all n by n matrices over the Boolean algebra $\{0,1\}$. Then \mathfrak{B}_{n} forms a finite multiplicative semigroup of order $2^{n^{2}}$. Let $B \in \mathfrak{B}_{n}$. The sequence of powers $B^{0}=I, B^{1}, B^{2}, \cdots$, clearly forms a finite sub-semigroup of \mathfrak{B}_{n}, and then there exists a least nonnegative integer $k=k(B)$ such that $B^{k}=B^{k+t}$ for some $t \geq 1$, and there exists a least positive integer $p=p(B)$ such that $B^{k}=B^{k+p}$. The integer $k=k(B)$ and $p=p(B)$ are called the index of convergence of B and the period of convergence of B respectively or simply the "index" and "period" of B.

For $B \in \mathfrak{B}_{n}$, if there is a permutation matrix P such that $P B P^{T}=A$, then we say B is permutation similar to a matrix A (written $B \sim A$).

A matrix $B \in \mathfrak{B}_{n}$ is reducible if $B \sim\left(\begin{array}{cc}B_{1} & 0 \\ C & B_{2}\end{array}\right)$, where B_{1} and B_{2} are square(non-vacuous), and B is irreducible if it is not reducible.

A Boolean matrix $B \in \mathfrak{B}_{n}$ is primitive if there is a nonnegative integer k such that $B^{k}=J$, the allones matrix. The least such k is called the exponent of B, denoted by $\gamma(B)$. It is easy to verify that if B is a primitive matrix, then $k(B)=\gamma(B)$. Hence, the concept of index of a Boolean matrix is in fact a generalization of the concept of the primitive exponent of a primitive matrix.

It is well known that B is primitive if and only if B is irreducible and $p(B)=1$.
A matrix $A=\left[a_{i j}\right] \in \mathfrak{B}_{n}$ is called tournament matrix if $a_{i i}=0(i=1,2, \ldots, n)$ and $a_{i j}+a_{j i}=1(1 \leq i<$ $j \leq n$). Let \mathfrak{I}_{n} denote the set of all $n \times n$ tournament matrices. Notice that a matrix $T_{n} \in \mathfrak{I}_{n}$ satisfies the
equation

$$
A_{n}+A_{n}^{T}=J_{n}-I_{n}
$$

where J_{n} is the matrix of all 1 's and I_{n} is the identity matrix.
Our main interests are in the study of the index $k(B)$. In particular, we are interested in the study of the index set (set of the indices) for various classes of n by n Boolean matrices. The index (or exponent)set problem of primitive Boolean matrices is already settled in [1]. In this paper we give the index set of reducible tournament matrices.

2. PRELIMINARIES

The notation and terminology used in this paper will basically follow those in [1]. For convenience of the reader, we will include here the necessary definitions and basic results in [3,5,6].

We use the following notations.

$$
\begin{gathered}
\bar{T}_{n}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 0 & 0 & 1 \\
1 & \cdots & \cdots & 1 & 0 & 0
\end{array}\right)_{n \times n} \quad(n \geq 3), \quad \mathbb{T}_{l}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 0
\end{array}\right)_{l \times l}, \\
\mathcal{T}_{3 m}=\left(\begin{array}{cccc}
\bar{T}_{3} & 0 & \cdots & 0 \\
J & \bar{T}_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
J & \cdots & J & \bar{T}_{3}
\end{array}\right), \quad I_{3 m}=\left(\begin{array}{cccc}
I_{3} & 0 & \cdots & 0 \\
J & I_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
J & \cdots & J & I_{3}
\end{array}\right),
\end{gathered}
$$

where J is the matrix of all 1 's, I_{3} is the identity matrix of order 3 .
Lemma 2.1 ([2]): Let $T_{n} \in \mathfrak{I}_{n}$. Then

$$
T_{n} \sim\left(\begin{array}{ccccc}
A_{1} & 0 & 0 & \cdots & 0 \\
J & A_{2} & 0 & \cdots & 0 \\
J & J & A_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
J & J & J & \cdots & A_{k}
\end{array}\right),
$$

where all the blocks J below the diagonal are matrices of 1 's, and the diagonal blocks A_{1}, \cdots, A_{k} are irreducible components of T_{n}. Let A_{i} be n_{i} by n_{i} matrix, $1 \leq i \leq k, 1 \leq n_{i} \leq n$. Then k and n_{i} are uniquely determined by T_{n}.

