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Delaunay-like Hypersurfaces in Sn+1

Fei-tsen Liang1

Abstract: Consider Sn+1 ⊂ R2 × Rn and allow the subgroup O(n) ⊂ O(n + 2) to act on Sn+1 by
its action on the last n coordinates. Then one asks for CMC surfaces of Sn+1 that are invariant by
the action of O(n). The resulting hypersurfaces are the so-called rotational CMC hypersurfaces
of Sn+1 and the Delaunay-like hypersurfaces constructed in [1] are examples of such surfaces
with small necksize. The main aim of this paper is to construct Delaunay-like hypersurfaces with
slightly larger necksize
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1. INTRODUCTION

Classical examples of non-trivial constant mean curvature (CMC) surfaces in three dimensional Euclidean
space R3 are the sphere, the cylinder and the Delaunay surfaces, and for a long while they were only known
CMC surfaces. In 1984 Wente discovered a family of compact CMC tori immersed in R3. The technique
used by Wente have culminated in a Weierstrass representation for CMC surfaces in R3. Amongst later
developments is the gluing technique for constructing CMC hypersurfaces in R3 from simple building
blocks. This technique was pioneered by Kapouleas [4] and used perturbation arguments from the theory
of geometric partial differential equations to construct many new CMC surfaces: e.g. compact surfaces
of higher genus and non-compact surfaces with arbitrary number of ends by fusing together spheres and
Delaunay surfaces. In [6], the building blocks for gluing techniques become two orientable, immersed,
compact, nondegenerate CMC surfaces with nonempty boundary and a catenoidal neck inserted between
them. The catenoids are truncated at the right scale so that their boundaries fit as well as possible with the
small curves produced by exciting small balls around the points where the two surfaces are closest to each
other. In [5] CMC surfaces of genus g with k ends are constructed by attaching Delaunay ends to complete
minimal surfaces of finite total curvature in R3 of genus g with k ends. In [7], half-Delaunay surfaces
are attached to arbitrary points of any nondegenerate CMC surfaces to construct new nondegenerate CMC
surfaces.

The corresponding theory of CMC hypersurfaces of higher dimensions or in other ambient manifolds is
not progressed as far as it is in R3. The theory on CMC hypersurfaces in hyperbolic space has developed e.g.
in [8],[9],[10], which is however not such a vast departure from theory of CMC hypersurfaces in Rn+1, due
to the non-compactness of the hyperbolic space. Much less is known when the ambient space is the sphere.
The classically known examples in Sn+1 are the hyperspheres obtained from intersecting Sn+1 with affine
hyperplanes, and the so-called generalized Clifford tori which are products of lower-dimensional spheres of
the form Tp,q

α := Sp(cosα) × Sq(sinα) for p + q = n and α ∈ (0, π/2).

In [5], [6] and [7], gluing techniques are adapted in order to construct CMC hypersurfaces in Sn+1.
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The central idea is to position hyperspheres and/or generalized Clifford tori of the same mean curvature
H throughout Sn+1 in various ways such that each building block is separated from its neighbors by a
small amount. After appropriate small modifications of this initial configuration, catenoidal necks are then
inserted between the building blocks at the points where they come closest to each other. This approximate
solution S̃ is then perturbed until it has exactly CMC. One crucial step is to choose an appropriate Banach
space so as to express a small perturbation of the approximately CMC surface S̃ as a normal graph over S̃
whose graphing function belongs to this Banach space. Once this is done, the desired perturbation is shown
to exist by applying the Banach space inverse function theorem to the mean curvature operator. In applying
the Banach space inverse function theorem, the symmetries of the initial configuration play the important
role in ruling out the existence of Jacobi fields which are non-trivial elements of the kernel of the linearized
mean curvature operator of the constituents of S̃ .

1.1 Delaunay-Like Hypersurfaces of Sn+1

Let S α be the hypersphere obtained by intersecting Sn+1 by an affine hyperplane passing a distance cosα ∈
(0, 1) from the origin. The mean curvature of S α is the constant Hα := n cotα. The construction of the
Delaunay-like hypersurfaces begins with defining the rotation

Rθ =


cos θ − sin θ 0
sin θ cos θ 0

0 0 In

 ,

where In is the n×n identity matrix. The rotation Rθ generates the geodesic γ formed by intersecting Sn with
the (x0, x1)-plane. Any pair of rotated hyperspheres Rk

2α+τ(S α) and Rk+1
2α+τ(S α) are separated by a distance τ.

The following result is proved in [1].

Theorem 1 ([1], Main Theorem 1) Suppose γ is the great circle in Sn+1 generated by the one-parameter
family of rotations Rθ ∈ S O(n + 2). For every α ∈ (0, π/2) and sufficiently small τ > 0, there exists a CMC
hypersurface Λα,τ of mean curvature Hα := n cotα which is approximately equal to a union of hyperspheres
of the form Rk

2α+τ(S α) that are separated by a distance τ from each other and connected by small catenoidal
necks.

As τ → 0, the hypersurfaces Λα,τ converges in the C∞ topology to the union of hyperspheres of mean
curvature Hα positioned end-to-end along γ.

The Delaunay-like hypersurfaces constructed in Theorem 1 are either non-compact and immersed, com-
pact and immersed, or compact and embedded depending on the values of α and τ.

1.2 Statement of Results

Based on Theorem 1, the main aim of this paper is to prove the following result.

Theorem 2 (Main Theorem) For every α1 ∈ (0, π/2) and sufficiently small τ1, let Λα1,τ1 be as con-
structed in Theorem 1, and let Λα1,τ1 =

⋃
k Rk

2α1+τ1
(Λ0

α1,τ1
), the central part of Λ0

α1,τ1
being around the neck

and the rotation Rθ being introduced in Theorem 1. Then for sufficiently small τ∗ > 0, there exists a CMC
hypersurface Λ̂α1,τ1,α2,τ∗ of mean curvature Hα1 := n cotα1 which is of the form

⋃
k Rk

2α1+τ1+τ∗
(Λ̂0

α1,τ1,α2,τ∗ );

the constituent piece Λ̂0
α,τ1,α2,τ∗ is a deformation of the approximate hypersurface obtained by first separat-

ing the upper and lower halves of Λ0
α1,τ1

by a distance τ∗ and then connecting them by small Delaunay-like
necks included in Λα2,τ2 , for some α2, τ2 determined by τ1 and τ∗, α2 > α1, τ2 < τ1.
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As τ∗ → 0, the hypersurfaces Λ̂α1,τ1,α2,τ∗ converge in the C∞ topology to the hypersurfaces Λα1,τ1 .

From this, we obtain immediately the following.

Corollary 3 For every α ∈ (0, π/2), there exists a one parameter family of rotational CMC hypersurfaces
of mean curvature Hα := n cotα; these hypersurfaces are periodic and cylindrically bounded, and they
converge, on one side, to a sequence of spheres, and on the other side, to a cylinder-like hypersurface.

2. REVIEW THE PROOF OF THEOREM 1

It is essential for the proof of Main Theorem 1 to have a thorough understanding of the construction in the
proof of Theorem 1 [1]. Thus here we give a sketch of the construction.

2.1 Parametrization of S α. Normal Graph over S α

Let p be the point p = (1, 0, · · · , 0) and let p± := R±1
α (p) ∈ S α. Choose a parametrization of S α \ {p+, p−} in

which rotational symmetry around the geodesic γ is in evidence; namely, the parametrization

(µ,Θ) ∈ (0, π) × Sn−1 7→ (cosα, sinα cos µ, sinα sin µΘ), (1)

where Θ : Sn−1 → Rn is a parametrization of Sn−1 of the unit sphere in Rn.

Let f : S α → R be a function on S α. Then one can parametrize the normal graph over S α corresponding
to f by

(µ,Θ) 7→ (cos(α + f (µ,Θ)), sin(α + f (µ,Θ)) cos µ, sin(α + f (µ,Θ)) sin µΘ).

2.2 Stereographic Coordinates Adapted to a Pair of Hyperspheres

The construction in [1] uses canonical coordinates that are well adapted to the pair of the hyperspheres
Rk

2α+τ(S α) and Rk+1
2α+τ(S α). These are defined as follows. First, note that the points of closest approach

between the rotated spheres Rk
2α+τ(S α) and Rk+1

2α+τ(S α) are Rk
2α+τ(p+) ∈ Rk

2α+τ(S α) and Rk+1
2α+τ(p−) ∈ Rk+1

2α+τ(S α),
and therefore the point R2k+1

α+τ/2(p) lies on the geodesic γ at the midpoint between these two hyperspheres.
Now let K : Sn+1 → {−p} → Rn+1 denote the stereographic projection centered at p defined by

K(x0, x1, · · · , xn+1) :=
( x1

1 + x0 , · · · ,
xn+1

1 + x0

)
.

Then the desired adapted coordinates are given by the inverse of the mapping K ◦ R−(2k+1)
α+τ/2 : Sn+1 \

{−R(2k+1)
α+τ/2 (p)} → Rn+1.

The coordinate image of the geodesic γ is the y1-axis. The coordinate images of the two hyperspheres
Rk

2α+τ(S α) and Rk+1
2α+τ(S α) are two hyperspheres symmetrically located on either side of the origin centered

at two points on the y1-axis. Indeed, the coordinate image (y1, ŷ) of any point of Sn+1 of the form (1) lies on
the locus of points satisfying the equation

(y1 + d)2 + ‖̂y‖2 = r2, (2)

where r = r(α, τ) := sinα
cosα+cos(α+τ/2) , and d = d(α, τ) := sin(α+τ/2)

cosα+cos(α+τ/2) . Observe that d − r = tan(τ/4) is
displacement from the origin of the hypersphere determined by (2) in these coordinates.
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2.3 Normal Perturbation of the Hyperspheres

Each hypersphere in the initial configuration is perturbed slightly in the normal direction. In order to
preserve symmetry with respect to R2α+τ, the same perturbation will be used for each hypersphere. Thus it
suffices to explain how S α is perturbed.

