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Uniform Convergence, Mixing and Chaos
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Abstract: Let (X, d) be a compact metric space and let fn: X → X be a sequence of continuous
maps such that { fn} converges uniformly to a continuous and surjective map f : X → X. We
investigate the elements of topological mixing and the chaotic behavior possessed by fn that can
be inherited by f .
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1. INTRODUCTION

A dynamical system may be defined as a deterministic mathematical model for evolving the state of a
system forwarded in time (the time here can be a continuous or discrete variable), which can be represented
by a set of maps that specify how variables change over the time. It is well known that a number of real
world problems can be modeled by a discrete dynamical system:

xn+1 = f (xn), n = 0, 1, 2, · · ·
where xn ∈ X, X is a compact metric space, and f : X → X is a continuous map.

Topological transitivity is a global characteristic of a dynamical system, the concept of which goes
back to G. D. Birkhoff. According to [1], this concept was used by him in 1920 ([2], vol. 2, p. 108
and p. 221; see also [3]). Ruelle and Takens[4] considered a chaotic system a transitive system with the
sensitive dependence on initial conditions. Li and Yorke[5] thought that a system is chaotic if there is an
uncountable scrambled set in its domain. The chaotic system defined by Devaney[6] is a system which is
chaotic in the sense of Ruelle and Takens with a dense set of periodic points. However, many authors (for
example, Ref. [7]) found that a transitive system with a dense set of periodic points has to be of sensitive
dependence on initial conditions. Huang and Ye[8] studied the transitive system with a fixed point, and they
showed that such a system is chaotic in the sense of Li-Yorke. Their work led to solving an open problem,
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i.e., whether or not Devaney’s chaos implies the Li-Yorke chaos. The approach used by Huang and Ye
is quite compact. Xiong and Yang[9], and Xiong and Chen[10] described the chaotic phenomena caused
by topologically mixing maps, topologically weakly mixing maps or measurable mixing maps, using the
words different from Li and Yorke’s. Xiong used the approaches in the Refs. [9, 10] to discover the chaotic
phenomena in a transitive system.

Topological transitivity is a necessary but not sufficient condition for the ergodicity of a dynamical
system[11–13]. Often the proof of topological transitivity of a system was followed by the proof of its ergod-
icity. In connection with transitive points we wish to mention also the results of A. Iwanik. Two transitive
points x and y in a standard dynamical system (X, f ) (see [14, 15] for a more general situation) are called
independent if (x, y) is transitive in the product system (X, f )2 = (X × X, f × f ) (here f × f is defined by
( f × f )(x, y) = ( f (x), f (y))). If two such points exist, then (X, f ) is called topologically weakly mixing.

In [14] it is shown that, among other results, in every topologically weakly mixing system there exists
an uncountable independent set. Totally independent sets have been studied in [15]. For the notion of
“mixing” in the topological sense, which is analogous to the corresponding notion in ergodic theory, see
also [16–19]. Here we just recall that topological strong mixing implies topological weak mixing, which
implies topological transitivity.

In some recent papers[20–24], the chaotic behavior of a time invariant continuous map on a metric space
has been extensively studied. Tian and Chen[22] introduced several new concepts and discussed the chaotic
behavior of a time-varying map. Román-Flores[21] showed that if (X, d) is a metric space and fn : X → X is
a sequence of continuous maps such that { fn} converges uniformly to a function f and fn is transitive for all
natural numbers n, then f is not necessarily transitive. He gave sufficient conditions for the transitivity of
the limit function f . Raghib and Kifah[23, 24] came to a conclusion that the inheritance of a classical property
associated with chaos, such as topological transitivity, does not hold in general when taking uniform limits,
not even in the particular case of continuous maps on a compact interval.