It is obvious that the irreducible tournament matrix of order 1 is zero matrix of order 1 , the irreducible tournament matrix of order 2 is not exists, and the irreducible tournament matrix of order 3 is isomorphic to \bar{T}_{3}. Hence, in Lemma2.1, the diagonal blocks A_{i} is zero matrix of order 1, or \bar{T}_{3}, or irreducible tournament matrix of order $m_{i}\left(4 \leq m_{i} \leq n\right)$. Let $A_{i} \neq(0)_{1 \times 1}$ (if there exists), $A_{i+1}=A_{i+2}=\ldots=A_{i+l_{i}}=(0)_{1 \times 1}, A_{i+l_{i}+1} \neq$ $(0)_{1 \times 1}$ (if there exists). Then

$$
\left(\begin{array}{cccc}
A_{i+1} & 0 & \cdots & 0 \\
J & A_{i+2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
J & J & \cdots & A_{i+l_{i}}
\end{array}\right)=\mathbb{T}_{l_{i}}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & 0
\end{array}\right)_{l_{i} \times l_{i}}
$$

Let $A_{j} \neq \bar{T}_{3}$ (if there exists), $A_{j+1}=A_{j+2}=\ldots=A_{j+q_{i}}=\bar{T}_{3}, A_{j+q_{i}+1} \neq \bar{T}_{3}$ (if there exists). Then

$$
\left(\begin{array}{cccc}
A_{j+1} & 0 & \cdots & 0 \\
J & A_{j+2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
J & J & \cdots & A_{j+q_{i}}
\end{array}\right)=\mathcal{T}_{3 q_{i}}=\left(\begin{array}{cccc}
\bar{T}_{3} & 0 & \cdots & 0 \\
J & \bar{T}_{3} & \cdots & 0 \\
\vdots & \ddots & \ddots & \\
J & \cdots & J & \bar{T}_{3}
\end{array}\right)_{3 q_{i} \times 3 q_{i}}
$$

We have
Lemma 2.2: Let $T_{n} \in \mathfrak{I}_{n}$. Then

$$
T_{n} \sim\left(\begin{array}{ccccc}
B_{1} & 0 & 0 & \cdots & 0 \\
J & B_{2} & 0 & \cdots & 0 \\
J & J & B_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
J & J & J & \cdots & B_{g}
\end{array}\right),
$$

where all the blocks J below the diagonal are matrices of 1 's, and the diagonal blocks B_{i} is $\mathcal{T}_{3 q_{i}}$, or $\mathbb{T}_{l_{i}}$, or irreducible $T_{m_{i}} \in \mathfrak{I}_{m_{i}}, 4 \leq m_{i} \leq n, 1 \leq i \leq g, 0 \leq 3 q_{i}, l_{i} \leq n$, and q_{i}, l_{i}, m_{i}, g are uniquely determined by T_{n}.

Clearly, $p\left(\mathbb{T}_{l_{i}}\right)=p\left(T_{m_{i}}\right)=1, p\left(\mathcal{T}_{3 q_{i}}\right)=3$ in Lemma2.2. Hence we have
Lemma 2.3: Let $T_{n} \in \mathfrak{I}_{n}$. Then $p\left(T_{n}\right)=1$ or 3 .
Lemma 2.4 ([3]): If $T_{n} \in \mathfrak{I}_{n}$ and $n \geq 4$. Then T_{n} is primitive if and only if T_{n} is irreducible.
It is obvious that 3×3 tournament matrix is not primitive, the primitive exponent of 4×4 irreducible tournament matrix is 9 . For $n>4$, we have
Lemma 2.5 ([3]): If $T_{n} \in \mathfrak{I}_{n}$ and $n \geq 5$, then $\gamma\left(T_{n}\right) \leq n+2$.
Lemma 2.6 ([5]): Let $n \geq 5$,then $\gamma\left(\bar{T}_{n}\right)=n+2$.
Lemma 2.7([5]): If $n \geq 5, T_{n} \in \mathfrak{I}_{n}$ is irreducible. Then $\gamma\left(T_{n}\right)=n+2$ if and only if T_{n} is isomorphic to \bar{T}_{n}.
Lemma 2.8 ([3]): If $3 \leq e \leq n+2$ and $n \geq 6$, then there exists an irreducible $T_{n} \in \mathfrak{I}_{n}$ such that $\gamma\left(T_{n}\right)=e$.
For n by n tournament matrices, the set of primitive exponents is $\{3,4, \cdots, n+2\}(n \geq 6)$ in [3]. We have that the set of indices of convergence for $n \times n$ reducible tournament matrices with period p.