The normal perturbation begins with the choice of a function G : S α → R which determines the normal
perturbation. For this, recall that the linearized mean curvature operator on the space of normal graphs over
the hypersurface Λ in Sn+1 is LΛ := ∆Λ + ‖BΛ‖2 + n, where ∆Λ is the Laplacian of Λ and BΛ is the second
fundamental form of Λ. In the case Λ = S α, then Lα := sin−2 α(∆Sn + n). Now we choose G to be the
Θ-independent solution of the equation Lα(G) = 0 which is singular at µ = 0 and µ = π and symmetric
with respect to µ 7→ π − µ. Explicitly, this function is

G(µ) := − sin µ − cos µ
∫ µ

π/2

1 − sinn−1 σ

cos2 σ sinn−1 σ
dσ.

whose asymptotic expansion at µ = 0 is

G(µ) =


−1 + log 2 − log µ + O(µ2| log µ|), n = 2

1
(n−2)µn−2 + O(µ4−n), n ≥ 3

Choose a small parameter ε > 0 and define the normal graph

S̃ α := exp(εn−1GNα)(S α \ {p+, p−})

where Nα is the outward unit normal vector field of S α. The coordinates y(µ,Θ) ∈ Rn+1 of a point in the
stereographic projection of the perturbed hyperspheres Rk

2α+τ(S̃ α) satisfy

y1(µ) = −D(µ) +

√
[R(µ)]2 − ‖̂y‖2

where R(µ) := sin(αεn−1+G(µ))
cos(αεn−1G(µ))+cos(α+τ/2) , and D(µ) := sin(α+τ/2)

cos(αεn−1G(µ))+cos(α+τ/2) . From this, together with the invert-
ibility of the relation between µ and ‖̂y‖ whenever both εn−1G(µ) and µ are small, one finds that

y1(‖̂y‖) = Gε(‖̂y‖) := −D(µ(‖̂y‖)) +

√
[R(µ(‖̂y‖))]2 − ‖̂y‖2,

whenever both εn−1G(µ) and µ are small.

2.4 Inserting Truncated Catenoids. Assembling the Approximate Solution

The next task is to find a truncation and rescaling of the catenoid that fits exactly within the gap between
the two perturbed hyperspheres. For this, observe that the ε̃-scaled catenoid ε̃Σ in R ×Rn can be written as
the union of two graphs over the Rn factor. That is, ε̃Σ = Σ+

ε̃
∪ Σ−

ε̃
, where Σ±

ε̃
:= {(±Fε̃(‖̂y‖), ŷ) : ‖̂y‖ ≥ ε̃};

the function Fε̃ : {x ∈ R : x ≥ ε̃} → R is defined by Fε̃(x) = ε̃F(x/ε̃) where F(x) :=
∫ x

1 (σ2n−2 − 1)−1/2dσ.
Comparing the asymptotic expansion of Gε(‖̂y‖) and ε̃F(‖̂y‖/ε̃), one finds that the matching is optimal if

lim
‖̂y‖→∞

ε̃F(x/ε̃) = ε̃cn = tan(τ/4)

in the dimensions n ≥ 3 and
ε̃ log(2/ε̃) = tan(τ/4) + εc2
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in dimension n = 2, for some constant cn, n ≥ 2, depending on n and τ. Moreover, observing that for
constants Cn, n ≥ 2, depending on n and τ, the choice ε̃ = εC1/(n−1)

n in dimensions n ≥ 3 makes the
coefficients of the term ‖̂y‖2−n in the expansion of Gε(‖̂y‖) and ε̃F(x/ε̃) coincide and the choice ε̃ = ε in
the dimension n = 2 makes the coefficients of the term log ‖̂y‖ in the expansion of Gε(‖̂y‖) and ε̃F(x/ε̃)
coincide.

Once ε and ε̃ have been found, the error |̃εF(‖̂y‖/ε̃) − Gε(‖̂y‖)| is made smallest when one chooses
‖̂y‖ = O(ρε), where ρε := ε(3n−3)/(3n−2).

To assemble the approximate solution, denote by S ± the stereographic coordinate images of a pair of
perturbed hyperspheres near the y1-axis. Let η : [0,∞) → R be a smooth, monotone cut-off function
satisfying η(s) = 0, for s ∈ [0, 1/2] and η(s) = 1, for s ∈ [2,∞). Define the function F̃α,τ : B̃2ρε (0) \ Bε(0) ⊆
Rn → R by

F̃α,τ(̂y) = ε(1 − η(‖̂y‖/ρε))F(‖̂y‖/ε) + η(‖̂y‖/ρε)Gε(‖̂y‖).
Then define the hypersurfaces Σ̃±ε = {(±F̃α,τ (̃y), ŷ) : ‖̂y‖ ∈ [ε, ρε]} so that Σ̃ε := Σ̃+

ε ∪ Σ̃−ε is a smooth
hypersurface connecting S + \ (R × B2ρε (0)) to S − \ (R × B2ρε (0)) through the catenoid. Note that there
exists a radius ρ̃ε so that the boundary of Rk

α+2τ(S α \ Bρ̃ε (p+))∪Rk+1
α+2τ(S α \ Bρ̃ε (p−)) under the stereographic

projection R2k+1
α+τ/2 ◦ K coincides with ∂(Σ̃+

ε ∪ Σ̃−ε ). Clearly ρ̃ε = O(ρε). The approximate solution with
parameters α and τ is the hypersurface

Λ̃α,τ :=
[ ∞⋃

k=0

Rk
2α+τ

(
S α \ ((Bρ̃ε (p−) ∪ Bρ̃ε (p+)

))] ∪
[ ∞⋃

k=0

R2k+1
α+τ/2 ◦ K−1(Σ̃ε)

]

where ε = ε(τ) is the scale parameter associated to τ.

2.5 Deforming the Approximate Solution. Banach Space Inverse Function Theo-
rem

Let Cyl(ρ) := {(y1, ŷ) : R × Rn : ‖̂y‖ < ρ} denote the cylinder of radius ρ parallel to the y1-axis in R × Rn.
The approximate solution Λ̃α,τ is divided into the following three regions.

• Let Nk
ε := R2k+1

α+τ/2 ◦ K−1(Σ̃ ∩Cyl(ρε/2)), and Nε = ∪∞k=0Nk
ε be the neck region of Λ̃α,τ.

• Let T k,±
ε := R2k+1

α+τ/2 ◦ K−1(Σ̃±ε ∩ [Cyl(2ρε) \ Cyl(ρε/2)]) and Tε = ∪∞k=0T k,+
ε ∪ T k,−

ε be the transition
region of Λ̃α,τ.

• Let Ek
ε := Rk

2α+τ(S α \ (Bρ̃ε (p+) ∪ Bρ̃ε (p−)) and Eε = ∪∞k=0Ek
ε = Λ̃α,τ \ [Nε ∪ Tε] be the exterior region

of Λ̃α,τ.

The approximate solution Λ̃α,τ has mean curvature almost equal to Hα everywhere except in the neck
and transition regions where the mean curvature transitions to zero. To deform Λ̃α,τ into an exactly CMC
hypersurface, choose a function f : Λ̃α,τ → R and then consider the deformation Φ f : Λ̃α,τ → Sn+1 given
by Φ f (q) := expq( f (q)N(q)), where expq is the exponential map at the point q and N(q) is the outward unit
normal vector field of Λ̃α,τ at the point q. Finding an exactly CMC normal graph near Λ̃α,τ therefore consists
of finding a function f satisfying the equation HΦ f (Λ̃α,τ) = Hα, where HΛ denotes the mean curvature of a
hypersurface Λ. Let Φα,τ be the operator

Φα,τ : f 7→ HΦ f (Λ̃α,τ) − Hα.

5
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This is a quasi-linear, second order partial differential operator for the function f whose zero gives the
desired deformation of Λ̃α,τ. Finding a solution of the equation Φα,τ( f ) = 0 when τ is small is accomplished
by invoking the Banach space inverse function theorem.

Theorem 4 (Banach Space Inverse Function Theorem) Let Φ : Y → Z be a smooth map of Banach
spaces with the noem ‖ · ‖. Set Φ(0) := E and define the linearized operator

L(u) := DΦ(0)(u) =
d
ds

Φ( f + su)
∣∣∣∣
f =0,s=0

.

Suppose L is bounded and either L is invertible and satisfies ‖L−1(z)‖ ≤ C‖z‖, for all z ∈ Z; or else L is
surjective and possesses a bounded right inverse R : Z → Y satisfying

‖R(z)‖ ≤ C‖z‖, ∀z ∈ Z. (3)

Choose ρ so that if y ∈ Bρ(0) ⊆ Y, then

‖L(x) − DΦ(y)(x)‖ ≤ 1
2C
‖x‖, ∀x ∈ Y, (4)

where C > 0 is a constant. Then if z ∈ Z is such that

‖z − E‖ ≤ ρ

2C
, (5)

there exists a unique x ∈ Bρ(0) so that Φ(x) = z. Moreover, ‖x‖ ≤ 2C‖z − E‖.

The inverse function theorem states that, if an appropriate Banach space is so chosen that the lineariza-
tion of Φα,τ at f = 0 is surjective with uniformly bounded right inverse, then Φα,τ can be inverted on a small
neighborhood of Φα,τ(0). Thus if Φα,τ(0) is sufficiently small, i.e. that the mean curvature of S̃ deviates
very little from Hα with respect to the norm of the Banach space, then there exists f so that Φα,τ( f ) = 0.

However the operator DΦα,τ(0) is not surjective with uniformly bounded right inverse on arbitrary Ba-
nach spaces and so the inverse function theorem does not apply in general. The obstructions to invertibility
come from the Jacobi fields of the approximate solution. These are the eigenfunctions of the operator
DΦα,τ(0) with zero or small eigenvalues tending to zero as the approximate solution becomes singular.
Their origin is geometric: first, the isometries of the ambient Sn+1 preserve mean curvature and thus all in-
finitesimal isometries are in the kernel of DΦα,τ(0); second, when the surface consists of several constituent
pieces separated by small necks, as in the present case, then those motions of the surface corresponding
to an infinitesimal isometry on one of the constituents and keeping the others fixed (with transition on the
neck region), generate for DΦα,τ(0) small eigenvalues. These phenomena ensure that DΦα,τ(0) fails to
be bounded below by a positive constant on any Banach space which is not transverse to the kernel and
approximate kernel of DΦα,τ(0).

These obstructions to controllable invertibility is avoided by exploiting the natural symmetry of Λ̃α,τ

and deforming Λ̃α,τ equivariantly (i.e. deformations of Λ̃α,τ are forced to preserve all symmetries). The
controllable invertibility of DΦα,τ(0) is contingent on whether the Jacobi fields –both the global ones and
those on the individual constituents of Λ̃α,τ– possess these additional symmetries or not. If it turns out that,
on each summand of Λ̃α,τ, there are no Jacobi fields possessing the symmetries, then the space of equivariant
deformations of Λ̃α,τ is transverse to the kernel and approximate kernel associated to small eigenvalues, and
then DΦα,τ(0) is controllably invertible.

The following three lemmas gather the necessary information about the Jacobi fields of the hyperspheres
and the generalized catenoids; here the ε-scaled catenoid εΣ in R × Rn is parametrized by

(s,Θ) ∈ R × Sn−1 7→ ε(ψ(s), φ(s)Θ)

where φ(s) := (cosh(n − 1)s)1/(n−1) and ψ(s) :=
∫ s

0 φ
2−n(σ)dσ.

6
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Lemma 5 The nontrivial Jacobi fields of the hypersphere S α are generated by the restriction to S α of
the coordinate functions xk, k = 1, · · · , n + 1.

Lemma 6 ([3], Proposition 4) Assume that δ < 0 is fixed and n ≥ 3. Then there is no non-trivial Jacobi
field of the generalized catenoid εΣ which is bounded by a constant times (cosh s)δ and is invariant under
the action of the symmetry u(s,Θ) = u(s, B(Θ)) for all B ∈ O(n).

