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On the Stability-complexity Relation for Unsaturated
Semelpareous Discrete Food-chains

Torsten Lindström1,∗

Gunnar Söderbacka2

Abstract: In this paper we formally prove that invading carnivores in the discrete food-chain
derived and preliminary analyzed in [2] always makes the system less stable and thus, limit the
food-chain length in the corresponding system. Hence, invading unsaturated carnivores are not
able to stabilize oscillatory dynamics. What we prove constitutes a significant difference between
discrete and continuous food-chains. Actually, Freedman and Waltman[3] related the stabilizing
properties of an invading carnivore in continuous food-chains to absence of saturation: An un-
saturated carnivore keeps at least one interior equilibrium - if one exists - locally stable. One
consequence is that the dynamics of unsaturated discrete food-chains display similarities with
saturated continuous food-chains. Indeed, discrete dynamics seem to have a similar destabilizing
impact on the dynamics as saturation has.
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1. INTRODUCTION

Central paradigms regarding food-web complexity versus stability were called into question using simple
models by May[1]. The results therein indicated that stability and possibilities for species persistence do not
in general increase with food-web complexity. The numerical results given in [2] indicated that the same
conclusion holds in discrete food-chains related to seasonal environments giving rise to continuous death-
and predation processes and discrete birth processes. In this paper we prove that this numerical observation
holds analytically. Although some results asking for reassessment of May’s classical results have appeared
later, most results are numerical and lack the general validity expressed in classical works[4].

What we prove in this article constitutes one major difference between discrete and continuous food-
chains. Rosenzweig[5] noted that continuous food-chains may display both stabilizing and destabilizing
scenarios. We prove that stabilizing scenarios[3, 18] related to unsaturated invading carnivores are excluded
in discrete systems. This is one of the most important expectations implied by the results in [2]. The
ecological consequence of these results is that food-chains are expected to be shorter in seasonal and boreal
environments giving rise to pulse wise births. This difference may be a part of the explanation of the
differences between food-chain lengths in marine and terrestrial environments, and rain forests versus arctic
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and boreal fauna[6].

We think it is important to give a formal proof for how the stability complexity relation works in discrete
ecosystems, since only such proofs have the potential to close future discussions of whether there still
might be parameter values predicting other or exceptional scenarios not included in the discussion here.
No parameter values of any ecological relevance are left outside the discussion here. But, of course, no
mathematical proof whatsoever can close the discussion on whether other modeling assumptions might
alter the predictions. In any case, we think the discussion in the future is simplified; after this one can
concentrate the efforts on what mechanisms might alter the model predictions.

The proof of the above mentioned result is technical and based on a variety of quite precise estimates.
The structure of the proof can probably be improved in the future, but we think it is essential to document
the proof of this fact at this stage so that future generations can concentrate on improving the method of
proof or making its implications visible for larger audiences and not on finding out how the basic relations
work in this system.

The precision required in the estimates in order to obtain the requested results is high and is illustrated
by the fact that one of the estimates turned out to be the Padé-approximation[7] of a certain transcendental
function. Here we make use of the fact that Padé-approximations are usually known for producing precise
estimates on surprisingly large intervals. The methods used are mainly those of dynamical systems[8] and
bifurcation theory[9]. The major idea is a change of parameters in the relevant parts of the parameter space.
We formulate our main results in Section 3 as two theorems, one theorem stating the stability-complexity
relation for the system in question (Theorem 4.1) and one stating the structure of the bifurcation diagram of
the system under consideration (Theorem 4.3).

2. THE MODEL

We work throughout the paper with the discrete food-chain model

Xt+1 =
M0Xte−Ut

1 + Xt max(e−Ut , κ(Ut)κ(Zt))
,

Ut+1 = M1XtUte−Ztκ(Ut)κ(M2UtZt), (1)
Zt+1 = M2UtZt,

where M0,M1,M2 > 0, and

κ(γ) =

 1−e−γ
γ
, γ > 0,

1, γ = 0.
(2)

The system is considered for non-negative values of the variables Xt, Ut, Zt ≥ 0. The variable Xt denotes
the vegetation level, Ut is related to the herbivore level through a nonlinear transformation, and Zt denotes
the carnivore level. The parameter M0 is related to the growth rate of the vegetation level, the parameter M1
is related to the growth and search rates of the herbivores, and the strength of competition at the vegetation
level, whereas the last parameter growth and search rates of the carnivores and the search rates at the herbi-
vore level. For details of derivation of model and parameter implementation, see [2]. The main assumptions
are that the two higher trophic levels are both unsaturated and that all trophic levels are semelpareous, all
individuals reproduce only once upon their life-time. The first assumption is clearly unrealistic, on the
other hand the unsaturated case must be well understood before saturated cases can be considered. Such
cases must probably be studied using techniques from impulsive system theory[10–12]. The last assumption
is particularly suitable for terrestrial arthropods, see [13].
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Torsten Lindström; Gunnar Söderbacka/Studies in Mathematical Sciences Vol.2 No.1, 2011

3. GENERAL BEHAVIOR OF FIXED POINTS AND BASIC
DYNAMICAL BEHAVIOR

The system has at most four fixed points P0 = (0, 0, 0), P1 = (M0−1, 0, 0), P2 in the coordinate plane Z = 0
and P3 not in any coordinate plane. That is, one fixed point corresponding to each possible length of the
food-chain. We consider bifurcations of fixed points in the M0M1-space (M0,M1 > 0) for fixed M2 and
introduce the following notation:

Definition 3.1 (Notation D, E, and F2) We denote the curve

M1 = f2(M0) = 1/(M0 − 1), M0 > 1,

by F2. The region 0 < M0 < 1 is denoted by E and the region where M0 > 1 and M1 < f2(M0) is denoted
by D.

3.1 Type of Fixed Points P0 and P1

We next link the newly defined regions to the local stability of the fixed points mentioned above. The
fixed point P0 exists for any values of the parameters and the Jacobian matrix at the point is diagonal with
elements M0, 0, 0. Thus, P0 is

• stable for M0 < 1 (that is in E) and

• saddle with dim W s(P0) = 2 for M0 > 1.

The fixed point P1 exists for M0 > 1 and the Jacobian matrix at the point is triangular with elements
1/M0, M1(M0 − 1), 0 at its main diagonal. Thus, P1 is

• stable for 1 < M0 < 1 + 1/M1 (that is in D) and

• saddle with dim W s(P1) = 2 for M0 > 1 + 1/M1 (which is equivalent to M1 > f2(M0)).

We summarize the local behavior around the fixed points P0 and P1 as follows: (a) In region E only P0
exists and there it is stable. (b) In region D both P0 and P1 exist and P0 is saddle with dim W s(P0) = 2 and
P1 is stable. (c) In the remaining areas (to be defined below) of the parameter space (M0 > 1, M1 > f2(M0))
both P0 and P1 are saddles and dim W s(Pi) = 2, i = 0, 1.

3.2 Type of Fixed Point P2

We continue splitting the parameter space into regions determined by the local behavior of the fixed points.
The next areas will be related to the local behavior of P2.

Definition 3.2 (Notation C and F3) We denote the curve

M1 = f3(M0) = 1/(M0e−u3 − 1), M0 > eu3 , u3 = 1/M2,

by F3. The region between F2 and F3 we denote by C.

Note that f3(M0) > f2(M0) for M0 > eu3 . Negative branches of this curve was left outside consideration in
our definition, so this relation holds for all u3 > 0. The fixed point P2 exists for M0 > 1 + 1/M1 (that is
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above F2, so the exchange of stability of P1 coincides with the birth of the fixed point P2) and in coordinates
it is given by

(x2, u2, 0) =
(

w ln w
M1(w − 1)

, ln w, 0
)
,

where
w =

M0M1

M1 + 1
. (3)

The Jacobian matrix at P2 takes the form

J (P2) =



M1
M1+1 − x2

u2

M1u2+M1 x2−1
M1+1

x2
2(M1+1)

u2/x2 M1x2 − u2 −u2

(
1 + M2u2

2

)
0 0 M2u2


,

(cf. [2]). Let J′ be the submatrix got from J(P2) excluding the last row and column. Then

det(J′) = h − 1
M1 + 1

,

where
h =

w ln w
w − 1

. (4)

and w was defined above by (3). The function h turns out to be a central auxiliary function later on. We
need the following properties of h:

Lemma 3.3 Consider the function h defined by (4). It has the following properties:

(a) h is increasing in w for w > 1;

(b) the derivative h′ is decreasing in w for w > 1;

(c) limw→1+ h = 1 and limw→∞ h = ∞;

(d) there is a unique number wmax such that h(wmax) = 2 (wmax ≈ 4.922) for w > 1;

(e) h is defined on [eu3 ,wmax] if 0 < u3 < umax = ln wmax and h([eu3 ,wmax]) = [1/κ(u3), 2] ⊂ [1, 2].