3. THE SET OF INDICES OF CONVERGENCE FOR REDUCIBLE TOURNAMENT MATRICES

We use the following notations.
\mathfrak{I}_{n} : irreducible matrices in \mathfrak{I}_{n},
$\mathfrak{T} \mathfrak{R}_{n}$: reducible matrices in \mathfrak{I}_{n},
$\mathfrak{I} \mathfrak{I}(n, p)$: matrices with period p in \mathfrak{I}_{n},
$\mathfrak{T} \mathfrak{R}(n, p)$: matrices with period p in \mathfrak{I}_{n},
$\operatorname{ITI}(n, p)$: indices of convergence of matrices in $\mathfrak{T} \mathfrak{J}(n, p)$,
$\operatorname{ITR}(n, p)$: indices of convergence of matrices in $\mathfrak{I R}(n, p)$.
$\operatorname{ITR}(n)$: indices of convergence of matrices in $\mathfrak{I} \mathfrak{R}_{\mathrm{n}}$.
Theorem 3.1: Let $T_{n} \in \mathfrak{I R}(n, p)$ and $n \geq 10$. Then $k\left(T_{n}\right) \leq n-p+2$.
Proof: Let $T_{n} \in \mathfrak{T R}(n, p)$. It is obvious that $k\left(T_{n}\right)=\max _{1 \leq i \leq g}\left\{k\left(B_{i}\right)\right\}$
$=\max _{1 \leq i \leq g}\left\{l_{i}, k\left(B_{m i}\right)\right\}=\max _{1 \leq i \leq g}\left\{l_{i}, m_{i}+2\right\}$ in Lemma 2.2, where $n \geq 10$ and $4 \leq m_{i}<n$. By Lemma 2.3, $p\left(T_{n}\right)=1$ or 3 .

If $p\left(T_{n}\right)=1$. There does not exist B_{i} that is $\mathcal{T}_{3 q_{i}}, 1 \leq i \leq g, 1 \leq 3 q_{i}$, in Lemma 2.2. Hence $k\left(T_{n}\right)=$ $\max _{1 \leq i \leq g}\left\{l_{i}, m_{i}+2\right\} \leq n-1+2=n-p+2$.

If $p\left(T_{n}\right)=3$. There exists B_{i} that is $\mathcal{T}_{3 q_{i}}, 1 \leq i \leq g, 1 \leq 3 q_{i}$, in Lemma 2.2. Hence $k\left(T_{n}\right)=$ $\max _{1 \leq i \leq g}\left\{l_{i}, m_{i}+2\right\} \leq n-3+2=n-p+2$.
 Lemma2.6, $k\left(T_{n}^{(1)}\right)=k\left(\bar{T}_{n-1}\right)=n-1+2=n+1$ and $k\left(T_{n}^{(2)}\right)=k\left(\bar{T}_{n-3}\right)=n-3+2=n-1$. where $n \geq 10$. We complete the proof.
Theorem 3.2: Let $n \geq 2$. Then

$$
\operatorname{ITR}(n, 1)=\left\{\begin{array}{cc}
\{n\} & n=2,3,4, \\
\{5,9\} & n=5, \\
\{4,6,7,9\} & n=6, \\
{[3,9]} & n=7, \\
{[3, n+1]} & n \geq 8 .
\end{array}\right.
$$

where $[3, n+1]=\{3,4, \cdots, n+1\}$.
Proof: Note that $\mathbb{T}_{l} \in \mathfrak{I R}(n, 1)$ and $k\left(\mathbb{T}_{l}\right)=l(l \geq 1)$, hence $n(\geq 2) \in \operatorname{ITR}(n, 1)$. It is easily verified that $\operatorname{ITI}(5,1)=\{4,6,7\}$. Now let $\tilde{T}_{5}=\left(\begin{array}{cc}0 & 0 \\ J & T_{4}\end{array}\right)$, where $T_{4} \in \mathfrak{I} \mathfrak{I}(4,1)$, then $\tilde{T}_{5} \in \mathfrak{I R}(5,1)$ and $k\left(\tilde{T}_{5}\right)=$ $k\left(T_{4}\right)=9$.