Several other concepts, such as chaos for a sequence of time invariant maps, have also been introduced
by some authors. It is a well-known fact from calculus that if a sequence of continuous maps converges
uniformly, then the limit map is continuous. Also, the limit map of a uniformly convergent sequence of
Riemann-integrable maps is itself Riemann-integrable. However, differentiability of the limit map is not
assured by uniform convergence of a sequence of differentiable maps. Therefore, it is worthwhile and of
interest to investigate the properties of the elements of a uniformly convergent sequence of maps that can
be inherited by the limit map. For this reason the limit map f of a uniformly convergent sequence of maps
has been discussed extensively in [20–25].

In this paper, we use the method in [20] which investigates the conditions of topological transitivity
of the uniform limit function f of a sequence of continuous topologically transitive maps (in strongly
successive way). Let (X, d) be a compact metric space and suppose that { fn}∞n=1 is a sequence of continuous
maps from X into X such that fn → f uniformly, where f is a continuous map from X to X. If the sequence
{ fn}∞n=1 is topologically transitive on X in strongly successive way, then f can be shown to be topologically
transitive. Based on this result, we further study and obtain a more general result, that is, the uniform
limit function is also topologically mixing and weakly topologically mixing. Finally we deduce that it is
distributively chaotic in a sequence and Li-Yorke chaotic.

Vellekoop[26] has already obtained that on intervals, transitivity implies chaos, so it is meaningless to
continue discussing topological transitivity and chaos on intervals. Therefore, we study all the questions
in the compact metric space in the paper. And we give an answer to the question: which factors of the
complexity are presented by uniform convergence. We also use the definition of a sequence of topologically
transitive maps in the strongly successive way given in [20] and obtain the following theorem.

Theorem 1.1 Let (X, d) be a compact metric space and suppose that { fn}∞n=1 is a sequence of continuous
maps from X into X such that fn → f uniformly, where f is a continuous and surjective map from X to X.
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If the sequence { fn}∞n=1 is topologically transitive on X in the strongly successive way, then

(1) f is topologically mixing.

(2) f is weakly topologically mixing.

(3) f is topologically ergodic.

(4) f is distributively chaotic in a sequence.

(5) f is Li-York chaotic.

Devaney’s chaos and Wiggins’ chaos both include the concept of topological transitivity. And the
Devaney chaos implies the Li-Yorke chaos. The chaos theory has widely been applied in various scien-
tific fields including biology, information technology, economic science, engineering science, physics and
demography etc. As an important chaotic behavior, transitivity also plays a significant role in practical
applications.

2. PRELIMINARIES

In this section, some basic concepts and lemmas are introduced. This section is divided into two subsections.

2.1 Some Basic Concepts

Throughout this paper we always assume that (X, d) is a compact metric space. If A is an arbitrary set, then
we denote the boundary of A by B(A). The radius of any set A is denoted by Rad(A). For an arbitrary ε > 0,
we denote the ε-neighborhood of any point x by Nε(x).

Definition 2.1 Let (X, d) be a compact metric space, fn : X → X be a sequence of continuous maps defined
on X, n = 1, 2, · · · , and f : X → X be a continuous map. If for an arbitrary ε > 0, d( fn(x), f (x)) < ε for
all n ≥ n0 and for all x ∈ X, where n0 is a positive integer (depending on ε only), then we say that { fn}∞n=1 is
uniformly convergent to f on X. If { fn}∞n=1 is uniformly convergent to f , we then write fn → f uniformly.

Definition 2.2 Let (X, d) be a compact metric space, f : X → X be a continuous map, and U and V be any
nonempty open subsets of X.

(1) If there exists an integer n > 0 such that f n(U)∩ V , ∅, then f is said to be topologically transitive.

(2) If f × f is transitive, i.e., for any nonempty open sets U1,U2, V1 and V2, there is an integer n > 0
such that f n(U1) ∩ V1 , ∅ and f n(U2) ∩ V2 , ∅, then f is said to be weakly topologically mixing.

(3) If there exists an integer N > 0 such that f n(U) ∩ V , ∅ for each n ≥ N, then f is said to be
topologically mixing.

It is clear that a mixing map is weakly mixing and a weakly mixing map is transitive.