The proof of Lemma 3.3 can be found in Section 7. For det(J′) = 1 we get a Neimark-Sacker bifurcation
and we introduce:

Definition 3.4 (Notation NS2) The Neimark-Sacker bifurcation curve for P2 in the M0M1-space is called
the NS2-curve.

Note that det(J′) = 1 (NS2-curve) is equivalent to

h =
M1 + 2
M1 + 1

, (5)

from which we get

M1 =
2 − h
h − 1

, and M0 =
w

2 − h
. (6)
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It follows from Lemma 3.3 that 1 < w < wmax ∼ 4.922 will be the range of definition of the NS2-curve
in w. Further, we note that M0 is increasing in w and that M1 is decreasing in w. It follows that M0 → ∞
and M1 → 0 for w → wmax and M0 → 1 and M1 → ∞ for w → 1 (Lemma 3.3(c)-(d)). Thus, we take w as
an parameter for describing the NS2-curve (5) in the M0M1-parameter space. Note that w = 1 on F2 and
w = eu3 > 1 on F3. Intersections between the defined curves therefore become readable and we introduce a
useful number: Let

umax = ln wmax. (7)

Alternatively, we may define umax using (5) directly as the solution to

2 =
umaxeumax

eumax − 1
=

1
κ(umax)

. (8)

Now put M̃2 = 1/umax ∼ 0.63. The NS2-curve intersects F3 if M2 > M̃2 otherwise it is wholly in C. It
divides region C into two parts. We introduce:

Definition 3.5 (Notation C(1) and C(3)) We denote by C(3) the part of C (cf. Definition 3.2) having F2 in
its boundary and the other part by C(1).

M
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Figure 1: Bifurcation diagram in the
M0 M1 − plane when M2 = 0.5. These are the

typical features of a bifurcation diagram of (1) as
long as M2 < M̃2 ∼ 0.63
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features of a bifurcation diagram of (1) as long as

0.63 ∼ M̃2 < M2 < M∗2 ∼ 1.344
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Figure 5: Bifurcation diagram in the M0 M1 − plane when M2 = 11

The two cases M2 < M̃2 and M2 > M̃2 give rise to two qualitatively different bifurcation diagrams,
compare Figure 1 with Figures 2-5. In terms of these notations the results in [2] imply: (a) P2 exists for
M1 > f2(M0) and dim W s(P2) = i in C(i), i = 1, 3. (b) In the region where M1 > f3(M0), P2 is a source
above the NS2-curve and saddle with dim W s(P2) = 2 below it.

3.3 Preliminary Remarks about P3 and Further Characteristics of the Parameter
Space

The fixed point P3 exists for M0 > e1/M2 (1 + 1/M1), that is above F3. It has the coordinates (x3, u3, z3),
where

u3 = 1/M2,

z3 = ln(M1(M0e−u3 − 1)),

x3 =
M0e−u3 − 1
κ(u3)κ(z3)

,

if κ(u3)κ(z3) > e−u3 . Otherwise u3 = 1/M2 but z3 is the unique solution of

ez

κ(z)
= M1κ(u3)(M0 − eu3 ),

and

x3 =
ez3

M1κ(u3)κ(z3)
.

We will refer to the first case as

Condition 3.6 κ(u3)κ(z3) > e−u3 .

The curve determining the boundary between these two cases is of significant importance. We define it
as follows:

Definition 3.7 (Notation Fc) We denote by Fc the curve M1 = fc(M0) = ez∗/(M0e−u3 −1), M0 > eu3 , where
z∗ is the unique solution to κ(z∗) = e−u3/κ(u3), u3 = 1/M2.
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It follows that that fc(M0) > f3(M0), so P3 meets Condition 3.6 for M1 < fc(M0) whereas it ceases to
meet it for M1 > fc(M0). Thus, the curve Fc divides the region above F3 in M0M1-plane into two parts (cf.
Figure 2). We define:

Definition 3.8 (Notation A, B) The region between F3 and Fc we denote by A and the region above Fc by
B.

If M2 > M̃2, the NS2-curve divides the region A into two subregions:

Definition 3.9 (Notation A(0, 1), A(2, ⋆)) If M2 > M̃2, we denote by A(0, 1) the part above the NS2-curve
and the other part by A(2, ⋆).

The numbers alluded to in the above definition, refer to the dimension of the stable manifolds of P2 and
P3, respectively. This means that dim W s(P2) = 0 in A(0, 1) and dim W s(P2) = 2 in A(2, ⋆). We discuss the
further subdivisions needed and their relation to the dimension of the stable manifold of P3 later.

Similarly, the NS2-curve does not always divide the region B into two subregions. Consider the equa-
tion:

κ(u3)κ(umax − u3) = e−u3 ,

(umax was defined by (7)) and let u∗ be its unique solution. From Lemma 5.6 to be formulated in Section
5 follows that z3 increases in w and tends to umax − u3 for w → wmax so the NS2-curve intersects Fc if and
only if κ(u3)κ(umax − u3) < eu3 which is equivalent to u3 < u∗. Now put M∗2 = 1/u∗ ∼ 1.344. Our NS2-curve
intersects Fc if M2 > M∗2 (Figures 3-5), otherwise it does not (Figures 1-2).

Definition 3.10 (Notation B(0, 1), B(2, ⋆)) If M2 > M∗2 the NS2-curve divides B into two parts. We call
the part above the curve B(0, 1) and the other B(2, ⋆).

We conclude that dim W s(P2) = 0 in B(0, 1) and that dim W s(P2) = 2 in B(2, ⋆), so the first number to
the dimension of the stable manifold of P2, whereas the second number refers to the dimension of the stable
manifold of P3. We summarize the results obtained so far by stating that: We know that P3 exists in A ∪ B
and we know the behavior of P2 in this region. We continue by examining the bifurcations of P3. Its most
essential bifurcation is its Neimark-Sacker bifurcation[2]. We end this section by introducing

Definition 3.11 (Notation NS3) We call the Neimark-Sacker bifurcation curve for P3 in the M0M1-space
the NS3-curve.

4. FORMULATION OF THE RESULTS

One of the major objectives with this paper is to relate the location of the NS3-curve to the location of
the NS2-curve in the M0M1-parameter space. This is essential for understanding the stability complexity
relation of the system (1). Our theorem about the stability-complexity relation in system (1) reads:

Theorem 4.1 (Stability-complexity theorem) The NS3-curves are always located in A(2, ⋆) ∪ B(2, ⋆).

This means that the NS3-curve will be located below the NS2-curve and will imply that longer food chains
possess less stable dynamics than shorter food chains. Another objective is to exclude the possibility of
having strong resonances along the NS3-curves. One such result reads:
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Lemma 4.2 (No Fold-Flip Lemma) There are no bifurcations due to eigenvalues ±1 for P3 in A ∪ B.

The proof of this lemma can be found as the last proof in Section 7. That there are no such bifurcations
(and also no strong resonances) for P2 in A ∪ B ∪ C was proved by [2]. A similar result for P3 whenever
Condition 3.6 holds was also stated together with a result that excludes strong resonances for large parts
of the parameter space as long as Condition 3.6 holds. We subdivide the regions A and B precisely in the
next theorem using the results above. The corresponding figures are schematic and not exact, for example,
the region B(2, 3) is usually very thin. In all figures the parameter M0 is at the horizontal axis whereas the
parameter M1 is at the vertical axis.

Theorem 4.3 (Bifurcation diagram theorem) The following statements hold:

(a) P2 exists in A ∪ B ∪C and P3 in A ∪ B. We have dim W s(P2) = i in C(i), i = 1, 3,

(b) If M2 < M̃2, then dim W s(P2) = 0 in A ∪ B and dim W s(P3) = 1 in A ∪ B (see Figure 1),

(c) If M̃2 < M2 < M∗2, then dim W s(P2) = 0 in A(0, 1)∪B, dim W s(P2) = 2 in A(2, ⋆), dim W s(P3) = 1 in
A(0, 1) ∪ B. The NS3-curve divides A(2, ⋆) into two parts A(2, 1) and A(2, 3) so that dim W s(P3) = i
in A(2, i), i = 1, 3 (see Figure 2),

(d) If M2 > M∗2, then dim W s(P2) = 0 in A(0, 1) ∪ B(0, 1), dim W s(P2) = 2 in A(2, ⋆) ∪ B(2, ⋆),
dim W s(P3) = 1 in A(0, 1) ∪ B(0, 1), and the NS3-curve divides A(2, ⋆) into two parts A(2, 1) and
A(2, 3) so that dim W s(P3) = i in A(2, i), i = 1, 3 (see Figure 3 and Figure 4). Sometimes it might also
divide B(2) into two parts B(2, 1) and B(2, 3) so that dim W s(P3) = i in B(2, i), i = 1, 3 (see Figure 5).