Lemma 7 ([2], Lemma 4) Assume that δ < 2 is fixed and n = 2. The subspace of Jacobi fields of εΣ
which are bounded by a constant times (cosh s)δ and are invariant under the action of symmetry (s, θ) 7→
(s, θ + π) is two-dimensional spanned by the functions J0(s, θ) = s tanh s − 1 and J1(s, θ) = s tanh s. Here
the Jacobi fields J0 arises from varying the parameter τ and J1 arises from the rotation Rθ.

2.6 Function Spaces and Norms

To obtain estimates (3), (4) and (5), one in addition needs to introduce an appropriate weighted Schauder
norm to measure the “size” of functions f ∈ C2,β(Λ̃α,τ). To define this norm, one must first define an
appropriate weight function on Λ̃α,τ. Namely, let ε = ε(τ) be the scale parameter of Λ̃α,τ, and fix some ρ0
independent of τ satisfying ρ0 � 2ρε such that the balls of radii 2ρ0 centered on two different neck regions
do not intersect. The weight function ζε : Λ̃α,τ is defined by

ζε(q) =



ε cosh s, q ∈ R2k+1
α+τ/2 ◦ K−1(εψ(s), εφ(s)Θ) ∈ Nk

ε

interpolation, q ∈ Tε,
dist (q, γ), q ∈ Eε ∩ [∪N−1

k=0 Bρ0 (R2k+1
α+τ/2(p))]

interpolation, q ∈ Eε ∩ [∪N−1
k=0 (B2ρ0 (R2k+1

α+τ/2(p)) \ Bρ0 (R2k+1
α+τ/2(p))]

2ρ0, q ∈ Eε \ [∪N−1
k=0 B2ρ0 (R2k+1

α+τ/2(p))].

The interpolation is such that ζε is smooth and monotone, and is such that ζε is invariant under the symme-
tries of Λ̃α,τ.

Let T be any tensor on Λ̃α,τ, and letU ⊆ Λα,τ be any open subset. Recall the notation

|T |0,U = sup
q∈U
|T (q)| and [T ]β,U = sup

q,q′∈U

|T (q′) = Ξq.q′ (T (q))|
dist (q, q′)β

,

where the norms and the distance function that appear are taken with respect to the induced metric of
Λ̃α,τ, while Ξq,q′ is the corresponding parallel transport operator from q to q′. Now let Tubρ(γ) be the
tubular neighborhood of γ having width ρ, and for any arctan(ε/2) < ρ < ρ0, define the annular region
Aρ = Λ̃α,τ ∩ [Tubρ(γ) \ Tubρ/2(γ)]. Then the norm on anyU ⊂ Aρ is

| f |`,β,δ,U∩Aρ := ζ−δε | f |0,U∩Aρ + · · · + ζ−δ+`ε |∇` f |0,U∩Aρ + ζ
−δ+`+β
ε [∇` f ]β,U∩Aρ .

LetU ⊂ Λ̃α,τ. Then C`,β
δ norm of a function defined onU is given by

| f |C`,β
δ (U) :=

∑̀

i=0

|∇` f |0,U∩[Λ̃α,τ\Tubρ0 (γ)] + [∇` f ]β,U∩[Λ̃α,τ\Tubρ0 (γ)] + sup
ρ∈(2ε0,ρ0]

| f |`,β,δ,U∩Aρ .

The Banach space C`,β
δ (X) denotes the C`,β tensors fields in X measured with respect to this norm, where

X := { f : Λ̃α,τ → R : f ◦ R2α+τ = f ◦ T = f and f ◦ S 01
B = f , ∀B ∈ S O(n)};

7
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here T ∈ O(n+2) is the reflection defined by T (x0, x1, · · · , xn+1) = (x0,−x1, · · · , xn+1) and S 01
B =

(
I 0
0 B

)
∈

O(n + 2). The operator Φα,τ can be symmetrized to yield a new operator (which is given the same name)
Φα,τ : X → X. Then

L̃α,τ := DΦα,τ( f ) : C2,β
δ (X)→ C0,β

δ−2(X)

is a bounded operator whose operator norm is bounded by a constant independent of τ.

2.7 The Linear and Nonlinear Estimates. The Proof of Theorem 1

For n ≥ 3 and n = 2, choose δ ∈ (2 − n, 0) and δ ∈ (−1, 0), respectively. Let Y = C2,β
δ (X), Z = C0,β

δ−2(X).
The linear estimate (3) is given in Proposition 12 [1] for n ≥ 3 and Proposition 13 [1] for n = 2. To obtain
the nonlinear estimates (4) and (5) amounts to showing that Φα,τ(0) − Hα is small in the C0,β

δ−2-norm and
that DΦα,τ( f ) − L̃α,τ can be made to have small C0,β

δ−2-operator norm if f is chosen sufficiently small in the
C2,β
δ -norm. These are given in Proposition 14 [1] and Proposition 15 [1].

To prove Theorem 1, observe that by Proposition 12 [1] and Proposition 13 [1], one has the linear
estimate

|L̃−1
α,τ( f )|C2,β

δ (X) ≤ CL| f |C0,β
δ−2(X),

where CL = O(εδ) in dimension 2 and CL = O(1) in higher dimensions. Therefore the linearization L̃α,τ is
injective on C2,β

δ (X). But L̃α,τ − ∆ is a compact operator so L̃α,τ has the same index as ∆ on C2,β
δ (X). By

self-adjointness, this index is zero, so that L̃α,τ must be surjective as well.

Now in consideration of Proposition 15 [1], one makes the choice

| f |C2,β
δ (X) ≤ ρ, where ρ =

{ O(ε1−2δ) in dimension n = 2,
O(ε1−δ) in higher dimensions,

to achieve the bound |DΦα,τ( f )(u) − L̃α,τ(u)|C0,β
δ−2(X) ≤ 1

2CL
|u|C2,β

δ (X), for any u ∈ C2,β
δ (Λ̃α,τ). Moreover, Propo-

sition 14 [1] asserts that
|Φα,τ(0) − Hα|C0,β

δ−2(X) = O(ε(2−δ)(3n−3)/(3n−2)),

and therefore if ε is made sufficiently small by a small enough choice of τ and δ is chosen appropriately,
then |Φα,τ(0) − Hα|C0,β

δ−2
≤ ρ

2CL
, and then by the inverse function theorem, a solution of f := fα,τ of the

deformation problem can be found.

As a further consequence of these estimates, the Banach space inverse function theorem asserts that the
solution of the equation Φα,τ( fα,τ) = 0 satisfies the estimate

| fα,τ|C2,β
δ (X) = O(CLε

(2−δ)(3n−3)/(3n−2))

which is much smaller than ε. Therefore the size of the perturbation of Λ̃α,τ created by the normal deforma-
tion of magnitude fα,τ is much smaller than the width of Λ̃α,τ at its narrowest points, i.e., in the neck regions
where the width is O(ε). Thus Λ̃0

α,τ remains embedded under this normal deformation.

3. PROOF OF MAIN THEOREM

The proof of Main Theorem follows broadly the same plan as the proof of Theorem 1 in [1], which is
sketched in Section 2. The significant difference between this proof and that in [1] is the choice of the

8
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weight function and the weighted Schauder norm on the approximate solution, which is made in order to
apply Banach space inverse function theorem (Theorem 2) to deform the approximate solution in the present
setting.

3.1 Assembling the Approximate Solution

For small τ, let Λα,τ be the Delaunay-like surface constructed in Theorem 1 and let

Λα,τ =

∞⋃

k=0

Λk
α,τ, where Λk

α,τ := Rk
2α+τ(Λ

0
α,τ),

where the central part of each summand Λk
α,τ, k ≥ 0, is around the neck. Write Λ0

α,τ = Λ0+
α,τ ∪ Λ0−

α,τ as the
union of its upper and lower halves which are situated symmetrically on either side of the neck. Cut along
the neck and separate the upper and lower halves of Λ0

α,τ by a small distance τ∗. The first step is to construct
a smooth hypersurface with boundary in Rn+1 that interpolates between the stereographic coordinate images
of the separated upper and lower halves of Λ0

α,τ. In order to preserve symmetry with respect to R2α+τ+τ∗ , the
same perturbation will be used for each summand.

Namely, for α1 ∈ (0, π/2), choose τ1 so small that Λα1,τ1 can be constructed as in Theorem 1. For a
small positive number τ∗, we set Λ̂+ := R2α1+ 1

2 τ∗
(Λ0+

α1,τ1
) and Λ̂− := R2α1− 1

2 τ∗
(Λ0−

α1,τ1
), and then let Λ̂0

α1,τ1,τ∗ =

Λ̂+ ∪ Λ̂−. There exist τ2 < τ1, α2 > α1, τ1 − τ2, α2 − α1 being small, such that Λ̂0
α1,τ1,τ∗ and Λ0

α2,τ2
have the

same tangent spaces at the points where they intersect. Let Λ̂0
α1,τ1,τ∗ and Λ0

α2,τ2
intersect at the set Γ and τ∗∗

be the positive number such that
dist (Γ,K−1{y1 = 0}) = τ∗∗/2.

We have
τ∗∗ = O((τ∗)s∗ ), for some s∗ ∈ (0, 1). (6)

We notice that τ2 and τ∗∗ are completely determined by τ1, τ∗, α1 and α2.

Let the stereographic coordinate image of Λ̂0
α1,τ1,τ∗ and Λα2,τ2 be the graphs of ‖̂y‖ = Ĝα1,τ1,τ∗ (y1)

and ‖̂y‖ = Ĝα2,τ2 (y1), respectively. Let η : [ 0,∞) → R be a smooth, monotone cut-off function sat-
isfying η(s) = 0, for s ∈ [ 0, 1/2] and η(s) = 1, for s ∈ [ 2,∞). Define the function Gα1,τ1,α2,τ∗ :
[−2 tan(τ∗∗/8), 2 tan(τ∗∗/8)] ⊆ R→ R by

Gα1,τ1,α2,τ∗ (y1) =

(
1 − η

( |y1|
tan(τ∗∗/8)

))
Ĝα1,τ1,τ∗ (y1) + η

( |y1|
tan(τ∗∗/8)

)
Ĝα2,τ2 (y1). (7)

Then define the hypersurfaces

Σ̂±τ∗ :=
{
(±y1,Gα1,τ1,α2,τ∗ (±y1)Θ) : y1 ∈ [ 0, 2 tan(τ∗∗/8)]

} ⊂ R × Sn−1.

