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Abstract
In this paper,the definition of the L-fuzzy quantales is given, we study the properties of L-fuzzy quantales
from the categorical point of view, the product,equalizers,co-equalizers and pullback of the category of
L-fuzzy quantales are investigated, Also, some properties of their are discussed.
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1. INTRODUCTION

Quantale was introduced by C.J.Mulvey in 1986 in order to provide a lattice theoretic setting for studying
non-commutative C*-algebras[1], as well as a constructive foundations of quantum logic. A quantale-besed
(non-commutative logic theoretic) approach to quantum mechanics was developed by Piazza. It is known
that quantales are one of the semantics of linear logic. The systematic introduction of quantale theory came
from the book [2], which written by K.I.Rosenthal in 1990. Quantale theory provides a powerful tool in
studying noncommutative structures, it has a wide applications, especially in studying noncommutative
C*-algebra theory [3], the ideal theory of commutative ring[4], linear logic [5] and so on. Following
C.J.Mulvey, the quantale theory have been studied by many researches [6-21].

Since coproducts is very important concept in many categories, and their coproducts product have been
studied systemically. In this paper, the concrete forms of the coproducts of unital quantales is obatined. For
notions and concepts concerned, but explained, please refer to [2,22].

2. PRELIMINARIES

Definition 2.1.[2] A quantale is a complete lattice Q with an associative binary operation “&” satisfying:
a&(

∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a), for all a, bi ∈ Q, where I is a set, 0 and 1 denote the

smallest element and the greatest element of Q, respectively.
A quantale Q is said to be unital if there is an element u ∈ Q such that u&a = a&u = a for all a ∈ Q.

Definition 2.2.[2] Let Q and P be quantales. A function f : Q −→ P is a homomorphism of quantale if
f preserves arbitrary sups and the operation “&”. If Q and P are unital, then f is unital homomorphism
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if in addition to being a homomorphism, it satisfies f (uQ) = uP, where uQ and uP are units of Q and P,
respectively.
Definition 2.3.[2] Let Q be a quantale. A subset S ⊆ Q is a subquantale of Q iff the inclusion S ↪→ Q is
a quantale homomorphism, i.e., S is closed under sups and “&”.
Definition 2.4. Let Q be a quantale,and L be a complete lattice. A mapping Q : Q −→ L is said to be
L-fuzzy quantale if Qp = {x ∈ Q | Q(x) ≥ p} be a subquantale of Q for all p ∈ L.
Definition 2.5. Let Q and K be quantales, L be a complete lattice. Q : Q −→ L and K : K −→ L be
L-fuzzy quantales. A function ψ : Q −→ K is said to be L-fuzzy quantales homomorphism provided that ψ
is a quantale homomorphism and Q(x) ≤ K(ψ(x)) for all x ∈ Q.

3. EQUALIZER AND COEQUALIZER OF THE CATEGORY
LFQUANT

In this section, we study the equalizre, coequalizre, product in the category of L-fuzzy quantales and some
properties are discussed.

Let L be a complete lattice, LFquant denote the category of L-fuzzy quantales and L-fuzzy quantale
homomorphism.
Theorem 3.1. The constant morphism in LFquant are exactly zero mapping.
Proof. Sufficiency: Let and be L-fuzzy quantales. The mapping be a zero function,i.e., f (x) = 0K for
all x ∈ Q. It is not hard to see that f is a L-fuzzy quantale homomorphism. For all L-fuzzy quantale
homomorphismP : P −→ L, and L-fuzzy quantale homomorphism r, s : P −→ Q such that f ◦ s =

f ◦ r,i.e,.zero mapping is constant morphism in LFquant.
Necessity: Let Q : Q −→ L and Q : Q −→ L be L-fuzzy quantales, f : Q −→ K is a constant morphism

in LFquant. It is easy to check that the mapping idQ : Q −→ Q and zero mapping 0Q : Q −→ Q be
L-fuzzy quantales homomorphisms, then f ◦ idQ = f ◦ 0Q, i.e,. ( f ◦ idQ)(x) = ( f ◦ 0Q)(x) for all x ∈ Q,
hence f (x) = 0K .
Theorem 3.2. The coconstant morphism in LFquant are exactly zero mapping.
corollary 3.3. The category LFquant is pointed.
Theorem 3.4. The category LFquant has initial object.
Proof. Let L be a complete lattice, it is to easy to check that mapping 0 : {0} −→ L, 0(0) = 0L be a L-fuzzy
quantale. For all L-fuzzy quantale Q : Q −→ L and L-fuzzy quantale homomorphism f : {0} −→ Q, then
f (0) = 0Q. Hence f is the unique L-fuzzy quantale homomorphism from {0} to Q. Therefore the mapping
0 : {0} −→ L be a inital object in LFquant.
Theorem 3.5. The category LFquant has terminal object.
corollary 3.6. The category LFquant is connected.
Theorem 3.7. The category LFquant has equalizer.
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Proof. Let L be a complete lattice, Q : Q −→ L and Q : Q −→ L be L-fuzzy quantales, f , g : Q −→ K be
L-fuzzy quantale homomorphisms.