The theorem follows immediately from the results of Section 3. and the Stability-complexity theorem
and No Fold-Flip lemma. The type of the point P2 in different regions follows from the results of Section 3.
From the Stability-complexity theorem and No Fold-Flip theorem follow that the type of P3 can only change
when passing through the NS3-curves which must always be below the NS2-curve and above the F2-curve.
This means that this curve can only divide the regions A(2, ∗) and B(2, ∗) into parts. From the results of [2]
follow that this point exists above the F2-curve and it is stable just above the F2-curve for M0 > eu3 and
unstable for M0 < eu3 .

The essential changes in the plane bifurcation diagrams (M0M1-plane) for increasing values of M2 (after
excluding region E) may therefore (in the light of Theorem 4.3) be explained as follows: For low values of
M2 (the case M2 = .5 is illustrated in Figure 1) the M0M1-plane can be divided in five regions: D (neither
P2 nor P3 exist), C(3) (P2 exists and is stable, P3 does not exist), C(1) (P2 exists and is unstable in the XU-
plane, P3 does not exist), A (P2 exists and is unstable in all directions, P3 exists and is stable, Condition
3.6 is satisfied), B (Same as A but Condition 3.6 is not satisfied) For moderately low values of M2 (the case
M2 = 1 is illustrated in Figure 2) the region A is divided into three regions (in all these cases Condition 3.6
holds): A(2, 3) (P2 exists and is stable in the XU-plane, P3 exists and is stable), A(2, 1) (P2 exists and is
stable in the XU-plane, P3 is unstable), A(0, 1) (P2 is unstable in all directions, P3 is unstable).

As the parameter value M2 increases, the region B splits into two regions B(0, 1) and B(2, 1) (the case
M2 = 2 is illustrated in Figure 3). The emergence of region B(2, 1) allows equilibrium P2 to be stable in
the XU-plane together with an unstable equilibrium P3 that fails to meet Condition 3.6. As the parameter
M2 is further increased (we have illustrated the case M3 = 3 in Figure 4) the NS3-curve intersects Fc, but
no new region appears. This implies that the equilibrium P3 may lose its stability by passing the boundary
where Condition 3.6 is satisfied. Such parameter values denote examples outside the applicability range of
Theorem 4.4 in [2] (low M1 combined with high M2 meaning efficient carnivores combined with in-efficient
herbivores).
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For still higher values of M2 (we have illustrated the case M2 = 11 in Figure 4) one narrow region,
B(2, 3) between two solid lines appear. This narrow region corresponds to a situation where P3 is stable and
fails meeting Condition 3.6 together with P2 stable in the XU-plane.

The rest of the paper is organized as follows. In Section 5 we pay attention to the Neimark-Sacker
bifurcation of P3 under Condition 3.6 and prove Theorem 4.1 under this condition. This case refers to
Figures 1-3. The case when Condition 3.6 is not satisfied will be considered in Section 6 and refers to
Figures 4 and 5. From now on, we divide the analysis of the different bifurcation sequences of system 1
into two parts depending on whether Condition 3.6 is satisfied (Figures 1-3) or not (Figures 4-5) as P3 loses
its stability. We postpone the proofs of a number of lemmas containing, for instance, technical estimates
needed in the in the proofs of our results, to Section 7.

Remarks: Our Stability-complexity theorem states that the complete food-chain is never more stable than
the corresponding plant-herbivore system. This result is a local result but numerical results, for instance,
the results in [2], gives reason to believe that if the solutions of the plant-herbivore system are oscillatory,
then the oscillations of the corresponding food-chain with a carnivore added must be more violent and the
corresponding system is less persistent[14].

5. PROOF OF THE STABILITY-COMPLEXITY THEOREM IN
REGION A

Under Condition 3.6 the characteristic polynomial P(λ) = λ3 + αλ2 + βλ + γ at P3 has the coefficients

α =
−1 + u3 − κ(z3)M2x3 +Kz3 − 2M + u3M− κ(z3)Mx3 +MKz3

1 +M ,

β =
−1 − u3 + 2κ(z3)M2x3 + z3 +M−Mu3 + 2κ(z3)Mx3 +Mz3 −MKz3

1 +M ,

γ =
1 − κ(z3)Mx3 − κ(z3)M2x3 − Kz3 −Mz3

1 +M ,

where
M = M1e−z3 and K = −κ

′(z3)
κ(z3)

. (9)

According to the Schur-Cohn criteria[15–17], a necessary condition for Neimark-Sacker bifurcation is that
kns = 0 when

kns = 1 − β − γ(γ − α). (10)

The general idea is to prove that kns < 0 in A(2). In order to get a Neimark-Sacker bifurcation for P3
the condition kns = 0 must be satisfied. Thus, if kns does not change sign on the bifurcation curve for P2 it
is always unstable there if it does not satisfy some other bifurcation conditions. It follows from [2] that no
other codimension 1 bifurcations are possible.

The Stability-complexity theorem (Theorem 4.1) in Region A follows from four statements labeled
below as Propositions 5.1-5.4. To formulate these propositions we introduce a change of coordinates in the
region A ∪ B by

ν = 2 − 1
κ(u3)

− eu3

M0
, z3 = ln(M1(M0e−u3 − 1)), (11)

from M0M1-space to νz3-space. Region A corresponds now to the region given by

1 − 1
κ(u3)

< ν < 2 − 1
κ(u3)

and 0 < z3 < z∗,
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where z∗ is the solution to κ(u3)κ(z3) = e−u3 .

We introduce the notation
A(u3) = 2 − 1

κ(u3)
. (12)

This function occurs frequently in proofs of the subsequent statements. Note that A decreases for u3 ≥ 0
(κ has the same property), that A(0) = 1, and that A(umax) = 0 follows from (8). We shall suppress the
argument of this function. The inequalityA− 1 < ν < A is satisfied in Region A.

We now formulate the above mentioned statements.

Proposition 5.1 Under Condition 3.6, z3 > ν on the NS2-curve (5) for u3 < umax.

Proposition 5.2 Under Condition 3.6, kns < 0 for z3 > ν, 0 < ν < A and u3 < umax.

Proposition 5.3 There is no Neimark-Sacker bifurcation for ν ≤ 0 and positive z3 and u3 < umax.

Proposition 5.4 There is no Neimark-Sacker bifurcation for P3 for M2 < M̃2 < M∗2.

We now show that Theorem 4.1 follows from the propositions above.

Proof of Theorem 4.1: We first prove that there is no Neimark-Sacker bifurcation for P3 in A(0, 1). Let
us consider the case u3 < umax (cf. (7)). According to Proposition 5.2 the NS3-curve cannot be in the region
z3 > ν for positive ν. But according to Proposition 5.1, the NS2-curve must be there. Similarly, according
to Proposition 5.3 there is no Neimark-Sacker bifurcation for negative ν. Thus, in this case the NS3-curve
must be in A(2, ⋆). In the case u3 > umax it follows from Proposition 5.4 that there are no Neimark-Sacker
bifurcations at all in A.

We now go on proving Propositions 5.1-5.4 one by one. We formulate some general lemmas and fix
notation that is going to be used subsequently.

Lemma 5.5 K = −κ′(z)/κ(z) is a decreasing function in z for z > 0 and

lim
z→0+
K = 1

2
, K(umax) = 1 − 1

umax
and K > 0,

for any positive z.

We define the functions B and η according to

B(u3) = 1 −A(u3), η(w, u3) = h(w) − 1 − B(u3).

Remember that h was defined through (4) and note that η(u3) is closely related to it. The function A was
introduced through (12). It follows from Lemma 3.3 that η is an increasing function in w. Substitution of
relevant arguments in the formulas shows that η(eu3 , u3) = 0 and η(wmax, u3) = A(u3). We are going to
suppress the arguments of the functions defined above.

We next reparametrize the expressions for z3 and ν given by (11) on the NS2-curve (5) as functions of
ρ = we−u3 − 1. Calculations give

z3 = ln
(
ρ

η + B + 1
)
, ν =

η +Aρ
ρ + 1

. (13)
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Torsten Lindström; Gunnar Söderbacka/Studies in Mathematical Sciences Vol.2 No.1, 2011

The functions z3 and ν are defined for 0 < ρ < ρmax = wmaxe−u3 − 1 and the idea of the reparametrization
is that the parameter should start from zero instead of eu3 . We continue formulating lemmas concerning
the properties of the newly defined functions. In fact, Lemmas 5.8 and 5.9 give important estimates for the
function η.

