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Abstract
First Integral method obtains some exact solution of non-integrable equations as well as integrable ones.
This article is concerned with First Integral method for solving the solution of dispersive long wave system.
It is worth mentioning that this method is based on the theory of commutative algebra in which division
theorem is of concern. To recapitulate, this investigation has resulted in two exact soliton solutions of the
given system. In addition, some figures of partial solutions are provided for direct-viewing analysis. The
method can also be extended to other types of nonlinear evolution equations in mathematical physics.
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INTRODUCTION

In various fields of science and engineering, many problems can be described by non-linear partial dif-
ferential (PDEs). The investigation of exact solutions to nonlinear evolution has become an interesting
subject in nonlinear science field. To find some exact soliton solutions in high dimensions ((2+1)- and
(3+1)-dimensions) is much more difficult than in (1+1)-dimensions.
Moreover, since the time when the soliton concept was first introduced by Zabusky in 1965[1], the study
of the solutions of Partial Differential Equations (PDEs) has enjoyed an intense period of activity over
the last forty years from both theoretical and numerical points of view. Additionally, nonlinear evolution
equations have been the subject of study in various branches of mathematical-physical sciences such as
physics, biology, chemistry, plasma, optical fibers and computer technology.
In recent years, other methods have been developed, such as the Backlund transformation method[2], Dar-
boux transformation[3], tanh method[4],[5], extended tanh function method[6], modified extended tanh func-
tion method[7], the generalized hyperbolic function[8], the variable separation method[9] and First Integral
method was first proposed by Feng in 2002[10], recently this powerful method is widely used by many
researchers for example[11],[12]. Abbasbandy and Shirzadi anticipated the first integral method to solve
modified Benjamin-Bona-Mahoney equation[13]. The aim of this paper is to find exact soliton solutions for
the dispersive long wave (2+1)-dimensional system[14] by the first integral method.
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1. FIRST INTEGRAL METHOD

Consider a general nonlinear partial differential equation in the form:

F (u, ut, ux, utt, uxx, utx, . . .) = 0, (1)

Whereu = u(x, t) is the solution of nonlinear PDE equation (1). Furthermore, the transformations which
are used are as follows:

u (x, t) = U (ξ) , ξ = k1(x + k2y − k3t). (2)

Wherec is constant. Using the chain rule, it can be found that

∂

∂t
(.) = −k1k3

∂

∂ξ
(.) ,

∂

∂x
(.) = k1

∂

∂ξ
(.) ,

∂2

∂x2
(.) = k2

1
∂2

∂ξ2
(.) , . . . . (3)

At present, equation (3) is employed to change the nonlinear PDE equation (1) to nonlinear ordinary differ-
ential equation

G(U(ξ),Uξ(ξ),Uξξ(ξ), . . .) = 0 (4)

Next, a new independent variable is introduced as:

X (ξ) = u (ξ) , Y =
∂u(ξ)
∂ξ
. (5)

This yields a system of nonlinear ODEs

Xξ (ξ) = Y (ξ) ,

Yξ (ξ) = F1 (X (ξ) , Y (ξ)) . (6)

If it is revealed that the integrals to equation (6) are under the same conditions of the qualitative theory
of ordinary differential equation[15], then general solutions to (6) can be solved directly. However, it is
generally so difficult for us to realize this even for one first integral, because for a given plane autonomous
system, there is no systematic theory that can tell us how to find its first integrals, nor is there a logical way
for telling us what these first integrals are. Thus, Division Theorem is used to obtain one first integral of (6)
equation. Now, let us recall the Division Theorem:
Division Theorem:
Suppose thatP(w, z) andq(w, z) are polynomials inC[w, z] and P(w, z) is irreducible toC[w, z]. If q(w, z)
vanishes through all zero points ofP(w, z), then there exists a polynomialG(w, z) in C(w, z) such that

q (w, z) = P(w, z)G(w, z)

See [16].