DefineQ′ = {x ∈ Q | f (x) = g(x)}. Next, we will prove that Q′ is a subquantale of Q.
At first, since f (0) = g(0), we have0 ∈ Q′ , 0.

11



LIANG Shaohui/Studies in Mathematical Sciences Vol.4 No.2, 2012

Secondly, for all x1, x2 ∈ Q′, f (x1&x2) = f (x1)& f (x2) = g(x1)&g(x2) = g(x1&x2), then f (x1&x2) =

f (x1)& f (x2) = g(x1)&g(x2) = g(x1&x2), hence x1&x2 ∈ Q′.
At last, for all {xi}i∈I , then f (

∨
i∈I

xi) =
∨
i∈I

f (xi) =
∨
i∈I

g(xi) = g(
∨
i∈I

xi), hence
∨
i∈I

xi ∈ Q′.

Let i : Q′ −→ Q is the inclusion mapping, we can prove that i is a quantale homomorphism, and
f ◦ i = g ◦ i. Assume that Q′ = Q |Q′ Q′ −→ L, then Q′ be a L-fuzzy quantale.

For any L-fuzzy quantale P : P −→ L and e : P −→ Q such that f ◦ e = g ◦ e, then e(P) = {e(p) | p ∈
P} ⊆ Q.

Define e′ : P −→ Q′ such that e′(p) = e(p) for all p ∈ P, then f (e(p)) = g(e(p)). Hence e′ is well
defined, and e′ is a L-fuzzy quantale homomorphism such that e = i ◦ e.

Let e′′ : P −→ Q′ be a L-fuzzy quantale homomorphism such that e = i ◦ e′′ for all p ∈ P, then
e′′(p) = (i ◦ e′′)(p) = e(p) = e′(p) for all p ∈ P. Hence e′′ = e′. So, e′ is the unique L-fuzzy quantale
homomorphism satisfy. Therefore, (Q′, i) is the equalizer of f and g.
Remark 3.8. By theorem 3.7, we have that the mapping i is a regular monmorphism in the category
LFquant.
Definition 3.9. Let L be a complete lattice, be a L-fuzzy quantale, The set R is said to be a congruence of
L-fuzzy quantale on L if R satisfies:

(1) R is an equivalence relation on Q;
(2) If (xi, yi) ∈ R for all i ∈ I, then (

∨
i∈I

xi,
∨
i∈I

yi) ∈ R;

(3) If (x, y) ∈ R, (s, t) ∈ R, then (x&s, y&t) ∈ R;
(4) For all (x, y) ∈ R, we have Q(x) = Q(y).
Let Con(Q) the set of all congruence on , then be a complete lattice with respect to the inclusion order.
Let L be a complete lattice, be a L-fuzzy quantale, and R is a congruence of L-fuzzy quantale on L.

Define the order relation “ ≤ ” on and operation
Q/R∨

, & on Q/R, ∀ [x], [y] ⊆ Q/R, ∀ {[xi]}i∈I ⊆ Q/R,

[x] ≤ [y]⇐⇒ [x ∨ y] = [y];
Q/R∨

i∈I

[xi] = [
∨

i∈I

xi]; [x]&Q/R[y] = [x&y].

We can prove that (Q/R,
Q/R∨

,&Q/R) be a quantale.
Theorem 3.10. Let L be a complete lattice, Q : Q −→ L be a L-fuzzy quantale, R be a L-fuzzy quantale
congruence on Q. Define Q/R : Q/R −→ L such that Q/R([x]) = Q(x) for all [x] ∈ Q/R. Then Q/R :
Q/R −→ L be a L-fuzzy quantale, and π : Q −→ Q/R x 7−→ [x] be a L-fuzzy quantale homomorphism.
Theorem 3.11. Let L be a complete lattice, Q : Q −→ L be a L-fuzzy quantale, then 4 = {(x, x) | x ∈ M}
be a L-fuzzy quantale congruence on Q.
Theorem 3.12. Let L be a complete lattice, Q : Q −→ L and K : K −→ L be L-fuzzy quantale, f :
Q −→ K be a L-fuzzy quantale homomorphism, R be a L-fuzzy quantale congruence on K. Then f −1(R) =