Lemma 5.6 z3 is an increasing function in ρ for ρ ∈ [0, ρmax] where ρmax = wmaxe−u3 −1 and limρ→0+ z3 = 0
and z3(ρmax) = umax − u3.

Lemma 5.7 ν is an increasing function in ρ for ρ = [0, ρmax] and ν(0) = 0 and ν(ρmax) = A .

Lemma 5.8 If w = (ρ + 1)eu3 then σ = η/ρ < s for ρ > 0, where s is the derivative of η with respect to ρ
taken at ρ = 0.

Lemma 5.9 The functions σ and s in Lemma 5.8 are increasing in u3 and σ is decreasing in ρ. Moreover,
1/2 < s < 3/4 for 0 < u3 < umax.

Proofs of lemmas are as usual given in Section 7. To prove Proposition 5.1 we finally need Lemma 5.10
estimating the logarithmic function from below with one of its Padé approximations[7].

Lemma 5.10 ln(t + 1) > 2t/(t + 2) for t > 0.

Proof of Proposition 5.1: Lemma 5.8 and Lemma 5.10 give

z3 = ln
(
ρ

η + B + 1
)
>

2ρ
ρ + 2(η + B)

=
2ρ

ρ + 2(σρ + B)
.

Using notation in Lemma 5.8, we get

ν =
η +Aρ
ρ + 1

=
(σ +A)ρ
ρ + 1

.

Thus, we wish to prove
2ρ

ρ + 2(σρ + 1 −A)
>

(σ +A)ρ
ρ + 1

, (14)

which is equivalent to prove q1ρ < 2q2, where q1 = 2σ2 + (2A+1)σ+A−2 and q2 = A2 + (1−σ)(1−A).
It follows from the properties ofA that 0 ≤ A < 1 and from Lemma 5.9 follows σ < 3/4 implying q2 > 0.
Thus, (14) holds if q1 ≤ 0 and we further consider only the case when q1 > 0. Then (14) is equivalent to
ρ < 2q2/q1 = q. q is decreasing in σ because q2 is decreasing and q1 increasing in σ. So q is always greater
than the value it takes for greatest σ which is taken for lowest ρ and greatest u3. The sign of the derivative
of q with respect to A is determined by a second order polynomial. The minimum of q is taken at the root
of the derivative if this root is less than 1 and is inside the interval where q is positive. Otherwise it is taken
at A = 1. Because σ < 3/4 according to Lemma 5.9 we can use this value for estimating q getting q > 0.65.
Thus, inequality (14) holds for ρ ≤ 0.65. Because ρ < ρmax = wmaxe−u3 − 1 we get u3 < umax − ln(1.65) for
ρ > 0.65. Using this u3-value and ρ = 0.65 we estimate σ < 0.548. Using this σ in the same estimating
procedure as above we find that inequality (14) is valid for 0.65 < ρ ≤ 1.6. Repeating this estimation
procedure we find that inequality (14) is valid for all ρ < ρmax and thus, z3 > ν.

Now, since the used expressions for z3 and ν (13) were evaluated at the NS2-curve (5), Proposition 5.1
follows.
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In the proof of the next proposition, we need to consider the expression

P = κ(u3)k2ν2 + (2kκ(u3) + k2)ν + κ(u3)u3k + κ(u3), k = K − 1,

which is factor in (10) for z3 = ν. The first part of the proof of Proposition 5.2 is actually based on the
following lemma:

Lemma 5.11 P is positive for 0 < u3 ≤ umax and 0 < ν ≤ A = 2 − 1/κ(u3).

Proof of Proposition 5.2: We need to calculate the expression for kns as a function of ν and z3. We get

kns =
q22z2

3ν
2 + q12z2

3ν + q02z2
3 + q21z3ν

2 + q11z3ν + q01z3 + q10ν

κ(u3)2 ,

where
q22 = −κ(u3)2k2,

q12 = kκ(u3)(kκ(u3) − 3κ(u3) − 2k),
q02 = (2κ(u3) + k)(−k + kκ(u3) − κ(u3)),
q21 = κ(u3)2k,
q11 = −κ(u3)(κ(u3)u3k − κ(u3) − k),
q01 = κ(u3)(κ(u3) + κ(u3)u3k − u3κ(u3) − u3k − 1),
q10 = u3κ(u3)2,

and µ =M+1 and k = K−1. We notice that k depends on z, but it is very little varying and these properties
are given by Lemma 5.5. Again, we split the proof into two parts.

(a) The first part reads: Under Condition 3.6, kns < 0 for z3 = ν, 0 < ν < A.

The numerator determining the sign of kns becomes −(νκ(u3)+ 1− κ(u3))Pν for z3 = ν. From Lemma
5.11 follows P > 0 for 0 < u3 < umax and because νκ(u3) + 1 − κ(u3) > 0 we get kns < 0.

(b) The second part we are going to prove states that: Under Condition 3.6, kns < 0 for z3 = ν, 0 < ν < A
implies kns < 0 for z3 > ν, 0 < ν < A.

The statement (b) simply says that statement (a) implies Proposition 5.2 and is easier to prove than (a).

We now prove (b). We make the change of variable ζ = z3 − ν so that z3 > ν means ζ > 0. The
numerator of kns takes the form qn2ζ

2 + qn1ζ + qn0 where

qn2 = −(νκ(u3)k + k + 2κ(u3))(νκ(u3)k + k + κ(u3) − kκ(u3)),

qn0 is the expression proved negative in the proof of (a) and

qn1 = qn11 + qn12 + qn13u + qn14ν
2 + qn15ν,

where
qn11 = −2κ(u3)2ν(νk + 1)2 < 0,
qn12 = (κ(u3)2 − κ(u3))(2νk + 1)2 < 0,
qn13 = (κ(u3)2 − κ(u3) − νκ(u3)2)k − κ(u3)2,

qn14 = −κ(u3)2(2k2 + k),
qn15 = 2(κ(u3) − 1)k2 − kκ(u3) − κ(u3)2.

We first analyze qn2. Since k < 0 the smallest value of νκ(u3)k+k+2κ(u3) is taken for ν = 2−1/κ(u3).
It is 2κ(u3)K > 0. The smallest value of νκ(u3)k + k + κ(u3) − kκ(u3)) is taken for the same ν and it is
κ(u3)K > 0. Thus, qn2 < 0.
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We finally analyze qn1. qn13 is maximal for the maximal value of ν and thus, substituting ν = A gives
qn13 < −κ(u3)2K < 0. qn14 < 0 as k < −1/2. Finally by standard finding of global maximum it can
be counted that the maximum of qn15 in the region −1 ≤ k < 0, 1/2 < κ(u3) ≤ 1 is zero taken for
k = −1 and κ(u3) = 1. We conclude that qn1 < 0.

Thus, qn2, qn1, qn0 < 0 and kns < 0 for z3 > ν and (b) follows.

As earlier mentioned, Proposition 5.2 follows from Statements (a) and (b) above.

Proof of Proposition 5.3: We prove that kns < 0 in the case ν ≤ 0 and u < umax. We do this by looking at
the sign of the coefficients qi j and using that in this case −1 < k < 0 and κ(u3) > 1/2. It is clear that kns < 0
if q22, q02, q21, q01 < 0 and q12, q11, q10 > 0 and we immediately see that q22, q21 < 0 and q10 > 0. For
q12 we get kκ(u3) − 3κ(u3) − 2k < (k − 3)/2 − 2k = −3(1 + k)/2 < 0 and thus, q12 > 0. For q02 we get
2κ(u3) + k > 1 + k > 0 and kκ(u3) − κ(u3) − k = (k − 1)κ(u3) − k < (k − 1)/2 − k = −(1 + k)/2 < 0 and
thus, q02 < 0. For q11 we get κ(u3)u3k − κ(u3) − k = −e−u3 k − κ(u3) < 0 and thus, q11 > 0. For q01 we get
q01/κ(u3) = κ(u3) + κ(u3)u3k − u3κ(u3) − u3k − 1 = k(u3κ(u3) − u3) − u3κ(u3) + (κ(u3) − 1). From k > −1
and u3κ(u3) − u3 < 0 follows q01/κ(u3) < u3(1 − 2κ(u3)) + (κ(u3) − 1) < 0 because 1/2 < κ(u3) < 1. Thus,
q01 < 0 and we have proved that kns < 0 in this case.