Denote the stereographic coordinate image of Λ̂± by Λ±. Then Σ̂τ∗ := Σ̂+
τ∗ ∪ Σ̂−τ∗ is a smooth hypersurface

connecting Λ+ \[(0, 2 tan(τ∗∗/8))×Rn] to Λ− \[(−2 tan(τ∗∗/8), 0)×Rn] through the stereographic coordinate
image of Λ0

α2,τ2
. Now let

Ŝ (τ) = {q : dist (q,K−1({y1 = 0})) < τ},
be a strip on Sn+1 centered at the neck {K−1({y1 = 0)}}. Note that there exists a number τ̃∗∗ so that the
boundary of

Rk
2α1+τ1

R2k−1
α1+ 1

2 τ∗

(
Λ̂+ \ [Ŝ (̃τ∗∗) \ Ŝ (τ∗/2)]

)⋃
Rk+1

2α1+τ1
R2k−2
α1+ 1

2 τ∗

(
Λ̂− \ [Ŝ (̃τ∗∗) \ Ŝ (τ∗/2)]

)

9
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under the stereographic projection R2k+1
α1+ 1

2 τ1
R4k−3

1
2α1+ 1

4 τ∗
◦ K coincides with ∂(̂Σ+

τ∗ ∪ Σ̂−τ∗ ). Clearly τ̃∗∗ = O(τ∗∗).

The approximate solution with parameters α and τ∗ is the hypersurface

Λ̂α,τ1,τ2,τ∗ :=
[ ∞⋃

k=0

Rk
2α1+τ1

R2k−1
α1+ 1

2 τ∗
(Λ̂0

α1,τ1,τ∗ \ Ŝ (̃τ∗∗))
]⋃[ ∞⋃

k=0

R2k+1
α1+τ1/2R2k−1

α1+ 1
2 τ∗
◦ K−1 (̂Στ∗ )

]
.

3.2 Deforming the Approximate Solution

Let
S (τ) := {(y1, ŷ) : R × Rn : |y1| < τ}

denote the strip of width τ centered at the subspace {y1 = 0} in R × Rn. Analogously to [1] (see 2.5), we
divide the approximate solution Λ̂α,τ1,τ2,τ∗ into the following three regions.

• Let N̂k
τ∗ := R2k+1

α1+ 1
2 τ1

R4k−3
1
2α1+ 1

4 τ∗
◦ K−1 (̂Στ∗ ∩ S ( 1

2 tan(τ∗∗/8)) and call N̂τ∗ =
⋃∞

k=0 N̂k
τ∗ as the neck region

of Λ̂α,τ1,α2,τ∗ .

• Let T̂ k,±
τ∗ := R2k+1

α1+ 1
2 τ1

R4k−3
1
2α1+ 1

4 τ∗
◦ K−1 (̂Σ±τ∗ ∩

(
S (2 tan(τ∗∗/8) \ S ( 1

2 tan(τ∗∗/8)
)
]) and call

T̂τ∗ :=
⋃∞

k=0(T̂ k,+
τ∗ ∪ T̂ k,−

τ∗ ) as the transition region of Λ̂α1,τ1,α2,τ∗ .

• Let Êk
τ∗ := Rk

2α1+τ1
R2k−1
α1+ 1

2 τ∗
(Λ0

α1,τ1,τ∗ \ Ŝ (̃τ∗∗)) and Êτ∗ :=
⋃∞

k=0 Êk
τ∗ = Λ̂α1,τ1,α2,τ∗ \ [ N̂τ∗ ∪ T̂τ∗ ] be the

exterior region of Λ̂α1,τ1,α2,τ∗ .

The approximate solution Λ̂α,τ1,α2,τ∗ has mean curvature almost equal to Hα everywhere except in the
neck and transition regions where the mean curvature transitions to Hα. We shall deform Λ̂α,τ1,α2,τ∗ into an
exactly CMC hypersurface by proceeding in an essentially parallel fashion to that adopted in [1], which is
described in Section 2.

Namely, we proceed to find an exactly CMC normal graph near Λ̂α,τ1,α2,τ∗ by considering a function f :
Λ̂α,τ1,α2,τ∗ → R and its corresponding deformation Φ̂ f : Λ̂α,τ1,α2,τ∗ → Sn+1 given by Φ̂ f (q) := expq( f (q)N(q))
where expq is the exponential map at the point q and N(q) is the outward unit normal vector field of Λ̂α,τ1,α2,τ∗

at the point q. Let HΛ denotes the mean curvature of a hypersurface Λ, and then let Φ̂α,τ1,α2,τ∗ be the operator

Φ̂α,τ1,α2τ∗ : f 7→ H
Φ̂ f (Λ̂α,τ1 ,α2 ,τ∗ )

− Hα,

which is a quasi-linear, second order partial differential operator for the function f and whose zero gives
the desired deformation of Λ̂α,τ1,α2,τ∗ . Finding a solution of the equation Φ̂α,τ1,α2,τ∗ ( f ) = 0 when τ∗ is small
is accomplished by invoking Theorem 4 (the Banach space inverse function theorem).

3.3 Function Spaces and Norms

To obtain a linear estimate (3) and nonlinear estimates (4), (5) in Theorem 4, we need to introduce a suitable
weighted Schauder norm to measure the “size” of functions f ∈ C2,β(Λ̂α,τ1,α2,τ∗ ). To define this norm, we
first need to define an appropriate weight function on Λ̂α,τ1,α2,τ∗ .

We first define a weight function on the generalized catenoid εΣ. Recall that the ε-scaled catenoid εΣ
in R × Rn is parametrized by

(s,Θ) ∈ R × Sn−1 7→ ε(ψ(s), φ(s)Θ)

10
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where φ(s) := (cosh(n − 1)s)1/(n−1) and ψ(s) :=
∫ s

0 φ
2−n(σ)dσ. We observe that

φ2−n =
φ̇

sinh s
.

Let s0 > 0 be the value of s for which | sinh s0| = 1. We note that φ(s) − ε < |ψ(s)|, when |s| < |s0|, and
φ(s) − ε > |ψ(s)|, when |s| > |s0|.

Suppose that Λαi,τi is of the neck width εi, i = 1, 2. We may henceforth assume that τ∗ is so small that

εiψ(s0/2) > 2 tan(τ∗∗/8), i = 1, 2, (8)

and that the region K−1(S (tan(τ∗∗/8))) is contained in the neck regionsN i
εi

of Λαi,τi . We define the function
ζi(s,Θ), i = 1, 2, on R × Sn−1 as follows.

ζi(s,Θ) =



τ∗
2 if 0 < εiψ(s) < 1

2 tan(τ∗/8),
interpolation if 1

2 tan(τ∗/8) < εiψ(s) < 1
2 tan(τ∗/8),

εiψ(s), if tan(τ∗∗/8) < εiψ(s) < 2 tan(τ∗∗/8),
interpolation if εiψ(s) > 2 tan(τ∗∗/8) and s < s0/2,
εiφ(s), s ≥ s0/2.

The interpolation is such that ζi is smooth and monotone, and is such that ζi is invariant under the symmetries
of Λ̂α,τ1,α2,τ∗ .

Also we parametrize the neck and transient regions in Λ̂k
αi,τi

, i = 1, 2, k = 0, 1, · · · ,N − 1, in an obvious
way by

(s,Θ) ∈ (−si, si) × Sn−1 7→ εi(ψ(s), φτi (s)Θ), (9)

for some si ∈ R, si > 0, where φτi is some smooth function depending on αi, τi.

Now fix some τ0 satisfying τ0 � 2τ∗ such that the strip Ŝ (2τ0) of width 2τ0 centered on two different
neck regions do not intersect. And let 2ρ̂0 be the radius of ∂Ŝ (2τ0) ∩ Λ0

α1,τ1
. Further, set

d1,k(q) = max
{
dist (q, γ) − ε1, dist (q,R2k+1

2α1+τ1
Rk+1
α1+ 1

2 τ∗
◦ K−1{y1 = 0}) − τ∗

2

}
. (10)

The weight function on Λ̂α1,τ1,α2,τ∗ is defined as follows.

ζτ∗ (q) =



ζ2, q ∈ N̂τ∗ ,

interpolation, q ∈ [
⋃N−1

k=0 Rk+1
2α1+τ1

R2k−1
α1+ 1

2 τ∗
◦ K−1(S ( 3

2 tan( τ∗∗8 )))] \ N̂τ∗ ,

dist (q,K−1{y1 = 0})), q ∈ T̂τ∗ \ [
⋃N−1

k=0 Rk+1
2α1+τ1

R2k−1
α1+ 1

2 τ∗
◦ K−1(S ( 3

2 tan( τ∗∗8 )))],

interpolation, q ∈ Êk
τ∗ ∩ [

⋃N−1
k=0 Rk+1

2α1+τ1
R2k−1
α1+ 1

2 τ∗
(Ŝ ( 1

2τ0))],

d1,k(q), q ∈ Êτ∗ ∩ [Rk+1
2α1+τ1

R2k−1
α1+ 1

2 τ∗
(Ŝ (τ0) \ Ŝ ( 1

2τ0))],

interpolation, q ∈ Êτ∗ ∩ [
⋃N−1

k=0 Rk+1
2α1+τ1

R2k−1
α+ 1

2 τ∗
(Ŝ (2τ0) \ Ŝ (τ0))],

2ρ̂0, q ∈ Êτ∗ \ [
⋃N−1

k=0 Rk+1
2α1+τ1

R2k−1
α+ 1

2 τ∗
(Ŝ (2τ0))].

The interpolation is such that ζτ∗ is smooth and monotone, and is such that ζτ∗ is invariant under the sym-
metries of Λ̂α,τ1,α2,τ∗ . Now for any 0 < τ < τ0, define the annular region Aτ = Λ̂α,τ1,α2,τ∗ ∩ [Ŝ (τ) \ Ŝ (τ/2)].
Then the norm on anyU ⊂ Aτ is

| f |`,β,δ,U∩Aτ := ζ−δτ∗ | f |0,U∩Aτ + · · · + ζ−δ+`τ∗ |∇` f |0,U∩Aτ + ζ
−δ+`+β
τ∗ [∇` f ]β,U∩Aτ .

11
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LetU ⊂ Λ̂α,τ1,α2,τ∗ . Then Ĉ`,β
δ norm of a function defined onU is given by

| f |Ĉ`,β
δ (U) :=

∑̀

i=0

|∇` f |0,U∩[Λ̂α,τ1 ,α2 ,τ∗ \Ŝ (τ0)] + [∇` f ]β,U∩[Λ̂α,τ1 ,α2 ,τ∗ \Ŝ (τ0)] + sup
τ∈(2τ∗,τ0]

| f |`,β,δ,U∩Aτ .

To meet the requirement that the functions under consideration be invariant with respect to all the symme-
tries of Λ̂α,τ1,α2,τ∗ , let us consider the space of tensor fields

X := { f : Λ̂α,τ1,α2,τ∗ → R : f ◦ R2α+τ = f ◦ T = f and f ◦ S 01
B = f , ∀B ∈ S O(n)};

here T ∈ O(n + 2) is the reflection and S 01
B ∈ O(n + 2) for B ∈ O(n) is the rotation of last n coordinates. as

defined in 2.7, Let Ĉ`,β
δ (X) denote the C`,β tensor fields in X measured with respect to this norm.