{(x, y) ∈ M × M | ( f (x), f (y)) ∈ R} be a L-fuzzy quantale congruence on Q.
Theorem 3.13. Let L be a complete lattice, Q : Q −→ L be a L-fuzzy quantale, R be a L-fuzzy quantale
congruence on Q. Then there exists a smallest L-fuzzy quantale congruence containing R, which is the
intersection all the L-fuzzy quantale congruence contain R on Q. We said that this congruence is generated
by R.
Theorem 3.14. The category LFquant has coequalizer.
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Proof. Let L be a complete lattice, Q : Q −→ L and K : K −→ L be L-fuzzy quantales, f , g : Q −→ K
be L-fuzzy quantale homomorphisms. Suppose R is the smaiiest congruence of L-fuzzy quantale on K,
which contain {( f (x), g(x)) | x ∈ Q}. Let E = K/R, π : K −→ E is the canonical mapping, then mapping
K/R : E −→ L be L-fuzzy quantale, and π : K −→ E is the L-fuzzy quantale homomorphism by theorem
3.10.

We will prove that (π, E) is the coequalier of f and g. In fact,
(1) π ◦ f = π ◦ g is clear;
(2) Let P : P −→ L be a L-fuzzy quantale, h : K −→ P be a L-fuzzy quantale homomorphism such

that h ◦ f = h ◦ g. Let R1 = h−1(∆), where ∆ = {(x, x) | x ∈ P}. By theorem 3.11, we can see that R1
is a congruence of L-fuzzy quantale on K. Since h( f (x)) = h(g(x)) for all x ∈ Q, then ( f (x), g(x)) ∈ R1.
Define h′ : E −→ P such that h′([k]) = h(k) for all [k] ∈ K/R = E. Let (k1, k2) ∈ R, then (k1, k2) ∈ R1, i.e,.
h(k1) = h(k2) Therefore h′ is well defined.

Next, we will prove that h′ is a L-fuzzy quantale homomorphism.
(1) For all [k1], [k2] ∈ E, then h′([k1]&[k2]) = h(k1&k2) = h(k1)&h(k2) = h′([k1])&h′([k2]);
(2) For all {[ki]}i∈I ⊆ E, then h′(

∨
i∈I

[ki]) = h′([
∨
i∈I

ki]) = h(
∨
i∈I

ki) =
∨
i∈I

h(ki) =
∨
i∈I

h′([ki]);

(3) For all [k] ∈ E, since h : K −→ P is a L-fuzzy quantale homomorphism, we can see that E([k]) =

K(k) ≤ P(h(k)) = P(h′([k])) and h = h′ ◦ π.
It is easy to prove that h′ is the unique L-fuzzy quantale homomorphism satisfy h = h′ ◦ π. Therefore

(π, E) is the coequalizer of f and g.
Theorem 3.15. The category LFquant has multiple coequalizer.

4. PRODUCT, INTERSECTION AND PULLBACK OF THE CAT-
EGORY LFQUANT

In this section, the Product, intersection and pullback of the category of L-fuzzy quantales are investigated,
the Concrete structure of Product, intersection and pullback of the category of L-fuzzy quantales is obtained.
Theorem 4.1. The category LFquant has product.
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Proof. Let {(Qk, L) | k ∈ K} be a family of L-fuzzy quantales. Define π :
∏
k∈K

Qk −→ L such that

π( f ) = ∧
k∈K

Qk( fk) for all f ∈ ∏
k∈K

Qk.

At first, we will prove that π :
∏
k∈K

Qk −→ L be a L-fuzzy quantale. Obviously, π is well defined.

(1) π(0) = ∧
k∈K

Qk(0k) = ∧
k∈K

1 = 1;

(2) For all f , g ∈ ∏
k∈K

Qk, then π( f &g) = ∧
k∈K

Qk( fk&gk) ≥ ∧
k∈K

(Qk fk)∧Qk(gk)) = ( ∧
k∈K

Qk fk)∧( ∧
k∈K

Qk(gk)) =

π( f ) ∧ π(g);
(3) For all { f j} ⊆ ∏

k∈K
Qk, then π( ∨

j∈J
f j) = ∧

k∈K
(Qk(( ∨

j∈J
f j)k)) = ∧

k∈K
(Qk( ∨

j∈J
f j
k )) ≥ ∧

k∈K
( ∧

j∈J
Qk( f j

k )) =

∧
j∈J

( ∧
k∈K

Qk( f j
k )) = ∧

j∈J
Qk( f j).