Proof of Proposition 5.4: We notice that for M2 < M̃2 we get u3 > umax and 0 < κ(u3) < 1/2.

A necessary condition for Neimark-Sacker bifurcation as Condition 3.6 holds was that

Qk = knsκ(u3)2 = 0.

Observe that always ν < A because ν = A− eu3/M0. Substituting ν = ν +A into Qk we get

Qk = κ(u3)(q2z2
3 + q1z3 + q0),

where

q2 = −κ(u3)k2ν2 − 3κ(u3)(k2 + k)ν − 2κ(u3)(1 + k)2,

q1 = κ(u3)kν2 + (((4 − u3)κ(u3) − 1)k + κ(u3))ν + ((−u3k − u3 + 3 + 4k)κ(u3) − 2 − 2k),
q0 = u3(2κ(u3) − 1) + νu3κ(u3).

Observing that −1 < k < −1/2 and ν < 0 we see that q2 < 0. Let us now consider q1. The coefficient of
first order for ν is equal to (4κ(u3) − 2 + e−u3 )k + κ(u3) and is linear in k. For k = −1 we get

−3κ(u3) − e−u3 + 2 > 2 − 3
2
− e−umax >

1
2
− e−1 > 0,

and for k = 0 we get κ(u3) > 0. We conclude that the coefficient is positive and because ν < 0 the middle
term in q1 is negative for u > umax. The expression (−u3k − u3 + 3 + 4k)κ(u3) − 2 − 2k is linear in κ(u3) and
for κ(u3) = 1/2 it attains the value −(u3k + u3 + 1)/2 < 0 and for κ(u3) = 0 the value −2 − 2k < 0 and we
conclude that the expression is always negative. The ν2-term is always negative and thus, q1 < 0. Finally
we find that q0 = u3(2κ(u3) − 1) + νu3κ(u3) < 0 because κ(u3) < 1/2 for u3 > umax. Consequently Qk < 0
for u3 > umax and in this case there are no Neimark-Sacker bifurcations.
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6. PROOF OF THE STABILITY-COMPLEXITY THEOREM IN
REGION B

In this section we assume Condition 3.6 is not satisfied. In this case the Jacobian matrix at P3 takes the
form 

1/m −x3/m 0
u3/x3 1/κ(u3) − u3 − Kz3 −u3 − Ku3

0 z3/u3 1

 ,
where

m = M0e−u3 . (15)

Computation of the coefficients of the characteristic polynomial gives in this case

α = −1 − 1
κ(u3)

− 1
m
+ u3 +Kz3, (16)

β =
1
κ(u3)

+
1
m
+

1
mκ(u3)

− u3 + z3 −
Kz3

m
, (17)

γ = − 1
mκ(u3)

− z3

m
. (18)

Thus, a necessary criterion on the coefficients for Neimark-Sacker bifurcation reads kns =
Q

m2κ(u3)2 = 0,
where

Q = q12z2
3m + q02z2

3 + q21z3m2 + q11z3m + q01z3 + q20m2 + q10m + q00,

and

q12 = −κ(u3)2K ,
q02 = −κ(u3)2,

q21 = −κ(u3)2,

q11 = −κ(u3)(−1 + u3κ(u3) − κ(u3) +K(1 − κ(u3))),
q01 = κ(u3)(κ(u3) − 2),
q20 = κ(u3)(−1 + u3κ(u3) + κ(u3)),

q10 = −u3κ(u3) + 1 − κ(u3)2,

q00 = −1 + κ(u3).

There is also a one-to-one change of coordinates in B given by (15) and

ez3

κ(z3)
= κ(u3)(M0 − eu3 )M1,

from the M0M1 space to the mz3-space and B is then given by m > 1 and z3 > z∗ where z∗ is the unique
solution to κ(z3) = e−u3/κ(u3). So we examine kns as a function of m and z3.

The sign of kns is determined by the sign of Q and we wish to prove that Q < 0 on the NS2-curve. We
split the proof of the stability-complexity theorem (Theorem 4.1) in this case into three major propositions.
Note that the conclusion of the first of them holds outside the NS2-curve, too.

Proposition 6.1 Q < 0 for M̃2 < M2 < 5 and u3 < umax.

Proposition 6.2 Q < 0 for M2 ≥ 5 and u3 < umax on the NS2-curve (5).
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Proposition 6.3 There is no Neimark-Sacker bifurcation for P3 for M2 < M̃2 and u3 > umax when Condition
3.6 is not satisfied.

Taken together, these three propositions imply the Stability complexity theorem (Theorem 4.1) in Region
B. We go on formulating some lemmas needed in the proof of the propositions above.

Lemma 6.4 κ(t)2 > e−t for t > 0.

Lemma 6.5 If Condition 3.6 is not satisfied, then z3 > u3.

Lemma 6.6 Let q− = 1/κ(u3) − u3. Then 0 < q− < 1 and q− is a decreasing function in u3 for u3 > 0.

Lemma 6.7 The derivative of Q with respect to z3 is negative for positive z3.

We now use the lemmas above to prove Proposition 6.1.

Proof of Proposition 6.1: For z3 = u3 we get Q = Qu = Aqm2 + Bqm +Cq, where

Aq = −(1 − a)a, Bq = (1 − a)((1 + q)a + qb), Cq = −(b + 1)(a + b),

and a = 1 − κ(u3), b = u3κ(u3) and q = 1/κ(u3) − (1 +K)u3.

The only positive coefficient in Qu is Bq and it is greatest for greatest q. Thus, using Lemma 5.5 we get
Qu < Qu−, where Qu− is Qu forK = 0, that is Qu− = Aqm2+B−m+Cq, where B− = (1−a)((1+q−)a+q−b).

Because Aq,Cq < 0 we have Qu− < 0 for any m if 4AqCq > B2
−. Because 0 < a < 1 this is equivalent to

4AqCq − B2
−

1 − a
= kQ = q2b2 + q1b + q0 > 0,

where q2 = (4+q2
−)a−q2

−, q1 = a2(4+2q−+2q2
−)+a(4−2q−−2q2

−) and q0 = a2(3−2q−−q2
−)+ (1+q−)2a3.

Thus, kQ is a second order polynomial in b. All the coefficients are increasing with a for 0 < q− < 1.
Because B− is decreasing with decreasing q− the polynomial kQ will always be greater than the value it
takes for greatest q− and smallest a. But the greatest q− and smallest a we get for smallest u3. For u3 = 0.4
all the coefficients q0, q1 and q2 are positive and because b > 0 we conclude that kQ > 0 and thus, kQ > 0
for u3 ≥ 0.4. Let us consider the case 0.2 ≤ u3 < 0.4. In this case kQ is greater than the polynomial k′Q
where the coefficients q0, q1 and q2 are calculated for u3 = 0.2. b is increasing in u3 and thus, for u3 < 0.4
we get 0 < b < b+ where b+ is the value b takes for u3 = 0.4. Calculations show that in this b-interval
k′Q > 0 and thus, also kQ > 0. Consequently kQ > 0 and Q < 0 for u3 > 0.2 which is equivalent to M2 > 5.
From Lemma 6.7 follows that Qu < 0 for z3 > u3 which is always true according to Lemma 6.5.

Our numerical investigations of expression Qu actually indicate Proposition 6.1 to be true in the range
M2 < 10.8.

We next split Proposition 6.2 into two sub-propositions. To formulate them we need the following
definition.

Definition 6.8 (Notation S) The region S in the positive mz-plane is the union of three regions S a, S b and
S c, where

• S a is defined by 0 < m < 1/κ(u3) and z3 > 0,
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• S b is defined by m ≥ 1/κ(u3) and z3 > m − 1/κ(u3) and

• S c is defined by z3 > 0.25 and m > 0.

We now formulate the above mentioned two sub-propositions.

Proposition 6.9 Q < 0 in S for 0 < u3 ≤ 0.2.

Proposition 6.10 (z,m) ∈ S on the NS2-curve for 0 < u3 ≤ 0.2.

We see that the first one guarantees Q to be negative in S for M2 ≥ 5. The second guarantees that the
NS2-curve is located inside S for M2 ≥ 5, so provided these sub-propositions can be proved, Proposition
6.2 follows. Before we go on proving Proposition 6.9 we formulate one lemma.

Lemma 6.11 If Condition 3.6 is not satisfied then

2
3

ln(κ(u3)eu3 ) +
2
3

ln(M1(M0e−u3 − 1)) < z3 < ln(M1(M0e−u3 − 1)),

and on the NS2-curve (5)

ln(M1(M0e−u3 − 1)) = ln(
ρ

g
+ 1), g = h − 1,

z3 is increasing with w on the NS2-curve (5).