Observe that the operator Φ̂α,τ1,α2,τ∗ can be symmetrized to yield a new operator (which is given the
same name) Φ̂α,τ1,α2,τ∗ : X → X. Then it is easy to verify that

L̂α,τ1,α2,τ∗ := DΦ̂α,τ1,α2,τ∗ ( f ) : Ĉ2,β
δ (X)→ Ĉ0,β

δ−2(X)

is a bounded operator whose operator norm is bounded above by a constant independent of τ∗.

3.4 The Linear Estimates

The aim of this section is to derive the linear estimate (4) in the following form.

Poposition 8 Suppose n ≥ 3 and choose δ ∈ (2 − n, 0) and τ∗ > 0 sufficiently small. The linearized
operator L̂α,τ1,α2,τ∗ := DΦα1,τ1,α2,τ∗ ( f ) : Ĉ2,β

δ (X)→ Ĉ0,β
δ−2(X) satisfies the estimate

|L̂α,τ1,α2,τ∗u|Ĉ0,β
δ−2(X) ≥ C|u|Ĉ2,β

δ (X),

where C is a constant independent of τ∗.

Poposition 9 Let ŝ∗ = min(2s∗, 1), where s∗ is defined in (6). Suppose n = 2 and choose δ ∈ (−ŝ∗, 0)
and τ∗ > 0 sufficiently small. The linearized operator L̂α1,τ1,α2,τ∗ := DΦα1,τ1,α2,τ∗ ( f ) : Ĉ2,β

δ (X) → Ĉ0,β
δ−2(X)

satisfies the estimate
|L̂α,τ1,α2,τ∗u|Ĉ0,β

δ−2(X) ≥ C(τ∗)−δ|u|Ĉ2,β
δ (X)

where C is a constant independent of τ∗.

The method of proof of Proposition 8 and Proposition 9, analogous to that of Proposition 12 [1], is to
construct an explicit solution of the equation L̂α,τ1,α2,τ∗u = f by patching together local solutions on the
neck region and away from the neck region.

3.4.1 Jacobi Fields on Delaunay-Like Hypersurfaces

It is essential to understand the Jacobi fields of the Delaunay-like hypersurfaces in some detail. For this
purpose, let us parametrize the neck regions of Λαi,τi , i = 1, 2, as in (9). Denoting N̂1

ε1
, T̂ 1

ε1
and Ê1

ε1
as the

12



Fei-tsen Liang/Studies in Mathematical Sciences Vol.2 No.2, 2011

neck, transient and exterior regions of Λ̂α1,τ1 , we define the weight function ζ̂1 on Λ̂α1,τ1 as follows.

ζ̂1(q) =



ζ1, q ∈ ⋃N−1
k=0 Rk+1

2α1+τ1
R2k−1
α1+ 1

2 τ∗
◦ K−1(S ( 3

2 tan( τ∗∗8 ))),

interpolation, q ∈ T̂ 1
ε1
\⋃N−1

k=0 Rk+1
2α1+τ1

R2k−1
α1+ 1

2 τ∗
◦ K−1(S ( 3

2 tan( τ∗∗8 ))),

d1,k(q), q ∈ Ê1
ε1
∩ [Rk+1

2α1+τ1
R2k−1
α1+ 1

2 τ∗
(Ŝ (τ0) \ Ŝ (2̃τ∗∗))],

interpolation, q ∈ Ê1
ε1
∩ [

⋃N−1
k=0 Rk+1

2α1+τ1
R2k−1
α+ 1

2 τ∗
(Ŝ (2τ0) \ Ŝ (τ0))],

2ρ̂0, q ∈ Ê1
ε1
\ [

⋃N−1
k=0 Rk+1

2α1+τ1
R2k−1
α1+ 1

2 τ∗
(Ŝ (2τ0))],

where d1,k(q) is defined in (10).

Also, setting
d2(q) = max{dist (q, γ) − ε2, dist (q,K−1{y1 = 0})},

and denoting N2
ε2

, T 2
ε2

and E2
ε2

as the neck, transient and exterior regions of Λα2,τ2 , we define the weight
function on ζ̂2 on Λ0

α2,τ2
as follows.

ζ̂2(q) =



ζ2, q ∈ K−1(S ( 3
2 tan( τ∗∗8 ))),

interpolation, q ∈ Λ0
α2,τ2
∩ T 2

ε2
\ K−1(S ( 3

2 tan( τ∗∗8 ))),
d(q), q ∈ Λ0

α2,τ2
∩ E2

ε2
∩ [(Ŝ (τ0) \ Ŝ (2̃τ∗∗))],

interpolation, q ∈ Λ0
α2,τ2
∩ E2

ε2
∩ [Ŝ (2τ0) \ Ŝ (τ0)],

2ρ̂0, q ∈ Λ0
α2,τ2
∩ E2

ε2
\ (Ŝ (2τ0)).

Let | · |Ĉ`,β
δ (Λ̂α1 ,τ1 ) denote the weighted Ĉ`+β

δ -norm on Λ̂α1,τ1 so that

|u|C`,β
δ (Λ̂α1 ,τ1 ) := |(̂ζ1)−δu|0,Λα̂1 ,τ1

+ · · · + |(̂ζ1)−δ+`∇`u|0,Λ̂α1 ,τ1
+ |(̂ζ1)−δ+`+β∇`u|β,Λ̂α1 ,τ1

,

where the norms and derivatives correspond to the metric on Λα1,τ1 . Also, let |·|Ĉ`,β
δ (Λα2 ,τ2 ) denote the weighted

Ĉ`+β
δ -norm on Λα2,τ2 so that

|u|C`,β
δ (Λα2 ,τ2 ) := |(̂ζ1)−δu|0,Λ0

α2 ,τ2
+ · · · + |(̂ζ1)−δ+`∇`u|0,Λ0

α2 ,τ2
+ |(̂ζ1)−δ+`+β∇`u|β,Λ0

α2 ,τ2
,

where the norms and derivatives correspond to the metric on Λα2,τ2 . In this parametrization, the symmetries
induced on functions of Λ̂α1,τ1 and Λα2,τ2 are u(s,Θ) = u(−s,Θ) and u(s,Θ) = u(s, B(Θ)) for all B ∈ O(n).
The corresponding spaces of functions invariant under these symmetries will be denoted by Ĉ`,β

δ,sym(Λ̂α1,τ1 )

and Ĉ`,β
δ,sym(Λα2,τ2 ), respectively.

The proof of Lemma 10 and Lemma 16 below is adapted from that of Proposition 7 in [3].

Lemma 10 Assume that δ ∈ (2 − n, 0) is fixed and n ≥ 3 and parametrize the neck regions of Λαi,τi ,
i = 1, 2, as in (9). Then there is no non-trivial Jacobi field of the surface Λ̂α1,τ1 , which is bounded by a
constant times (̂ζ1)δ, and is invariant under the action of the symmetry u(s,Θ) = u(s, B(Θ)) for all B ∈ O(n).

Also, there is no non-trivial Jacobi field of the surface Λ0
α2,τ2

, which is bounded by a constant times |̂ζ2|δ,
and is invariant under the action of the symmetry u(s,Θ) = u(s, B(Θ)) for all B ∈ O(n).

Proof We only prove the second statement, as the first can be prove analogously. The proof is by
contradiction. First we show that for sufficiently small τ j

2 the statement of Lemma 10 is true. Assume
that for some sequence τ j

2 tending to 0, the Jacobi operator L̂α2,τ
j
2

= ∆Λ
α2 ,τ

j
2

+ |BΛ
α2 ,τ

j
2

|2 + n of Λαi,τ
j
2

has

13
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non-trivial element w j
2 in the kernel which is invariant under the symmetries w j

2(s,Θ) = w j
2(s, B(Θ)) for all

B ∈ O(n), and is bounded by a constant times (̂ζ2)δ. Let q j
2 = ε′(ψ(s j

2), φ(s j
2)Θ j

2), q j
2 ∈ Λ0

α2,τ2
be the point

where (ζ0(q j
2))−δwi(q

j
2) = 1.

One can assume that Λα2,τ
j
2

converges in a smooth enough sense to copies of the hyperspheres S α2 with

gluing points Rk
α2

(p) removed and the operators L̂α2,τ
j
2

converge to the Jacobi operator on S α2 .

Case 1. First assume that q j
2 converges, up to a subsequence, to some point in the hypersphere S α2 \{p}. The

use of elliptic estimates together with Arzela-Ascoli’s theorem is enough to prove that, up to a subsequence,
w j

2 converges to a limit function w∞2 uniformly on compact subsets of the hypersphere S α2 \ {p}. The limit
function w∞2 satisfies Lαi w

∞
2 = 0 on S α2 \ {p} and

|(dist (·, γ))−δw∞2 |L∞(S α2 ) = 1. (11)

Since we have assumed that δ > n − 2, the singularity is removable and hence w∞2 is smooth. Finally,
since w j

2 is invariant under the action of the symmetry w∞2 (s,Θ) = w∞2 (s, B(Θ)) for all B ∈ O(n). The limit
function w∞2 is also invariant under the action of the symmetry w∞2 (s,Θ) = w∞2 (s, B(Θ)) for all B ∈ O(n).
This implies by Lemma 5 that w∞2 = 0, which is in contradiction with (11) and rules out this first case.

Case 2. Next assume that q j
2 in the neck region converges, up to a subsequence, to some point in the

generalized catenoid ε2Σ. The use of elliptic estimates together with Arzela-Ascoli’s theorem is enough to
prove that, up to a subsequence, w j

2 converges to a limit function w∞2 uniformly on compact subsets of the
catenoid ε2Σ. The limit function w∞2 satisfies Lε2Σw∞2 = 0 on ε2Σ and

|(ζi)−δw∞|L∞(ε2Σ) = 1. (12)

Finally, since w j
2 is invariant under the action of the symmetry w∞2 (s,Θ) = w∞2 (s, B(Θ)) for all B ∈ O(n).

the limit function w∞2 is also invariant under the action of the symmetry w∞2 (s,Θ) = w∞2 (s, B(Θ)) for all
B ∈ O(n). Since we have assumed δ < 0, Lemma 6 implies that w∞2 = 0, which is in contradiction with
(12). This rules out this case.

Case 3. Next assume that q j
2 converges, up to a subsequence, to the point p. The use of elliptic estimates

together with Arzela-Ascoli’s theorem is enough to prove that, up to a subsequence, w j
2 converges to a limit

function w∞2 uniformly on compact subsets of S α2 \ {p}. The limit function w∞i satisfies ∆Sn w∞2 = 0 on
S α2 \ {p} and

|(dist (·, γ))−δw∞2 |L∞ ≤ 1. (13)

Since we have assumed that δ > n − 2, the singularity is removable and hence w∞2 is smooth. This implies
that w∞2 = 0, which is in contradiction with (13) and rule out this second case.