Definition 2.3 Let (X, d) be a compact metric space, f : X → X be a continuous map, and U and V be any
two non-empty open subsets of X. If

lim
n→∞

1
n

n−1∑
i=0

Q( f i(U) ∩ V) = lim
n→∞

1
n
{#(K(U,V) ∩ {0, 1, 2, · · · , n − 1})} > 0,
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where #(·) denotes the cardinality of a set,

Q(U) =

1 if U , ∅
0 otherwise,

and
K(U,V) = {n ∈ N| f n(U) ∩ V , ∅},

then we say that f is topologically ergodic.

Let (X, d) be a compact metric space and {pi} be an increasing sequence of positive integers. For any
x, y ∈ X and t > 0, let

Fxy(t, pk) = lim
n→∞

inf
1
n

n∑
k=1

χ[0,t)(d( f pk (x), f pk (y))),

F∗xy(t, pk) = lim
n→∞

sup
1
n

n∑
k=1

χ[0,t)(d( f pk (x), f pk (y))),

where χA(y) is 1 if y ∈ A and 0 otherwise. Obviously, Fxy and F∗xy are both nondecreasing functions. If for
t ≤ 0 we define Fxy(t) = F∗xy(t) = 0, then both Fxy and F∗xy are probability distribution functions.

Definition 2.4 Let D ⊂ X. If for all x, y ∈ D with x , y, we have

(1) Fxy(ε, pk) = 0, for some ε > 0,

(2) F∗xy(t, pk) = 1, for any t > 0, then D is said to be a distributional chaotic set in a sequence. The two
points x and y are said to display distributional chaos in a sequence. If f has a distributionally chaotic set
which is uncountable in a sequence, f is said to be distributionally chaotic in a sequence.

Definition 2.5 Let (X, d) be a compact metric space and f : X → X be continuous. D ⊂ X is said to be a
chaotic set of f if for any pair (x, y) ∈ D × D, x , y, we have

lim inf
k→∞

d( f k(x), f k(y)) = 0,

lim sup
k→∞

d( f k(x), f k(y)) > 0.

f is said to be chaotic in the sense of Li-Yorke, if it has a chaotic set D that is uncountable.

It is clear that chaos in a sequence must be Li-York chaotic.

Definition 2.6 Let fn : X → X be a sequence of continuous maps on a compact metric space X, n =
1, 2, · · · . If for any two pairs of distinct non-empty open subsets U1,V1, and U2,V2 of X, there exist positive
integers K1 , K2 such that fK1 (U1)∩ V1 , ∅, fK2 (U2)∩ V2 , ∅, then the sequence of maps { fn}∞n=1 is said to
be topologically transitive on X in the strongly successive way.

2.2 Some Lemmas

Lemma 2.7 If f is topologically mixing, then f is topologically ergodic.

See [27] for its proof.
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Lemma 2.8 Let (X, f ) be a dynamical system relative to G, where X is a separable metric space containing
at least two points and G is a semigroup of times. If f is topologically weakly mixing, then it is distributional
chaos in a sequence.

Proof. For a proof see [25].

Proof of the Theorem 1.1

(1) Step 1. We show that for any U1,V1 ⊂ X, if U1,V1 are open, then f (U1) ∩ V1 , ∅.
Since the sequence { fn}∞n=1 is topologically transitive on X in the strongly successive way, there exists

a positive integer k1 such that fk1 (U1) ∩ V1 , ∅. Let ε
′
, ε
′′
> 0. Consider an open ball U2 ⊂ U1 such

that Rad(U2)=ε
′
/2 and the minimum distance of B(U2) from B(U1) is ε

′
/100. Similarly we take an open

ball V2 ⊂ V1 such that Rad(V2)=ε
′′
/2 and the minimum distance of B(V2) from B(V1) is ε

′′
/100. Again by

transitivity (in the strongly successive way), there exists a positive integer k2 such that fk2 (U2) ∩ V2 , ∅.
We now take an open ball U3 ⊂ U2 such that Rad(U3) = ε