Proof of Proposition 6.9: We prove that the Proposition holds in each of the subregions S a, S b and S c

corresponding to parts (a), (b), and (c) below.

(a) We start by proving that Q < 0 in S a.

For z3 = 0 we get Q = Q0 which is a second order polynomial in m and negative for 0 < m < 1/κ(u3)
(the roots of Q0 are 1/κ(u3) and (κ(u3)−1)/(κ(u3)−e−u3 ) < 0, the coefficient for m2 is positive). From
Lemma 6.7 we conclude that Q < 0 for z3 > 0 and 0 < m < 1/κ(u3).

(b) We continue by proving that Q < 0 in S b.

Let Qz be the expression obtained from Q by substituting z3 = m−1/κ(u3). If we make the substitution
m = mk + 1/κ(u3) and divide Qz by mkmκ(u3) we get

Qz

mkmκ(u3)
= −(K + 1)(κ(u3)mk + 1 − κ(u3)) < 0,

for mk positive. Thus, Q < 0 for z3 = m − 1/κ(u3). Again from Lemma 6.7 we conclude that Q < 0
for z3 > m − 1/κ(u3) and m > 1/κ(u3).

(c) The last part is to prove that Q < 0 in S c.

For the coefficients of Q we get the following estimates:

q10 = e−u3 − κ(u3)2 < 0 (follows from Lemma 6.4),

q12 < 0, q01/κ(u3) < −1,

q11/κ(u3) < e−u3 + κ(u3) − K(1 − κ(u3)) < 2κ(u3) (because 1 − u3κ(u3) = e−u3 < κ(u3) and K > 0),

q20/κ(u3) = c, q21 = q02 = −κ(u3)2, c = κ(u3) − e−u3 > 0.
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Using these estimates we get

Q
κ(u3)

< m2(c − κ(u3)z3) + 2κ(u3)z3m − z3 − κ(u3)z2
3 −

1 − κ(u3)
κ(u3)

= Q1.

Considering Q1 as a second order polynomial in m we conclude that Q < 0 for any m if

4(κ(u3)z3 − c)
(
z3 + κ(u3)z2

3 +
1 − κ(u3)
κ(u3)

)
> 4κ(u3)2z2

3,

which is equivalent to

Qk = κ(u3)2z3
3 + κ(u3)(1 − c − κ(u3))z2

3 + (1 − κ(u3) − c)z3 −
(1 − κ(u3))c
κ(u3)

> 0.

Because κ(u3) < 1 − u3/2 + u2
3/6 and e−u3 > 1 − u3 + u2

3/2 − u3
3/6, we get

1 − c − κ(u3) = 1 + e−u3 − 2κ(u3) > (u2
3 − u3

3)/6 > 0,

for u3 < 1 and thus, the coefficients for z2
3 and z3 are positive. Consequently we get

Qk > κ(u3)2z3
3 −

(1 − κ(u3))c
κ(u3)

.

Thus, Qk > 0 if

z3 > z− =
(

(1 − κ(u3))c
κ(u3)3

)1/3

.

We notice that (1 − κ(u3))c/κ(u3) increases with u3 while the coefficient for z3
3 decreases with u3.

We now prove that c increases with u3 for small u3 by checking the sign of the derivative with respect
to u3. We get

c′ =
(1 + u3 + u2

3)e−u3 − 1

u2
3

> 1/2 − 2u3/3 + u2
3/3 − u3

3/6,

and c′ > 0 for 0 < u3 < 1. Thus, because κ(u3) is decreasing in u3 the value of z− is less or equal to
the value it gets for u3 = 0.2 which is less than 0.25.

We proceed by proving Proposition 6.10, also this proof splits into three main parts.

Proof of Proposition 6.10:

(a) We first prove that z3 − 2
3 ln(κ(u3)eu3 ) > m − 1

A for ρ = we−u3 − 1 < 0.1 and 0 < u3 ≤ 0.2 on the
NS2-curve (5).

From Lemmas 6.11, 5.10, and 5.8 follow that

z3 −
2
3

ln(κ(u3)eu3 ) >
4
3
ρ

ρ + 2g
>

4ρ
3(ρ + 2sρ + 2B)

,

where B = 1 −A. Calculations and Lemma 5.8 give

m − 1
A =

we−u3

1 − g
− 1
A =

Aρ + η
A(1 − g)

<
(A + s)ρ

A(1 − sρ − B)
.
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Torsten Lindström; Gunnar Söderbacka/Studies in Mathematical Sciences Vol.2 No.1, 2011

Consequently z3 − 2
3 ln(κ(u3)eu3 ) > m − 1/A if the inequality

4
3((1 + 2s)ρ + 2B)

>
A + s

A(1 − sρ − B)
,

is satisfied. This inequality is equivalent to

ρ <
10A2 − 6A− 6s + 6As
3A + 3s + 10As + 6s2 = ρ1.

The smallest value of ρ1 for varying s is taken for greatest s < 3/4. So

ρ1 >
4(20A2 − 3A− 9)

3(28A + 15)
= ρ2.

ρ2 is increasing for increasing A if A > 0 (the derivative of ρ2 with respect to A is positive for
positive A). Thus, ρ2 is greater than the value it takes for smallest A. Smallest A > 0.896 is taken
for u3 = 0.2. For thisA we get ρ2 > 0.1

(b) The next part is to show that z3 − 2
3 ln(κ(u3)eu3 ) > 0.25 for ρ = 0.1 on the NS2-curve (5) when u3

satisfies the condition: 0 < u3 ≤ 0.2.

As in the previous part of this proof we get

z3 −
2
3

ln(κ(u3)eu3 ) >
4ρ

3(ρ + 2g)
>

4ρ
3((1 + 2s)ρ + 2B)

= z1.

But the smallest value of z1 is taken for for greatest s < 3/4 and B and smallest A. For u3 ≤ 0.2 we
getA > 0.896. Evaluating z1 for s = 3/4 andA = 0.896 we get z1 > 0.25 for ρ = 0.1.

(c) The last part is to prove that 2
3 ln(κ(u3)eu3 ) > 1/A− 1/κ(u3) for 0 < u3 < 0.475.

Using κ(u3)eu3 = (eu3 − 1)/u3 > 1 + u3/2 and Lemma 5.10 we get

2
3

ln(κ(u3)eu3 ) >
2
3

ln(1 + u3/2) >
4
3

u3

u3 + 4
.

Calculations give 1/A−1/κ(u3) = (x−1)2(2− x)−1, where x = 1/κ(u3). This expression is increasing
with x and x < 1/(1 − u3/2) = 2/(2 − u3). Thus,

(x − 1)2

2 − x
<

(
2

2−u3
− 1

)2

2 − 2
2−u3

=
u2

3

(2 − u3)(2 − 2u3)
.

But u2
3/((2 − u3)(2 − 2u3)) < 4u3/(3(u3 + 4)) is for 0 < u3 < 1 equivalent to the inequality

5u2
3 − 36u3 + 16 > 0,

which is seen to hold for 0 < u3 < 0.475.

We conclude that Proposition 6.10 holds since, from part (a) and (c) it follows that z3 > m − 1/κ(u3) for
ρ < 0.1. From part (b) and Lemma 6.11 it follows that z3 > 0.25 if ρ ≥ 0.1 for 0 < u3 ≤ 0.2 which finishes
the proof.

We proceed with the last part of the proof of the Stability complexity theorem in Region B, Proposition
6.3.
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Proof of Proposition 6.3: We notice that for M2 < M̃2 we get u3 > umax and 0 < κ(u3) < 1/2.

A necessary condition for Neimark-Sacker bifurcation was that

Q = q12z2
3m + q02z2

3 + q21z3m2 + q11z3m + q01z3 + q20m2 + q10m + q00 = 0,

where

q12 = −κ(u3)2K < 0,

q02 = −κ(u3)2 < 0,

q21 = −κ(u3)2 < 0,

q11 = κ(u3)(1 − u3κ(u3) + κ(u3) − K(1 − κ(u3)) < 2κ(u3)2,

q01 = κ(u3)(κ(u3) − 2) < 0,
q20 = κ(u3)c,

q10 = e−u3 − κ(u3)2 < 0,
q00 = −1 + κ(u3) < 0,

and c = κ(u3) − e−u3 .

We get Q/κ(u3) < Am2 + Bm + C where A = c − z3κ(u3), B = 2z3κ(u3) and C = (κ(u3) − 2)z3. The
discriminant of the expression in m is D = 4AC − B2 = (az3 + b)z3, where a = 8κ(u3)(1 − κ(u3)) > 0 and
b = 4c(κ(u3) − 2). Because z3 > u3 (Lemma 6.5) we get

az3 + b > au3 + b = 4(2 − 4κ(u3) + e−u3κ(u3) + κ(u3)2) > 0.