Having ruled out all the possible cases, the proof for small τ2 is complete.

Next let T be the set of τ for which the second statement of this lemma. We observe that, since Λα2,τ
j
2
→

Λα2,τ2 as τ j
2 → τ2, in a smooth enough sense, analogous arguments show that the T is an open subset of R

and complete the proof. ♦

On the other hand, for the cases n = 2 and future purposes, recall that any one-parameter family of
isometries Rt of the ambient space X in which a CMC hypersurface Λ is situated gives rise to the element〈 d

dt Rt

∣∣∣∣
t=0
,NΛ

〉
in the kernel of the linearized mean curvature operator, where NΛ is the unit normal vector

field of Λ. To describe these Jacobi fields, parametrize the neck and transient regions of Λα,τ by

(s,Θ) ∈ R × Sn−1 7→ ε(ψ(s), φτ(s)Θ),

where φτ is some smooth function depending on α, τ.
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Lemma 11 The Jacobi field Ĵ1 of the hypersurface Λα,τ arising from the rotation Rθ has odd symmetry
and is bounded in |s|, which can be normalized to have the asymptotic expansion

Ĵ1(y1) = 1 + J̃1(y1), where lim
|y1 |→τ∗/2

J̃1(y1) = 0. (14)

This follows since the Jacobi field J1 is calculated by projecting a constant vector field along the normal
vector field NΛα,τ

of Λα,τ.

Lemma 12 The Jacobi field Ĵ0 of the hypersurface Λα,τ arising from varying the parameter τ is bounded
in s in dimension n ≥ 3 and has linear growth in |s| = |y1| when the dimension n = 2. When n = 2, Ĵ0 can
be normalized to have the asymptotic expansion

Ĵ0(y1) = −γ∗ + |y1 − τ∗
2
| + J̃0(y1), where lim

|y1 |→τ∗/2
J̃0(y1) = 0, (15)

where γ1 is a positive constant.

Proof Recall that Λα,τ is constructed via normal deformations of Λ̃α,τ. Namely, choose a function
f : Λ̃α,τ → R and then consider the deformation Φ f : Λ̃α,τ → Sn+1 given by Φ f (q) := expq( f (q)N(q))
where expq is the exponential map at the point q and N(q) is the outward unit normal vector field of Λ̃α,τ at
the point q. We have

expq( f (q)N(q)) = q + f (q)N(q) + O(| f |2), q ∈ Λ̃α,τ.

Denote Vdil as the vector field generating dilation of the catenoid, namely,

Vdil :=
n+1∑

k=1

yk ∂

∂yk = ψ
∂

∂y1 − φPΘ,

where PΘ is the position vector field of the Rn factor evaluated at the point Θ ∈ Sn−1. We obtain in the neck
region

J0 = 〈Vdil,NΛα,τ
〉 + O

(
|∇ f |

∣∣∣∣ ∂‖̂y‖∂τ
∣∣∣∣
)
〈NεΣ,NΛα,τ

〉 + O(| f |)〈NεΣ,
∂
∂τ

NΛα,τ
〉

= 〈Vdil,NΛα,τ
〉 + O

(
|∇ f |

∣∣∣∣ ∂‖̂y‖∂τ
∣∣∣∣
)
〈NεΣ,NΛα,τ

〉 + O(| f |)〈NεΣ − NΛα,τ
, ∂
∂τ

NΛα,τ
〉,

since 〈NΛα,τ
, ∂
∂τ

NΛα,τ
〉 = ∂

∂τ
〈NΛα,τ

,NΛα,τ
〉 = 0.

Recall that
〈Vdil,NΛα,τ

〉 = s tanh s − 1.

Therefore the first term on the right hand side has linear growth in |s| when the dimension n = 2 and is
bounded in |s| in higher dimensions. Since the last two terms on the right hand side are clearly bounded,
and since ψ = y1 when n = 2 and ψ is bounded in higher dimensions, the statement of Lemma 12 follows.
♦

Define a smooth, odd function χ : Λα,τ → R with the property

χ(s) = 1 for s ≥ 1 and χ(s) = −1 for s ≤ −1.

Now set K̂1 := χĴ1 and define the linear subspace

D := spanR{Ĵ0, K̂1}. (16)

From Lemma 7 and an argument analogous to that used to prove Lemma 10, we obtain the following.
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Lemma 13 Assume δ < 2 is fixed and n = 2. The subspace of Jacobi fields of Λα2,τ2 which are
bounded by a constant times (ζ2)δ and are invariant under the action of symmetry (s, θ) 7→ (s, θ + π) is
two-dimensional and spanned by the functions Ĵ0 and K̂1.

The following two results are obvious and will be needed in 3.4.4. to treat the two dimensional case.

Lemma 14 For n ≥ 2, one of the following cases must occur.

Case 1. There is a nontrivial Θ-independent Jacobi fields on Λα,τ0 .

Case 2. There is no nontrivial Θ-independent Jacobi fields on Λα,τ0 and there exists a singular solution
Ĝ of L̂α,τ0 on Λα,τ0 \ K−1({y1 = 0}).

Lemma 15 When n = 2, if there exists a Θ-independent singular solution Ĝ(‖̂y(y1)‖) of L̂α,τ0 on Λα,τ0 \
K−1({y1 = 0}) whose neck width is ε0, then it has the asymptotic expansion

Ĝ(‖̂y‖) = γ0 + γ1

∣∣∣∣‖̂y‖ − ε0

∣∣∣∣ + G̃(‖̂y‖2), where G̃(‖̂y(y1)‖) = O(‖̂y‖2) for large ‖̂y‖, (17)

γ0, γ1 are a non-zero constants and

γ0 = O(log |‖̂y‖ − ε0|), for small y1.

3.4.2 Linear Estimates for Jacobi Operators on Λαi,τi , i = 1, 2

We will need the following linear estimates for Jacobi operators on the hypersurfaces Λ̂α1,τ1 and Λα2,τ2 .

Lemma 16 Assume that δ ∈ (2 − n, 0) is fixed and n ≥ 3. Then each function f ∈ Ĉ2,β
δ (Λ̂α1,τ1 ), satisfies

the estimate
|L̂α1,τ1 u|Ĉ0,β

δ−2(Λ̂α1 ,τ1 ) ≥ C|u|Ĉ2,β
δ (Λ̂α1 ,τ1 ),

and each function f ∈ Ĉ2,β
δ (Λα2,τ2 ) satisfies the estimate

|L̂αi,τi u|Ĉ0,β
δ−2(Λα2 ,τ2 ) ≥ C|u|Ĉ2,β

δ (Λα2 ,τ2 ),

where C is a constant (certainly independent of τ∗).

Proof We prove only the second statement, as the first can be proved by an analogous argument. Ob-
serve that Schauder’s elliptic estimates imply that it is enough to prove that

|(̂ζ2)2−δL̂α2,τ2 u|L∞(Λα2 ,τ2 ) ≥ C|(̂ζ2)−δu|L∞(Λα2 ,τ2 ), (18)

where C is a constant independent of τ∗.

The proof is by contradiction. First we show that for sufficiently small τ2, (18) is true. Assume that
for some sequence τ j

2 tending to 0, there is a sequence of functions u j
2 defined on Λα2,τ2 each of which is

invariant under the symmetries u j
2(s,Θ) = u j

2(s, B(Θ)) for all B ∈ O(n), along with a sequence of linear
operators satisfying the following estimates:

lim
j→∞
|(̂ζ2)2−δL̂α2,τ2 u j

2|L∞(Λα2 ,τ2 ) = 0 and |(̂ζ2)−δu j
2|L∞(Λα2 ,τ2 ) = 1.
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Let q j
i = ε2(ψ(s j

2), φ(s j
2)Θ j

2) be the point in Λ0
α2,τ2

where (̂ζ2(q j
2))−δ|u j

i (q
j
2)| = 1.

Case 1. First assume that q j
2 converges, up to a subsequence, to some point in the hypersphere S α2 \{p}. The

use of elliptic estimates together with Arzela-Ascoli’s theorem is enough to prove that, up to a subsequence,
u j

2 converges to a limit function u∞2 uniformly on compact subsets of the catenoid S α2\{p}. The limit function
u∞2 satisfies Lα2 u∞2 = 0 on S α2 \ {0} and |(dist (·, γ))−δu∞2 |L∞(S α2 ) = 1. The reasoning used to rule out Case 1
in the proof of Lemma 10 also rules out this case.

Case 2. Next assume that q j
2 in the neck region converges, up to a subsequence, to some point in the

generalized catenoid ε2Σ. The use of elliptic estimates together with Arzela-Ascoli’s theorem is enough to
prove that, up to a subsequence, u j

2 converges to a limit function u∞2 uniformly on compact subsets of the
catenoid ε2Σ. The limit function u∞2 satisfies Lε2Σu∞2 = 0 on ε2Σ and |(̂ζ2)−δu∞2 |L∞(ε2Σ) = 1. The reasoning
used to rule out Case 2 in the proof of Lemma 10 also rules out this case.

Case 3. Next assume that q j
2 converges, up to a subsequence, to the point p. The use of elliptic estimates

together with Arzela-Ascoli’s theorem is enough to prove that, up to a subsequence, u j
2 converges to a limit

function u∞2 uniformly on compact subsets of S α2 \ {p}. The limit function u∞2 satisfies ∆Sn u∞2 = 0 on
S α2 \ {p} and |(dist (·, γ))−δu∞2 |L∞ ≤ 1. The reasoning used to rule out Case 3 in the proof of Lemma 10 also
rules out this case.

Having ruled out all the possible cases, the proof for small τ2 is complete.

Next let T be the set of τ for which the second statement of this lemma is true. We observe that
analogous arguments show that the T is an open subset of R and complete the proof. ♦

When δ ∈ (2 − n, 0), in view of Lemma 10, the operator L̂α2,τ2 : Ĉ2,β
δ,sym(Λα2,τ2 ) → Ĉ0,β

δ−2,sym(Λα2,τ2 ) is
injective for δ ∈ (2 − n, 0) and by duality it is surjective for δ ∈ (0, n − 2).

Let f ∈ Ĉ0,β
δ−2(Λα2,τ2 ), with δ ∈ (2 − n, 0). Then f ∈ Ĉ0,β

−δ−2(Λα2,τ2 ) and therefore there exists u ∈
Ĉ2,β
−δ (Λα2,τ2 ) such that L̂α2,τ2 u = f . Lemma 16 shows that in fact u ∈ Ĉ2,β

δ (Λα2,τ2 ) and leads to the first
statement in the following lemma, while the second statement follows analogously.

Lemma 17 The operator L̂α2,τ2 : Ĉ2,β
δ,sym(Λα2,τ2 )→ Ĉ0,β

δ−2,sym(Λα2,τ2 ) is bijective for δ ∈ (2 − n, 0). Also the

operator L̂α2,τ2 : Ĉ2,β
δ,sym(Λ̂α1,τ1 )→ Ĉ0,β

δ−2,sym(Λ̂α1,τ1 ) is bijective for δ ∈ (2 − n, 0).