Secondly, we will prove that πk :
∏
k∈K

Qk −→ Qk, f 7−→ fk is a L-fuzzy quantale homomorphism.
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(1) For all f , g ∈ ∏
k∈K

Qk, ∀ { f j} j∈J ⊆ ∏
k∈K

Qk, then

πk( f &g) = ( f &g)k = fk&gk = πk( f )&πk(g); πk(
∨
j∈J

f j) = (
∨
j∈J

f j)k =
∨
j∈J

f j
k =

∨
j∈J
πk( f j);

(2) For all f ∈ ∏
k∈K

Qk, then π( f ) = ∧
k∈K

Qk( fk) ≤ Qk( fk) = Qk(πk( f )), hence πk :
∏
k∈K

Qk −→ Qk is a

L-fuzzy quantale homomorphism.

Define f ′ : Q −→ ∏
k∈K

Qk such that f ′(x) = ( fk(x))k∈K ,i.e., ( f ′(x))k = fk(x) for all x ∈ Q. Obviously,

πk ◦ f ′ = fk.

(1) For all x, y ∈ Q,{xi}i∈I , we have ( f ′(x&y))k = fk(x&y) = fk(x)& fk(y) = ( f ′(x))k&( f ′(y))k;

( f ′(
∨
i∈I

xi))k = fk(
∨
i∈I

xi) =
∨
i∈I

fk(xi) = ( f ′(xi))k;

(2) For all x ∈ Q, ∀ k ∈ K, since fk be a L-fuzzy quantale homomorphism, we can see that Qk(x) ≤
Qk( fk(x)), hence Qk(x) ≤ ∧

k∈K
Qk( fk(x)), i.e., Qk(x) ≤ π( f ′(x)).

Thus f ′ : Q −→ ∏
k∈K

Qk is a unique L-fuzzy quantale homomorphism. Therefore (π, {πk}k∈K) is the

product of {(Qk, L) | k ∈ K} in LFquant.

Theorem 4.2. The category LFquant has intersection.
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Proof. Let B : B −→ L be a L-fuzzy quantale, {Ai : Ai −→ L}i∈I is family subobjects of B. We can see
that mi(Ai) is subquantale of B, and Ai � mi(Ai).

Let m−1
i : mi(Ai) −→ Aimi, and D =

∨
i∈I

mi(Ai), then D is the subquantale of B. Define D : D −→ L, then

D is a L-fuzzy quantale. Assume d : D −→ B is a inclusion mapping. Hence d : D −→ B is a L-fuzzy
quantale homomorphism.

Next, we will prove that (D, d) is the intersection of {Ai : Ai −→ L}i∈I in the category of L-fuzzy
quantales.

(1) For all i ∈ I, let di : (m−1
i ) |D: D −→ Ai, then di is a L-fuzzy quantale homomorphism, and d = mi◦di.

(2) Let g : C −→ B and gi : C −→ Ai be L-fuzzy quantale homomorphism, and g = mi ◦ gi for all i ∈ I.
At the same time, we can see that gi(C) is a subquantale of Ai, then g(C) = mi(gi(C)) is a subquantale of
mi(Ai). Hence g(C) is subquantale of D. Let f = g |D, then f is the unique L-fuzzy quantale homomorphism
such that d ◦ f = g. Therefor, (D, d) is the intersection of {Ai : Ai −→ L}i∈I in the category of L-fuzzy
quantales.

Theorem 4.3. The category LFquant has pullback square.
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Proof. Let L be a complete lattice, X : X −→ L and Y : Y −→ L be L-fuzzy quantales, f : X −→ P and
g : Y −→ P be L-fuzzy quantale homomorphisms.

Let E = {(x, y) | f (x) = g(y)}, then E is the subquantale of X × Y . pX and pY are projection from X × Y
to X and Y , respectively. Define E = π |E : E −→ L such that E(x, y) = X(x) ∧ Y(y) for all (x, y) ∈ E, then E
is L-fuzzy quantale homomorphisms.

Next, we will prove that pX and pY are L-fuzzy quantale homomorphisms.
(1) pX and pY are quantale homomorphisms is clear;
(2) For all a = (x, y) ∈ E, then E(a) = X(x) ∧ Y(y) ≤ X(x) = X(pX(a)),i.e., E(a) ≤ X(pX(a)). Similarly,

E(a) ≤ X(pY (a)).
Let be a L-fuzzy quantale, and are L-fuzzy quantale homomorphisms, such that, then for all, hence.
Define such that for all, then is a quantale homomorphism, and,. Since and are L-fuzzy quantale homo-

morphisms, we are see that and for all. Hence , and is unique L-fuzzy quantale homomorphism satisfies
above conditions.

Therefore, the category LFquant has pullback square.
Theorem 4.4. The category LFquant has multiple pullback square.
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