Let $\tilde{T}_{6}=\left(\begin{array}{cc}0 & 0 \\ J & T_{5}\end{array}\right)$, where $T_{5} \in \mathfrak{I} \Im(5,1)$, then $\tilde{T}_{6} \in \mathfrak{I R}(6,1)$ and $k\left(\tilde{T}_{6}\right)=k\left(T_{5}\right)$. Let $\hat{T}_{6}=\left(\begin{array}{cc}\mathbb{T}_{2} & 0 \\ J & T_{4}\end{array}\right)$, where $T_{4} \in \mathfrak{I} \mathfrak{I}(4,1)$, then $\hat{T}_{6} \in \mathfrak{I R}(6,1)$ and $k\left(\hat{T}_{6}\right)=k\left(T_{4}\right)$. Hence $\operatorname{ITR}(6,1)=\{4,6,7,9\}$. By Lemma 2.8, it is obvious that $\operatorname{ITR}(7,1)=[3,9]$.

For $n \geq 8$, let $\tilde{T}_{n}=\left(\begin{array}{cc}0 & 0 \\ J & \bar{T}_{n-1}\end{array}\right)$, where $\bar{T}_{n-1} \in \mathfrak{I} \mathfrak{J}(n-1,1)$, then $\tilde{T}_{n} \in \mathfrak{I R}(n, 1)$ and $k\left(\tilde{T}_{n}\right)=k\left(\bar{T}_{n-1}\right)$. By Lemma 2.8, $\operatorname{ITR}(n, 1)=[3, n+1]$. We complete the proof.
Theorem 3.3: Let $n \geq 4$. Then

$$
\operatorname{ITR}(n, 3)=\left\{\begin{array}{cc}
\{1\} & n=4, \\
\{1,2\} & n=5, \\
\{0,2,3\} & n=6, \\
\{1,2,4,9\} & n=7, \\
\{2,3,4,5,6,7,9\} & n=8, \\
{[0,9]} & n=9, \\
{[0, n-1]} & n>10 \text { and } 3 \mid n, \\
{[1, n-1]} & n \geq 10 \text { and } 3 \nmid n .
\end{array}\right.
$$

where $[0, n-1]=\{0,1,2,3, \cdots, n-1\}$.
Proof: Note that $k\left(\mathcal{T}_{3 q_{i}}\right)=0\left(3 q_{i}>0\right)$, hence $0 \in \operatorname{ITR}(n, 3)$, where $n \geq 3$ and $3 \mid n$.
Let $\tilde{T}_{4}=\left(\begin{array}{cc}0 & 0 \\ J & \bar{T}_{3}\end{array}\right)$, then $k\left(\tilde{T}_{4}\right)=1 \in \operatorname{ITR}(4,3)$.
Let $\tilde{T}_{5}=\left(\begin{array}{cc}\mathbb{T}_{2} & 0 \\ J & \bar{T}_{3}\end{array}\right)$, then $k\left(\tilde{T}_{5}\right)=2 \in \operatorname{ITR}(5,3)$ and let $\hat{T}_{5}=\left(\begin{array}{ccc}0 & 0 & 0 \\ J & \bar{T}_{3} & 0 \\ J & J & 0\end{array}\right)$, then $k\left(\hat{T}_{5}\right)=1 \in$ $\operatorname{ITR}(5,3)$.

Let $\tilde{T}_{6}=\left(\begin{array}{cc}\mathbb{T}_{3} & 0 \\ J & \bar{T}_{3}\end{array}\right)$, then $k\left(\tilde{T}_{6}\right)=3 \in \operatorname{ITR}(6,3)$ and let $\hat{T}_{6}=\left(\begin{array}{ccc}\mathbb{T}_{2} & 0 & 0 \\ J & \bar{T}_{3} & 0 \\ J & J & 0\end{array}\right)$, then $k\left(\hat{T}_{6}\right)=2 \in$ $\operatorname{ITR}(6,3)$. It is easy to see that $\operatorname{ITR}(7,3)=\{1,2,4,9\}, \operatorname{ITR}(8,3)=\{2,3,4,5,6,7,9\}$ and $\operatorname{ITR}(9,3)=[0,9]$.