In an analogous manner we obtain the following result from Lemma 13 and the argument used to prove
Lemma 16.

Lemma 18 When n = 2, the operator

L̂α,τ2 : Ĉ2,β
δ,sym(Λα2,τ2 ) ⊕D → Ĉ0,β

δ−2,sym(Λα2,τ2 )

is surjective in the range δ ∈ (−1, 0) with one-dimensional kernel spanned by Ĵ0, whereD is defined in (18).
Furthermore, there is a bounded right inverse mapping into C2,β

δ,sym(Λα2,τ2 ) ⊕D0 whereD0 := spanR{K1}.

3.4.3 Proof of Proposition 8

As in [1], the patching argument requires partitions of unity for the various pieces of Λ̂α,τ1,α2,τ∗ . First, for any
τ ∈ (̃τ∗∗, τ0), define Êk

τ∗ (τ) := Êk
τ∗ \ Ŝ (τ), and define N̂k

τ∗ (τ) to be the disjoint component of Ŝ (τ) containing
N̂k
τ∗ . Next, define the smooth, monotone cut-off functions
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χk
ext,τ(q) :=


1, q ∈ Êk

τ∗ (2τ)
0, q ∈ Λ̂α1,τ1,α2,τ∗ ∩ Ŝ τ

χk
neck,τ(q) :=


1, q ∈ N̂k

τ∗ (τ)
0, q ∈ Λ̂α1,τ1,α2,τ∗ \ Ŝ 2τ

,

so that
∑N−1

k=0 χ
k
ext,τ +

∑N−1
k=0 χ

k
neck,τ = 1. Secondly, define another set of cut-off functions

ηk
ext(q) :=


1, q ∈ Êk

τ∗
0, q ∈ Λ̂α1,τ1,α2,τ∗ \ [T̂ k−1,+

τ′ ∪ Êk
τ∗ ∪ T̂ k,−

τ∗ ]

ηk
neck(q) :=


1, q ∈ N̂k

τ∗
0, q ∈ Λ̂α1,τ1,α2,τ∗ \ [T̂ k,−

τ∗ ∪ N̂k
τ∗ ∪ T̂ k,+

τ∗ ]

so that
∑N−1

k=0 η
k
ext +

∑N−1
k=0 η

k
neck = 1. In addition, one can assume that these cut-off functions are invariant

under all the desired symmetries. To begin the process, fix a small τ ∈ (̃τ∗∗, τ0) and write

f =

N−1∑

k=0

f k
ext +

N−1∑

k=0

f k
neck

where
f k
ext := f · χk

ext,τ and f k
neck := f · χk

neck,τ.

Step 1. Local Solutions on the Neck Regions. Choose τ̂ ∈ (̃τ∗∗, τ0). The set N̂k
τ∗ (̂τ) is a perturbation of a

compact subset of the surface Λα2,τ2 . Consequently, the function fneck and the equation L̂α1,τ1,α2,τ∗ (u) = fneck

can be pulled back to a compact subset of the surface Λα2,τ2 . View fneck as a function of compact support
on Λα2,τ2 carrying the metric induced from Rn+1, and the equation that will be solved in this step is

L̂α2,τ2 (u) = fneck,

where we recall that L̂α2,τ2 is the linearized mean curvature operator of Λα2,τ2 with this metric. In addition,
fneck,̂τ is invariant under the symmetries T and S 01

B for all B ∈ O(n).

Lemma 17 provides us with the unique solution uneck ∈ Ĉ2,β
δ (Λα2,τ2 ) of the equation

L̂α2,τ2 (uneck) = fneck,

which satisfies the estimate |uneck |Ĉ2,β
δ (Λα2 ,τ2 ) ≤ C| fneck |Ĉ0,β

δ−2(Λα2 ,τ2 ), where C is a constant (certainly independent

of τ∗). With slight abuse of notation, extend this function to all of Λ̂α,τ1,α2,τ∗ by defining

uneck =

N−1∑

k=0

χk
neck,̂τ · uneck.

One has the estimate
|uneck |Ĉ2,β

δ (X) ≤ C| f |Ĉ0,β
δ−2(X).

Step 2. Local Solutions on the Exterior Regions. Once a local solution uneck is constructed in the previous
step, we choose a small κ ∈ (0, 1) and define

f̂ k
ext := χk

ext,κ̂τ( f − L̂α1,τ1,α2,τ∗ (uneck)).

18
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By symmetry, we can say that f̂ k
ext := f̂ext for each k. In addition, f̂ext is invariant under the symmetries T

and S 01
B for all B ∈ O(n).

The function f̂ext can be viewed as a function of compact support on Λ̂α1,τ1 . The equation that will be
solved here is

ηextL̂α1,τ1 (u) = f̂ext,

where we recall L̂α1,τ1 is the linearized mean curvature operator of Λ̂α1,τ1 when it carries the metric induced
from Rn+1.

For δ ∈ (2 − n, 0), Lemma 16 and Lemma 17 provide us with the unique solution uext ∈ C2,β
sym(Λ̂α1,τ1 ) of

the equation
ηextL̂α,τ(uext) = f̂ext.

which satisfies the estimate
|uext |Ĉ2,β

δ (Λ̂α1 ,τ1 ) ≤ Cκ| f |Ĉ0,β
δ−2(Λ̂α1 ,τ1 ).

The point τ = τ∗/2 is at the neck region and therefore uext(τ∗/2) = 0. By examining the Taylor expansion
of uext at the points τ = τ∗/2, and invoking its symmetries, one finds that

|uext(τ)| ≤ Cκ

∣∣∣∣τ − τ∗2
∣∣∣∣
2| f |C0,β

δ−2(Λ̂α1 ,τ1 ). (19)

One can now extend uext to all of Λ̂α1,τ1,α2,τ∗ , again with slight abuse of notation, as the function

uext :=
N−1∑

k=0

ηk
ext · uext.

Step 3. Estimates and Convergence. Define u := uneck + uext. Then

L̂α1,τ1,τ2,τ∗ (u) − f =

N−1∑

k=0

[
ηk

ext(L̂α1,τ1,α2,τ∗ − L̂α1,τ1 )uext (20)

+χk
neck,κ̂τ(L̂α1,τ1,α2,τ∗ − L̂α2,τ2 )uneck + [L̂α1,τ1,α2,τ∗ , η

k
ext]uext

]
,

where [L, η](u) := L(ηu) − ηL(u). Each term in (20) will be shown to be small in the C0,β
δ−2 norm.

Begin with the first term in (20). Note that this term is supported in the transition region Tτ∗ . Because
the surfaces Λ̂α,τ1 and Λα,τ2 meet tangentially, we have

|Ĝα2,τ2 − Ĝα1,τ1 | = O(|y1 − tan(τ∗∗/8)|2) = O(|y1|2).

Hence, at the point (y1,Gα1,τ1,α2,τ∗ (y
1)Θ) ∈ Σ̂τ∗ ∩ {(y1, ŷ) : tan(τ∗∗/8) ≤ y1 ≤ 2 tan(τ∗∗/8)}, we have

Gα1,τ1,α2,τ∗ (y) = Ĝα1,τ1,τ∗ + η(O(| tan(τ∗∗/8) − y1|2)) = Ĝα1,τ1,,τ∗ + η(O(|y1|2))
= Ĝα2,τ2 + (η − 1)(O(| tan(τ∗∗/8) − y1|2)) = Ĝα2,τ2 + (η − 1)(O(|y1|2)).

Set
E = Ĝα2,τ2 − Ĝα1,τ1,τ∗ ,

and, for i = 1, 2, let ∆i, Bi and Lαi,τi be respectively the Laplacian, the second fundamental form and the
linearized mean curvature operator of Λα,τi with respect to the metric coming from stereographic projection,
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and let ∆∗, B∗ and Lα1,τ1,α2,τ∗ be respectively the Laplacian, the second fundamental form and the linearized
mean curvature operator of Λ̂α1,τ1,α2,τ∗ with respect to the metric coming from stereographic projection. One
finds

Lα1,τ1,α2,τ∗ (u) − Lαi,τi (u) = (∆∗ − ∆i)(u) + (‖B∗‖2 − ‖Bi‖2)u

= O
((

1 − η(y1/ tan(τ∗∗/8))
)
E
)
· ‖∇2u‖ + O

(∥∥∥∇[(1 − η(y1/ tan(τ∗∗/8))
)
E
]∥∥∥

)
· ‖∇u‖

+O
(∥∥∥∇2[(1 − η(y1/ tan(τ∗∗/8))

)
E
]∥∥∥

)
u,

evaluated on an arbitrary function u supported in Tτ∗ and i = 1, 2. Then, by using Lemma 4 in [1], one
obtains

L̂α1,τ1,α2,τ∗ (u) − L̂αi,τi (u)
= (L̂α1,τ1,α2,τ∗ (u) − Lα1,τ1,α2,τ∗ (u)) − (L̂αi,τi (u) − Lαi,τi (u)) + (Lα1,τ1,α2,τ∗ (u) − Lαi,τi (u))

= O
((

1 − η(y1/ tan(τ∗∗/8))
)
E
) · ‖∇2u‖ + O

(∥∥∥∇[(1 − η(y1/ tan(τ∗∗/8))
)
E
]∥∥∥

)
· ‖∇u‖

+O
(∥∥∥∇2[(1 − η(y1/ tan(τ∗∗/8))

)
E
]∥∥∥

)
u

= O((τ∗∗)2)‖∇2u‖ + O(τ∗∗) · ‖∇u‖ + O(1)u;

therefore, for an arbitrary function u supported in Tτ∗ and i = 1, 2,

|(L̂α1,τ1,α2,τ∗ − L̂αi,τi )(u)|Ĉ0
δ−2(T k

τ∗ )

= O((τ∗∗)4−δ)‖∇2u‖ + O((τ∗∗)3−δ) · ‖∇u‖ + O((τ∗∗)2−δ)u
≤ C(τ∗∗)2|u|Ĉ2,β

δ (Tτ∗ ).

Analogous Hölder coefficient estimates can be found in the same way. In the end we find

|ηk
ext(L̂α1,τ1,α2,τ∗ − L̂α1,τ1 )(uext)|Ĉ0,β

δ−2(T k
τ∗ )(X) ≤ C(τ∗∗)2| f |Ĉ0,β

δ−2

and
|χk

neck,κρ(L̂α1,τ1,α2,τ∗ − L̂α2,τ2 )(uneck)|Ĉ0,β
δ−2(T k

τ∗ )(X) ≤ C(τ∗∗)2| f |Ĉ0,β
δ−2
.