Observing that C < 0 we can conclude that Q < 0 for u3 > umax and in this case there are no Neimark-Sacker
bifurcations.

7. PROOFS OF LEMMAS

Proof of Lemma 3.3:

(a) Differentiating h we get

h′ =
w − 1 − ln w

(w − 1)2 ,

which is positive for w > 1. Thus, (a) is proved.

(b) Calculating h′′ we get ξ(w)(w−1)−3, where ξ(w) = −w+1/w+2 ln w. Since ξ′(w) = −(w−1)2w−2 < 0
and ξ(1) = 0 we get ξ(w) < 0 for w > 1. Thus, h′′ < 0 and (b) is proved.

(c) limw→∞ h = ∞ because w(w − 1)−1 → 1 and ln w → ∞ for w → ∞. Series expansion of ln w around
w = 1 gives w(1− (w− 1)/2) < h < w for w > 1 from which follows limw→1+ h = 1 and (c) is proved.

(d) This property follows from (c) and (a).

(e) h is increasing, so this property follows from (a) and the definition of κ (2).
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Proof of Lemma 5.5: Calculations give

K = 1
z
− 1

ez − 1
> 0,

because ez3 − 1 > z3. The derivative of K is

− 1
z2 +

ez

(ez − 1)2 .

The derivative is negative if z2 < (ez−1)2

ez . But

(ez − 1)2

ez = ez + e−z − 2 > 1 + z +
z2

2
+

z3

6
+ 1 − z +

z2

2
− z3

6
− 2 = z2.

Further

lim
z→0
K = lim

z→0

ez − 1 − z
z(ez − 1)

= lim
z→0

z2

2 + · · ·
z(z + · · · ) =

1
2
,

and
K(umax) =

1
umax

− 2 − umax

umax
= 1 − 1

umax
,

because umaxeumax = 2eumax − 2 (from (8)) implies eumax − 1 = umax
2−umax

.

Proof of Lemma 5.6: Calculating z3 as a function of w on the bifurcation curve we get

z3 = ln
(

e−u3 (w2 − w) + w ln w − 2w + 2
1 + w ln w − w

)
.

Calculating the derivative of ez3 we get
l(w)

(1 + w ln w − w)2 ,

where
l(w) = e−u3 (3w − 1 + w2 ln w − 2w2) − 1 + w − ln w.

Differentiating l we get l′(w) = l1(w)/w, where

l1(w) = (2w2 ln w − 3w2 + 3w)e−u3 + w − 1.

Differentiating l1 we get
l′1(w) = l2(w) = 1 + (3 + 4w ln(w) − 4w)e−u3 ,

and the derivative of l2 is 4 ln we−u3 which is positive for w > 1. Because l2(1) = 1 − e−u3 > 0 and
l1(1) = l(1) = 0, we get l(w) > 0 for w > 1 and ez3 and z3 is an increasing function in w. Observing that
w ln w − 2w + 2 = 0 for w = wmax we obtain z3(ρmax) = umax − u3. ρ = 0 is equivalent to w = eu3 and
calculations give z3 = 0 for w = eu3 .

Proof of Lemma 5.7: Differentiating ν with respect to ρ we get

η′(ρ + 1) +A− η
(ρ + 1)2 .

To see that the derivative is positive we use the properties of η asserting that η is increasing in w and thus,
also in ρ and η ≤ A. Direct substitutions give ν(0) = 0 and ν(ρmax) = A.
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Proof of Lemma 5.8: From (b) in Lemma 3.3 follows that dη
dw is a decreasing function in w. The chain

rule gives dη
dρ =

dη
dw eu3 and we get dη

dρ < s. Integration of the last inequality with respect to ρ gives the result.

Proof of Lemma 5.9: We start by proving the properties of s. Note first that

dη
dρ
=

dη
dw
· dw

dρ
=

dh
dw

dw
dρ
,

and for ρ = 0,
dη
dρ
= h′(v)v =

v − 1 − ln v
(v − 1)2 v, (19)

where v = eu3 . This gives an explicit formula for s. The derivative of (19) with respect to v is

v ln v − 2(v − 1) + ln v
(v − 1)3 > 0,

for 1 < v < wmax (the positivity of numerator is established by differentiating it twice). Thus, s is an
increasing function of v and u3. Since ln v = v−1− (v−1)2

2 +O((v−1)3), (19) gives limu3→0 s = limv→1 s = 1/2.
For u3 = umax we have to estimate s for v = wmax. Then we get (remember that v ln v = 2(v−1) for v = wmax)

s =
v − 1 − 2(v−1)

v

(v − 1)2 v =
v − 2
v − 1

.

Because wmax < 5 we get s < 3/4.

Now we prove the properties for σ. Calculations give

∂σ

∂ρ
=
ξρ2eu3 + ξ2ρ + u3ρ

2eu3 − ln(ρ + 1)(ξρ2eu3 + 2ρξeu3 + ξ2)
(ρeu3 + ξ)2ρ2(1 − e−u3 )

,

where ξ = eu3 − 1. Using Lemma 5.10 we get

(ρ + 2)σn < ρ
2(aρ + b),

where σn is the numerator of ∂σ
∂ρ

a = eu3 (u3 + 1 − eu3 ) < 0 and b = −e2u3 + 2u3eu3 + 1. We notice that b = 0
for u3 = 0 and b′ = 2eu3 (−eu3 + 1 + u3) < 0. Thus, we conclude ∂σ

∂ρ
< 0.

Now it remains to consider

∂σ

∂u3
=
∂h
∂u3

(ρ + 1)eu3 − (1/κ(u3))′ =
w − 1 − ln w

(w − 1)2 w − eu3 − 1 − u3

(eu3 − 1)2 .

But the first term is known from the first part of this proof to increase in w and thus, also in u3. Calcu-
lations give ∂σ

∂u3
= 0 for w = eu3 and we conclude ∂σ

∂u3
> 0 for w > eu3 .

Proof of Lemma 5.10: Both sides of the inequality are zero for t = 0 and the derivative of the left hand
side is greater than the derivative of the right hand side for t > 0. The lemma follows directly from these
facts.
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Proof of Lemma 5.11: We split the proof of Lemma 5.11 into two major parts labeled (a) and (b) below.
The second of these will, again, be split into three subparts.

(a) We first claim that: P is positive for 0 < u3 ≤ 1 for any ν.

We prove the statement above as follows: If P is considered as a second order polynomial in ν the
discriminant is −k3(4κ(u3)(1−u3κ(u3))+ k). κ1(u3) = 4κ(u3)(1−u3κ(u3)) = 4κ(u3)e−u3 is a decreasing
function in u3 and κ1(1) > 0.93. Taking into account that −2/3 < −1/umax < k < −1/2 we conclude
that the discriminant is positive and because the coefficient for ν2 is positive we get P > 0 for all ν.

(b) The second claim is that: P is positive for 1 < u3 < umax and 0 < ν ≤ A = 2 − 1/κ(u3).

We are going to prove the above statement by splitting it into three parts. In proving these parts we
use estimates of k given in Lemma 5.5 above.

(i) The first part reads: For ν ∈ [0, 2 − 1/κ(u3)] the minimum

P∗ = (4κ(u3) − 2)k2 + (u3κ(u3) + 4κ(u3) − 2)k + κ(u3),

of P is taken for ν = 2 − 1/κ(u3). The above statement follows by first observing that the
coefficient for ν in P is negative because κ(u3) > 1/2 and −1 < k < 0. The minimum of P is
taken at

ν∗ = −
2kκ(u3) + k2

2κ(u3)k2 = −
(

1
k
+

1
2κ(u3)

)
> 0.

Because k > −2/3 we get 2 + 1
k <

1
2 <

1
2κ(u3) from which follows ν∗ > 2 − 1/κ(u3) and P

decreases in the interval [0, 2 − 1/κ(u3)]. After calculating P(2 − 1/κ(u3)) = P∗ the statement
follows.

(ii) The next statement we are going to prove reads: If 1 ≤ u3 < umax the minimum P− of P∗ for
k ∈ [−1/2,−1/umax] is taken for k = −1/umax. Observe that both coefficients for k2 and k are
positive in P∗ so minimum is taken for some negative

k− = −
u3κ(u3) + 4κ(u3) − 2

2(4κ(u3) − 2)
= −1

2
− u3κ(u3)

2(4κ(u3) − 2)
.