Suppose $n \geq 10$. Let $\tilde{T}_{n}=\left(\begin{array}{cc}\mathbb{T}_{3} & 0 \\ J & T_{n-3}\end{array}\right)$, where $T_{n-3} \in \mathfrak{T} \mathfrak{I}(n-3,1)$, by Lemma 2.8, $\tilde{T}_{n} \in \mathfrak{I R}(n, 3)$ and $k\left(\tilde{T}_{n}\right)=k\left(\tilde{T}_{n-3}\right) \in[3, n-1]$.

If $n=3 m$. Let

$$
\tilde{T}_{n}=\left(\begin{array}{cccccc}
\mathbb{T}_{1} & 0 & 0 & 0 & 0 & 0 \\
J & \bar{T}_{3} & 0 & 0 & 0 & 0 \\
J & J & \mathbb{T}_{1} & 0 & 0 & 0 \\
J & J & J & \bar{T}_{3} & 0 & 0 \\
J & J & J & J & \mathbb{T}_{1} & 0 \\
J & J & J & J & J & \mathcal{T}_{3(m-3)}
\end{array}\right)
$$

and

$$
\hat{T}_{n}=\left(\begin{array}{cccc}
\mathbb{T}_{1} & 0 & 0 & 0 \\
J & \bar{T}_{3} & 0 & 0 \\
J & J & \mathbb{T}_{2} & 0 \\
J & J & J & \mathcal{T}_{3(m-2)}
\end{array}\right)
$$

then $k\left(\tilde{T}_{n}\right)=1$, and $k\left(\hat{T}_{n}\right)=2$.
If $n=3 m+1$. Let $\tilde{T}_{n}=\left(\begin{array}{cc}\mathbb{T}_{1} & 0 \\ J & \mathcal{T}_{3 m}\end{array}\right)$, and

$$
\hat{T}_{n}=\left(\begin{array}{cccc}
\mathbb{T}_{2} & 0 & 0 & 0 \\
J & \bar{T}_{3} & 0 & 0 \\
J & J & \mathbb{T}_{2} & 0 \\
J & J & J & \mathcal{T}_{3(m-2)}
\end{array}\right)
$$

then $k\left(\tilde{T}_{n}\right)=1$, and $k\left(\hat{T}_{n}\right)=2$.
If $n=3 m+2$. Let $\tilde{T}_{n}=\left(\begin{array}{cccc}\mathbb{T}_{1} & 0 & 0 & 0 \\ J & \bar{T}_{3} & 0 & 0 \\ J & J & \mathbb{T}_{1} & 0 \\ J & J & J & \mathcal{T}_{3(m-1)}\end{array}\right)$, and $\hat{T}_{n}=\left(\begin{array}{cc}\mathbb{T}_{2} & 0 \\ J & \mathcal{T}_{3 m}\end{array}\right)$, then $k\left(\tilde{T}_{n}\right)=1$, and $k\left(\hat{T}_{n}\right)=2$. Hence If $n \geq 10$, then

$$
\operatorname{ITR}(n, 3)= \begin{cases}{[0, n-1]} & n>10 \text { and } 3 \mid n \\ {[1, n-1]} & n \geq 10 \text { and } 3 \nmid n .\end{cases}
$$

We complete the proof.
By Theorem 3.2 and Theorem 3.3, we have
Corollary 3.4 Let $n \geq 8$. Then

$$
\operatorname{ITR}(n)= \begin{cases}{[0, n+1]} & n>10 \text { and } 3 \mid n \\ {[1, n+1]} & n \geq 10 \text { and } 3 \nmid n .\end{cases}
$$

REFERENCES

[1] Bolian Liu (2006). Combinatorial Matrix Theory (Second Edition). Bejing: Science Press.
[2] Richard A.Brualdi (2006). Combinatorial Matrix Classes (First Edition). Cambridge University Press. New York.
[3] J.W., Moon \& N.J., Pullman (1967). On the Power of Tournament Matrices. Comb. Theory, 3, 1-9.
[4] Jiang ZM \& Shao JY (1991). On the Set of Indices of Convergence for Reducible Matrices Linear Algebra and Its Application, 148, 265-278.
[5] Xue-mei Ye (2007). Characterization of the Tournament with Primitive Exponent Reaching Its Secondary Value Journal of Mathematical Research and Exposition, 4, 715-718.
[6] Bo Zhou \& Jian Shen (2002). On Generalized Exponents of Tournaments Taiwanese J. Math., 6, 565-572.