Finally, the estimate of the last term, namely

[L̂α1,τ1,α2,τ∗ , η
k
ext]uext |Ĉ0,β

δ−2(T k
τ∗ )
≤ C(τ∗∗)2,

follows from (19), together with the fact that the C0,β
δ−2 norm of the coefficients of [L̂α1,τ1,α2,τ∗ , ηneck] and

[L̂α1,τ1,α2,τ∗ , ηext] are O(1) by definition of the cut-off functions.

From the above analysis one obtains a function u satisfying the estimate |u|C2,β
δ (X) ≤ Cκ| f |C0,β

δ−2(X) as well
as

|L̂α1,τ1,α2,τ∗ (u) − f | ≤ C(τ∗∗)2| f |C0,β
δ−2(X).

where C is bounded independent of τ∗ and κ. Since the constant in front of | f |C0,β
δ−2(X) can be made as small as

desired by choosing sufficiently small τ∗, a straightforward iteration argument now proves the existence of
a solution u ∈ C2,β

δ (Λ̂α1,τ1,α2,τ∗ ) of the equation L̂α1,τ1,α2,τ∗ = f satisfying the estimate |u|C2,β
δ (X) ≤ C| f |C0,β

δ−2(X).
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3.4.4 Proof of Proposition 9

The significant difference between this proof and the preceeding one is how the local solutions are found
on the neck.

Lemma 17 provides us with a solution uneck ∈ Ĉ2,β
δ,sym(Λα2,τ2 ) ⊕ D0 of the equation L̂Λα2 ,τ2

(uneck) = fneck,
which can be decomposed as

uneck = vneck + a1K1 where vneck ∈ Ĉ2,β
δ,sym(Λα2,τ2 ) and a1 ∈ R

and satisfies
|vneck |Ĉ2,β

δ (Λα2 ,τ2 ) + (τ∗)−δ|a1| ≤ C| f |Ĉ0,β
δ−2(Λα2 ,τ2 ) ≤ C| f |Ĉ0,β

δ−2(X),

for some constant C independent of τ∗.

Now if Case 1 in Lemma 14 occurs, let Ĝ be the nontrivial Θ-independent Jacobi field on Λ̂α1,τ1 , while
if Case 2 in Lemma 14 occurs, let Ĝ be the singular solution Ĝ(y1) of L̂α1,τ1 on Λ̂α1,τ1 \ ∂Ŝ (τ∗/2) with even
symmetry, which has the asymptotic expansion (17), where γ1 is a non-zero constant and γ0 = O(log ||y1| −
tan(τ∗/8)|), for |y1| close to tan(τ∗/8). The function uneck can thus be extended to Λ̂α1,τ1,α2,τ∗∗ by prescribing

uneck :=
N−1∑

k=0

χk
neck,ρvneck +

N−1∑

k=0

(
ηk

neck(b1J0 + a1K1) + ηk
extc1Ĝ

)

where the constants b1 and c1 are chosen to ensure matching in the constant and linear terms of asymptotic
expansions of uneck and Ĝ, i.e., b1 = a1γ1/(γ0 + γ∗γ1) and c1 = a1/(γ0 + γ∗γ1). In the end, this solution
satisfies the estimates

|uneck |Ĉ0,β
δ−2(Λ̂α1 ,τ1 ) ≤ (τ∗)δ| f |Ĉ0,β

δ−2(Λ̂α1 ,τ1 )

as well as
|χk

neck,κρ(L̂α1,τ1,α2,τ∗ − fneck)|Ĉ0,β
δ−2(Λ̂α1 ,τ1 ) ≤ C(τ∗∗)2(τ∗)δ| log τ∗|| f |Ĉ0,β

δ−2(Λ̂α1 ,τ1 ).

Note that δ > −2s∗ is required to ensure that the quantity in front of | f |Ĉ0,β
δ−2(Λ̂α1 ,τ1 ) small as τ∗ → 0.

The next step is to define f̂ext in the same way as before and find the local solution on the exterior region
of Λ̂α1,τ1,α2,τ∗ . Then define the extended function

uext :=
N−1∑

k=0

ηk
ext · uext.

The remainder of the analysis is the same as before, and leads to a good approximation solution of the
equation Λ̂α1,τ1,α2,τ∗ = f . The solution procedure can be iterated to yield an exact solution. The result is a
solution satisfying the bound |u|Ĉ0,β

δ−2(Λ̂α1 ,τ1 ,α2 ,τ∗ )
≤ (τ∗)δ| f |Ĉ0,β

δ−2(Λ̂α1 ,τ1 ,α2 ,τ∗ )
. ♦

3.5 Nonlinear Estimates

The proof of Main Theorem requires two more estimates in addition to the linear estimates: it is necessary to
show that Φα1,τ1,α2,τ∗ (0) is small in the C0,β

δ−2-norm; and it is necessary to show that DΦα1,τ1,α2,τ∗ ( f )−L̂α1,τ1,α2,τ∗

can be made to have small C2,β
δ -operator norm if f is chosen sufficiently small in the C2,β

δ norm.

Poposition 19 If τ∗ > 0 is sufficiently small, then there exists a constant C independent of τ∗ so that

|Φα1,τ1,α2,τ∗ (0) − Hα|Ĉ0,β
δ−2(X) ≤ C(τ∗)(2−δ)s∗ .
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Poposition 20 If τ∗ > 0 is sufficiently small and f ∈ Ĉ2,β
δ (Λ̂α,τ1,α2,τ∗ ) has sufficiently small C2,β

δ norm,
then there exists a constant C independent of τ∗ so that

|DΦα1,τ1,α2,τ∗ ( f )(u) − L̂α,τ1,τ2,τ∗ (u)|Ĉ0,β
δ−2(X) ≤ C(τ∗)δ−1| f |C2,β

δ (X)|u|Ĉ2,β
δ (X)

for any function u ∈ Ĉ2,β
δ (Λ̂α1,τ1,α2,τ∗ ).

As in Proposition 15 in [1], Proposition 20 follows from the scaling property of the mean curvature
operator.

Proof of Proposition 19. We only need to estimate the deviation of the mean curvature from Hα in the neck
and transition regions. Since |Hα1 − Hα2 | = O(τ∗), it is clear that we have

|H(Λ̂α1,τ1,α2,τ∗ ) − Hα1 |Ĉ0,β
δ−2(N̂τ∗ )

≤ C(τ∗)2−δ.

It remains to estimate the mean curvature in the transition region Tτ∗ whose image under the stereo-
graphic projection is the graph of the function G := Ĝα1,τ1,α2,τ∗ defined in (7).

Let y = ‖̂y‖. For a smooth surface Λ = {(F(y), ŷ) : τ∗∗/2 ≤ F(y) ≤ 2τ∗∗} defined by a smooth function
F(y), its mean curvature at the point (F(y), ŷ) is given by

H(Λ)(y) =
1 + y2 + F(y)2

2

( F̈(y)
(1 + Ḟ(y)2)3/2

+
(n − 1)Ḟ(y)

(1 + Ḟ(y)2)1/2

)
+

n(F(y) − yḞ(y))
(1 + Ḟ(y)2)1/2

. (21)

Let y(y1) = ‖̂y(y1)‖ = Ĝα1,τ1,α2,τ∗ (y
1) and F̂ : [(y(τ∗∗/2), y(2τ∗∗)]→ (τ∗∗/2, 2τ∗∗), F̂ = Ĝ−1

α,τ1,τ2,τ∗ . Then

F̂(y) = cn + CnLn(y) + η(O(|y − y(τ∗∗)|2)),

where Ln(y) defines a surface Λn = {(Ln(y), ŷ) : τ∗∗/2 ≤ F(y) ≤ 2τ∗∗} such that taking F = Ln in (21) we
obtain H(Λn)(y) = Hα1 and cn,Cn are constants depending on n. Using this, we see that

|H(Λ̂α1,τ1,τ2,τ∗ ) − Hα1 |Ĉ0
δ−2(T̂τ∗ ) ≤ C(τ∗∗)2−δ

in the region y ∈ (y(τ∗∗/2), y(2τ∗∗)).

The Hölder coeffient estimate in this region follows similarly and takes the same form, which yields
Proposition 9. ♦

3.6 Proof of Main Theorem (Theorem 2)

Observe that by Proposition 8 and Proposition 9 the linearization L̂α,τ1,α2,τ∗ is injective on C2,β
δ (X). But

L̂α1,τ1,α2,τ∗ − ∆ is a compact operator so L̂α1,τ1,α2,τ∗ has the same index as ∆ on C2,β
δ (X). By self-adjointness,

this index is zero, so that L̂α1,τ1,α2,τ∗ must be surjective as well. One has the estimate

|L̂−1
α1,τ1,α2,τ∗ ( f )|Ĉ2,β

δ (X) ≤ Cτ∗ | f |Ĉ0,β
δ−2(X),

where Cτ∗ = O((τ∗)δ) in dimension 2 and Cτ∗ = O(1) in higher dimensions.

Now in order to apply the Banach space inverse function theorem (Theorem 2), we have to choose t so
that whenever | f |Ĉ2,β

δ (X) ≤ t there holds

|DΦα,τ∗ ( f )(u) − L̂α1,τ1,α2,τ∗ (u)|Ĉ0,β
δ−2(X) ≤

1
2Cτ∗

|u|Ĉ2,β
δ (X), (22)
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for any u ∈ C2,β
δ (Λ̂α1,τ1,α2,τ∗ ); therefore, in consideration of Proposition 20, we choose

| f |Ĉ2,β
δ (X) ≤ t, where t =

{ O((τ∗)1−2δ) in dimension n = 2
O((τ∗)1−δ) in higher dimensions,

so that (22) is true. Then by the inverse function theorem, a solution of f := fα1,τ1,α2,τ∗ of the deformation
problem can be found if Λ̂α1,τ1,α2,τ∗ has been so constructed that

|Φ̂α1,τ1,α2,τ∗ (0) − Hα1 |Ĉ0,β
δ−2(X) ≤

t
2Cτ∗

. (23)

Since Proposition 19 asserts that

|Φ̂α1,τ1,α2,τ∗ (0) − Hα1 |Ĉ0,β
δ−2(X) = O((τ∗∗)(2−δ)),

we see by (6) that the bound (23) is true as long as τ∗ is made sufficiently small and δ is chosen appropriately.

As a further consequence of these estimates, the Banach space inverse function theorem asserts that the
solution of the equation Φ̂α1,τ1,α2,τ∗ ( fα1,τ1,α2,τ∗ ) = 0 satisfies the estimate

| fα1,τ1,α2,τ∗ |Ĉ2,β
δ (X) = O(Cτ∗ (τ∗∗)

(2−δ))

which is much smaller than ε2. Therefore the size of the perturbation of Λ̂α1,τ1,α2,τ∗ created by the normal
deformation of magnitude fα1,τ1,α2,τ∗ is much smaller than the width of Λ̂α,τ1,α2,τ∗ at its narrowest points,
i.e., in the neck regions where the width is O(ε). Thus Λ̂α1,τ1,α2,τ∗ remains embedded under this normal
deformation. This completes the proof of Theorem 2.
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