2. (2+1)-DIMENSIONAL DISPERSIVE LONG WAVE

In this section, it is aimed to discuss the dispersive long wave (2+1)-dimensional system, written in the
form of the following equations:

uty + vxx +
1
2

(

u2
)

xy
= 0,

vt + (uv + u + uxy)x = 0.
(7)

The celebrated (2+1)-dimensional dispersive long wave equation are firstly obtained by Boiti et al.[17] and
has been found in some studies conducted by Ablowitz and Clarkson[18]. Furthermore, extended homoge-
neous method was used by Zhang Jie-Feng in 2002 to investigate dispersive long wave (2+1)- dimensional
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system[19]. It is necessary to state that equation (7) plays an important role in nonlinear physics. That is to
say, some special similarity solutions are also given in[20].
By using the transformation

u (x, y, t) = U(ξ), v (x, y, t) = V(ξ), ξ = k(x + ly − λt).

equation(7) changes into:

−lλUξξ (ξ) + kVξξ (ξ) + l
2

(

U2 (ξ)
)

ξξ
= 0,

−λVξ (ξ) +
(

U (ξ) V (ξ) + U (ξ) + klUξξ (ξ)
)

ξ
= 0.

(8)

Where by two integrating the first equation of the Eq.(8), respect toξ, it can be found that

V(ξ) =
lλ
k

U (ξ) − l
2k

U2(ξ) + d1 (9)

Whit integrating the second equation of the Eq.(8), respect toξ, it can be obtained that

−λV (ξ) + (U (ξ) V (ξ) + U (ξ) + klUξξ (ξ)) = d2. (10)

Substituting (9) whit Eq.(10), the following equation will be achieved:

Uξξ =
d2 + λd1

kl
+

(

λ2

k2
− d1

kl

)

U (ξ) +
3λ
2k2

U2 (ξ) +
1

2k2
U3(ξ), (11)

Whered1 andd2 are two integration constants. According to the first integral method, by using (5) and (6),
it will be determined that

Ẋ (ξ) = Y(ξ), (12)

Ẏ (ξ) =
d2 + λd1

kl
+

(

λ2

k2
−

d1

kl

)

X (ξ) +
3λ
2k2

X2 (ξ) +
1

2k2
X3(ξ). (13)

We suppose thatX(ξ) andY(ξ) are nontrivial solutions of (12) and (13) andq [X, Y] =
m
∑

i=0
ai (X) Y i = 0 is an

irreducible polynomial in the complex domainC[X, Y] such that

q
[

X (ξ) , Y (ξ)
]

=

m
∑

i=0

ai(X)Y i = 0, (14)

Whereai(X)(i = 0, . . . ,m) are polynomials ofX andam(X) , 0. Equation (14) is called first integral to (12)
and (13). Due to Division Theorem, there exists a polynomialg(X)+h(X)Y in the complex domainC[X, Y],
such that

dq
dξ
=

dq
dX

dX
dξ
+

dq
dY

dY
dξ
= (g (X) + h (X) Y)

m
∑

i=0

ai (X) Y i (15)

In this example, By assuming thatm = 1 in equation (14), and by equating the coefficients ofY i(i = 2, 1, 0)
on both sides of equation (15), these will be:

ȧ1 (X) = a1 (X) h (X) , (16)

ȧ0 (X) = a1 (X) g (X) + a0 (X) h (X) , (17)

a1 (X) [
d2 + λd1

kl
+

(

λ2

k2
− d1

kl

)

X (ξ) +
3λ
2k2

X2 (ξ) +
1

2k2
X3 (ξ)] = a0 (X) g (X) . (18)
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Sincea1(X) is a polynomial ofX, then from (16), it may be deduced thata1(X) is a constant andh(X) = 0,
we takea1(X) = 1. Balancing the degrees ofg(X), a1(X) anda0(X), it is concluded thatdeg g(X) = 1, only.
Suppose thatg(X) = B0 + A1X, (A1 , 0) then we will find that

a0 (X) =
1
2

A1X2 + B0X + A0 (19)