′
/3 and the center of U3 is the same as that of

U2. Similarly we take an open ball V3 ⊂ V2 such that Rad(V3) = ε
′′
/3 and the center of V3 is the same as

that of V2. Then by transitivity (in the strongly successive way) again, there exists a positive integer k3 such
that fk3 (U3) ∩ V3 , ∅. See Figure 1 and Figure 2, we now continue this process repeatedly. Then by our
definition, {kn}∞n=1 is an infinite subset of all natural numbers. So, we rearrange this set as a sequence by
taking the least element first then the next least element and so on. We now denote this rearrangement by
{kn′ }∞n=1. That is, k1′ the least element of {kn}∞n=1.

Figure 1: Ui is an open set of X and Ui+1 ⊂ Ui, for
all i = 1, 2, . . .

Figure 2: Vi is an open set of X and Vi+1 ⊂ Vi, for all
i = 1, 2, . . .

By our construction AB = ε
′
/100 and CD = ε

′′
/100. Also, fk1 (U1) ∩ V1 , ∅, fk2 (U2) ∩ V2 , ∅,

fk3 (U3) ∩ V3 , ∅ and so on.

Then the following facts are noticeable:

a) Ui and Vi are open sets such that Ui+1 ⊂ Ui and Vi+1 ⊂ Vi, for all i = 1, 2, · · · .
b) There exists a sequence of positive integers {kn′ }∞n=1 such that fkn′ (Un′ ) ∩ Vn′ , ∅, for all n

′
.

c) Ui’s (and Vi’s) are all open sets such that the centers of Ui’s (and Vi’s) are the same for i = 2, 3, · · · .
d) By a) and b), it can be easily proved that fkn′ (Un′) ∩ V1 , ∅, for all kn′ .

Obviously fkn′ → f uniformly for n = 2, 3, · · · , since { fkn′ }∞n=2 is a subsequence of { fkn′ }∞n=1. Then for
ε = ε

′′
/1000, d( fkn′ (x), f (x)) < ε, for all n

′ ≥ m
′

and for all x ∈ X, with some

m
′
> 1. (1)
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We now show that f (U1) ∩ V1 , ∅.
Let

y ∈ fkm′ (Um′ ) ∩ Vm′ . (2)

Then y ∈ Vm′ and y ∈ fkm′ (Um′). So, there exists x ∈ Um′ such that fkm′ (x) = y. Again from (1) we get
d( fkm′ (x), f (x)) < ε.

So, f (x) ∈ Nε( fkm′ (x)), that is,

f (x) ∈ Nε(y). (3)

From (2) we get y ∈ fkm′ (U1) and y ∈ V1. Now x ∈ Um′ ⇒ x ∈ U1 ⇒ f (x) ∈ f (U1). Since m′ , 1, then by
the definition of ε, (3) and also our construction above, we see that f (x) ∈ V1. Hence, f (U1) ∩ V1 , ∅.

Step 2. In order to prove that f is topologically mixing, we just need to prove that for any n ≥ 1,
f n(U1) ∩ V1 , ∅ is true.

Suppose that U1 and V1 are open sets in X. We see that the preimage f −1(V1) of V1 is open from the
continuity of f . Therefore, for any n ≥ 1, f −n(V1) = f −1( f −1(· · · ( f −1(V1)))) is an open subset in X.

From step 1, for any open set U1 and V1 in X, f (U1)∩V1 , ∅ is true, so f (U1)∩ f −(n−1)(V1) , ∅. Hence,
∅ , f n−1[ f (U1)∩ f −(n−1)(V1)] ⊂ f n(U1∩V1), that is, f n(U1)∩V1 , ∅. Therefore, f is topologically mixing.

(2) Since f is topologically mixing, it is topologically weakly mixing.

(3) By lemma 1, we can see that f is topologically ergodic.

(4) By lemma 2, we can see that f is distributively chaotic in a sequence.

(5) If f is distributively chaotic in a sequence, then f must be Li-Yorke chaotic.
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