Because κ(u3)
4κ(u3)−2 >

1
2 for 1/2 < κ(u3) < 1 we get

u3κ(u3)
2(4κ(u3) − 2)

>
1
4
,

for u3 ≥ 1 and k− < −3/4 < −1/umax. Now, (ii) holds.

(iii) The last statement reads: P∗ > 0 for k = −1/umax and 1 < u3 < umax.
When proving (iii), we first note that P− is decreasing in u3 for 1 < u3 < umax because

P∗ = (κ(u3)(2k + 1)2 + ku3κ(u3) − 2(k + k2),

and κ(u3) is decreasing and u3κ(u3) = 1 − e−u3 is increasing. Calculating P∗ for u3 = umax and
k = −1/umax we get zero because κ(umax) = 1/2. Now, (iii) follows.

Proof of Lemma 6.4:

κ(t)2et =
et + e−t − 2

t2 >
1 + t + t2

2 +
t3

6 + 1 − t + t2

2 −
t3

6 − 2
t2 = 1.
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Proof of Lemma 6.5: From Lemma 6.4 follows that Condition 3.6 is satisfied for z3 = u3. Because κ(z3)
is decreasing for increasing z3, Condition 3.6 is satisfied also for z3 < u3.

Proof of Lemma 6.6: 0 < q− < 1 is equivalent to 0 < κ(u3)q− < κ(u3) and 0 < e−u3 = 1 − u3κ(u3) < κ(u3)
which clearly holds. The derivative of 1/κ(u3) with respect to u3 is (κ(u3) − e−u3 )u−1

3 κ(u3)−2 which is less
than one, because (κ(u3)−e−u3 )u−1

3 κ(u3)−2 < 1 is equivalent to κ(u3)−e−u3 < (u3κ(u3))κ(u3) = (1−e−u3 )κ(u3)
which holds because κ(u3) < 1. Thus, the derivative of q− is less than zero.

Proof of Lemma 6.7: We start with observing that −K ′z3 < K for all positive z3. Indeed, the inequality
is after calculations seen to be equivalent to Kz = ez3 z3/(ez3 − 1) > 1. But the derivative of Kz is ez3 (ez3 −
z3 − 1)(ez3 − 1)−2 > 0 and limz3→0+Kz = 1 so the inequality is always true. The derivative of Q with respect
to z3 is Q′ = 2Qz2z3 + Q′z2z2

3 + Qz1 + Q′z1z3 where Qz2 = −κ(u3)2(mK + 1) and Qz1 = q21m2 + q11m + q01.

Because m > 0 and K > 0 according to Lemma 5.5 we easily get

2Qz2z3 + Q′z2z2
3 = −κ(u3)2(2(mK + 1)z3 +K ′mz2

3) < 0,

using K ′z3 +K > 0.

We observe that q11 = q̃11 − κ(u3)(1 − κ(u3))K and we get

Qz1 + Q′z1z3 = Q̃z1 − κ(u3)(1 − κ(u3))m(K +K ′z3),

where Q̃z1 = q21m2 + q̃11m + q01 and q̃11 = κ(u3)(1 − u3κ(u3) + κ(u3)).

Because q01, q21 < 0, Q̃z1 can be considered as a second order polynomial in m which is always negative
if Qq1 = 4q01q21− q̃2

11 > 0. We observe that from q̃11/κ(u3) < 2κ(u3) (see estimates in third part of the proof
of Proposition 6.9) follows

Qq1

κ(u3)2 > 4(−κ(u3))(κ(u3) − 2) − 4κ(u3)2 = 8κ(u3)(1 − κ(u3)) > 0.

So Q̃z1 is negative and thus, also Qz1 + Q′z1z3 is negative.

Proof of Lemma 6.11: z3 is the solution to the equation

ez3 = κ(u3)κ(z3)eu3 M1(M0e−u3 − 1).

From κ(u3)κ(z3) < e−u3 we get ez3 < M1(M0e−u3 − 1) and from Lemma 6.4 follows

ez3

e−z3/2
>

ez3

κ(z3)
= κ(u3)eu3 M1(M0e−u3 − 1),

implying z3 >
2
3 ln(κ(u3)eu3 M1(M0e−u3 − 1)).

The expression for ln(M1(M0e−u3 −1)) is the same as in the case Condition 3.6 is satisfied. There, in the
proof of Lemma 5.6, it was proved that ln(M1(M0e−u3 −1)) is increasing with w. Also ez3/κ(z3) is increasing
in z3. Indeed, the derivative of ez3/κ(z3) is

e2z3 ((1 + z3)ez3 − 1 − 2z3)
(ez3 − 1)2 >

e2z3 z2
3

(ez3 − 1)2 > 0.

Thus, z3 must increase with w.
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Proof of Lemma 4.2: If Condition 3.6 holds, then the conclusion of the lemma follows from arguments
given in [2] (page 407-408). We proceed by assuming that P3 belongs to region B. The necessary criterion
for one eigenvalue to be equal to one is k f old = 1 + α + β + γ = 0, where α, β, γ are the coefficients in the
characteristic polynomial of the Jacobian in case B (16)-(18). Calculations give

k f old =
z3(M0 − eu3 )(K + 1)

M0
> 0,

and we conclude that there are no such bifurcations in this case.

The necessary criterion for one eigenvalue equal to -1 is k f lip = 1 − α + β − γ = 0. Calculations give

k f lip =
1

M0κ(u3)
[(z3κ(u3)(1 − K) + 2(e−u + κ(u3)))M0 + eu3 z3κ(u3)(1 − K) + 2eu3 (1 + κ(u3))] > 0.

Thus, there are no such bifurcations in this case, too.

8. SUMMARY

In this paper we proved that parameter values for which an unsaturated invading carnivore may stabilize
a discrete oscillatory plant-herbivore system cannot exist. We have assumed unsaturated herbivores and
carnivores that both specialize on their prey. Many continuous systems like those based on the Rosenzweig
model[5] do not display the same property. This was, for instance, pointed out by Freedman and Waltman[3]

and Oksanen, Fretwell, Arruda, and Niemelä[18]. Actually, unsaturated invading specializing carnivores
have a stabilizing impact on continuous ecosystems whereas we have excluded their possibilities for dis-
playing such properties in discrete ecosystems completely. This implies discrete or seasonal food-chains to
be less stable than the corresponding continuous or non-seasonal food-chains. Such stability properties have
classically been related to food-chain length[1, 19, 20, 24], so this gives possibilities for expecting differences
in the length of various food-chains as long as the components remain specialized.

It will be of vital importance for future studies to clarify what dynamical consequences invading gen-
eralist predators might have in both types of ecosystems. It is likely that they have a stabilizing impact
on both types of ecosystems[21]. However, this is not clear for all parameter values. It is also far from
clear what specialists remain in the ecosystem after invasion of generalists and whether generalist stabilized
ecosystems contain space for longer specialist chains than non-stabilized ones. Another important question
for future study is of course whether adjustable reproductive behavior[22] or adaptive dynamics[23] might
alter the stability patterns and promote longer food-chains.

An important issue that have been left out of this study is the question of under what conditions local sta-
bility implies global stability of the fixed points in the positive plant-herbivore quadrant and in the positive
octant. It is in general difficult to construct useful Lyapunov functions for discrete systems, see e.g., [25].
Thus, oscillatory dynamics may exist in our system also when, for instance P3 (equilibrium coexistence of
all species) is locally stable. In fact, such dynamics have been noted numerically ([2], p406, remark (b)),
but the phenomenon was very unstable.

A partial answer to the above question could be obtained if the type of Neimark-Sacker bifurcation is de-
termined. As the system is dissipative a supercritical Neimark-Sacker bifurcation is expected, but this does
not exclude subcritical bifurcations. In our case, Kuznetsov’s criterion has a lot of terms[9]. The functions
B and C has 19 and 46 non-zero terms, respectively, and the needed eigenvectors take complicated forms.
Analytical proofs are therefore, hardly possible. All our numerical calculations based on that criterion done
so far confirm this bifurcation to be supercritical. In fact, the NS3-curve ends at a fold-Neimark-Sacker
bifurcation where

M0 =
eu3κ(u3)

2κ(u3) − 1
, M1 =

2κ(u3) − 1
1 − κ(u3)

, u3 =
1

M2
,
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and the F3 and NS2-curves intersect.

If subcritical bifurcations could be excluded analytically, then more is known about conditions for ex-
istence of oscillatory solutions. This is a partial answer to the global stability problem. If subcritical
Neimark-Sacker bifurcations would turn out to be possible in system (1), then both stable and oscillatory
behavior must coexist, since the solutions of (1) remain positive and bounded. A proof of existence of
subcritical Neimark-Sacker bifurcations in (1) would therefore be an indication of interesting dynamical
behavior.
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