WhereA0 is an arbitrary integration constant. Substitutinga0(X), a1(X) and g(X) in equation (18) and
setting all the coefficients of powersX to be zero, then a system of nonlinear algebraic equations can be
resulted in. Having solved the given equation, the following solutions will be attained:

A1 = ±
1
√

k
, B0 = ±

λ
√

k
, A0 = ∓

d1 + 1
l

√
k, (20)

Using the conditions (20) in equation (14), it can be searched out that

Y (ξ) = −
(

1

2
√

k
X2 (ξ) +

λ
√

k
X (ξ) −

d1 + 1
l

√
k

)

(21)

Expression (23) is the first integral of (12). Combining equation (23) with equation (12) we find the exact
solution to equation (11) will be found as follows:

U1 (ξ) = −λ + 1
l

√

2lk(d1 + 1) + λ2l2tanh( 1
2l
√

k

√

2lk(d1 + 1) + λ2l2 (ξ + ξ0)),

V1 (ξ) = d1 +
lλ
k U1 (ξ) − l

2k U2
1 (ξ) .

(22)

Whereξ0 is an arbitrary integration constant. Then, the exact soliton solution of dispersive long wave
(2+1)-dimensional system(7) can be written as:

u1 (x, y, t) = −λ + 1
l

√

2lk(d1 + 1) + λ2l2tanh
(

1
2l
√

k

√

2lk(d1 + 1) + λ2l2 (k (x + ly − λt) + ξ0)
)

,

v1 (x, y, t) = d1 +
lλ
k u1 (ξ) − l

2k u2
1 (ξ) .

(23)

For direct-viewing analysis, we provide the figures ofu1(x, t) andv1(x, t), where we choosed1 = ξ0 = λ =

0, l = andk = 2.

Figure 1 (a) Graphic of the soliton solution u1(x, y, t) (b) Graphic of the soliton solution v1(x, y, t)

In the same way, in the case of (20), it can be acquired from equation (14) that

Y (ξ) = −
(

−1

2
√

k
X2 (ξ) − λ√

k
X (ξ) +

d1 + 1
l

√
k

)

(24)
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Expression (26) is the first integral of (12). Combining equation (26) with equation (12) we find the exact
solution to equation (11) will be attained:

U2 (ξ) = −λ − 1
l

√

2lk(d1 + 1) + λ2l2tanh( 1
2l
√

k

√

2lk(d1 + 1) + λ2l2 (ξ + ξ0)),

V2 (ξ) = d1 +
lλ
k U2 (ξ) − l

2k U2
2 (ξ) .

(25)

Whereξ0 is an arbitrary integration constant. Then, the exact soliton solution of dispersive long wave
(2+1)-dimensional system(7) will be achieved:

u2 (x, y, t) = −λ − 1
l

√

2lk(d1 + 1) + λ2l2tanh
(

1
2l
√

k

√

2lk(d1 + 1) + λ2l2 (k (x + ly − λt) + ξ0)
)

,

v2 (x, y, t) = d1 +
lλ
k u2 (ξ) − l

2k u2
2 (ξ) .

(26)

As a final notion, these solutions are considered as new exact soliton solutions for dispersive long wave
(2+1) dimensional system.

CONCLUSION

In this study, First Integral method was described to find exact solutions of the dispersive long wave (2+1)-
dimensional system. Consequently, two exact soliton solutions were obtained to the dispersive long wave
(2+1)-dimensional system. In spite of the fact that these new soliton solutions may be important for physical
problems, this study also suggests that one may find different solutions by choosing different methods.
Therefore, this method can be utilized to solve many systems of nonlinear partial differential equation
arising in the theory of soliton and other related areas of research.
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