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On Nonlinear Sum-difference Inequality with Two 

Variables and Application to BVP 

Kelong ZHENG
1,* 

Abstract: Sum-difference inequalities with n  nonlinear terms in two variables which generalize 

some existing results and can be used more effectively in the analysis of certain boundary value 

problem for certain partial difference equation are discussed. Application example is also given 

to show the boundedness of solutions of a difference equation. 
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1.  INTRODUCTION 

The well-known and widely used Gronwall-Bellman inequality plays a fundamental role in the study of 

existence, uniqueness, boundedness and other qualitative properties of the solution of differential equation. 

An enormous amount of effort has been devoted to the discovery of new types of inequalities and their 

applications in various branches of ordinary differential equations, partial differential equations and 

integral equations (see [1-5], and the references given therein). In the recent past, more attention has been 

paid to the discrete versions of such integral inequalities (for example, [6-10]). These inequalities are 

applied to study the boundedness and uniqueness of the solutions of the following boundary value problem 

(BVP, for short) for the partial difference equation 
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where , , ,F f g are given functions and u  is the unknown function to be found. 

Unfortunately, the discretization of some nonlinear integral inequalities can not directly be processed 

because there still exist some technical difficulties between a continuous form and a discontinuous form. In 

this paper, we investigate the sum-difference inequality in two variables with n  nonlinear terms  
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which modifies the incorrect proof in [11] and can be used more effectively in the study of the qualitative 

properties of solutions of the difference equation. Moreover, we also present an example to show 

boundedness of solution of a partial difference equation. 
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2.  STATEMENT OF MAIN RESULT 

Assumptions 2.1  

(A1) ( )C R R     is a strictly increasing function satisfying ( )    ;  

(A2) ( )a m n  is nonnegative for 
0m n N   and 

0 0( ) 0a m n   for 
0 0 0m n N  ;  

(A3) ( )if m n s t    ( 1 )i k    is nonnegative for 
0m n s t N    ;  

(A4) ( ) ( )iw u C R R    ( 1 )i k    is a nondecreasing function. They satisfy the relationship 

1 2 kw w w   , where 
1i iw w   means that 1i

i

w

w

  is nondecreasing on (0 ) .  

Definitions 2.2 

(D1) 
0 0 0

( ) max ( )m m n n Na m n a               . Clearly, ( )a m n  is nonnegative and nondecreasing in m  

and n , and ( ) ( )a m n a m n   .  

(D2)
0 0 0

( ) max ( )m m n n ii
m n s t f s tf                   

N . Then, ( )
i

m n s tf     is nonnegative and nonde- 

creasing in m and n , and ( ) ( )ii
m n s t f m n s tf        .  

(D3) 1 ( ) ( 1 ) ( )u m n u m n u m n        and 3 ( ) ( 1 ) ( )r m n s t r m n s t r m n s t             .  

(D4) For 0iu u  , 1( ( ))
( )

ii

u
dz

i w zu
W u

   . From Assumption (A4), 
iW  is strictly increasing so its 

inverse 1

iW   is well defined, continuous and increasing in its corresponding domain.  

Our main result is given in the following.  

Theorem 2.3 Under Assumptions (A1)-(A4), if 
1 ( )a m n   is nondecreasing in n  and ( )u m n  is a 

nonnegative function for 
0m n N   satisfying (2), then  
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for 0 1 0 1m m M n n N     , where ( )kr m n s t    is determined recursively by  
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1 1( ) ( ( ))u w u   , 0W I  (Identity), and 1M  and 1N  are positive integers satisfying  
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Remarks: If ( 1 )iw i k    satisfies 1( ( ))ii

dz

w zu  



  , then we may choose 
1N    and 

1M   . As 

explained in [3], different choices of 
iu  in 

iW  do not affect our results. 

Before we prove the theorem, the following lemma should be introduced. For the proof, see [13].  

Lemma 2.4 For 1i k   , 
3 ( )ir m n s t     is nonnegative and nondecreasing in m , n  and t , and (ir m  

)n s t   is nonnegative and nondecreasing in its arguments.   

3.  PROOF OF THEOREM 2.3 

Proof. Take any arbitrary positive integers M  and N  where 
1M M  1N N . By the definition of 

functions a , 
if  and 

1r , we have an auxiliary inequality from (2),   
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for 
0 0m m M n n N     , where 

1( ) ( )r M N m n a m n     . Assume that ( )u m n  in (6) satisfies  
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for 
0 2min{ }m m M M    and 

0 2min{ }n n N N   , where 
2M  and 

2N  are positive integers satisfying  

2 2 2

0 0 0

1 1 1

3 2

1 0 2 1

1 0 0 0

( )
( ( )) ( )

( ( ( )))

M N M

i

i i
s m t n s m i i i

r M N s N
W r M N m N M N s tf

W r m n s n

  


   

   
       

  
    

1
1

( ( ))iu
i

dz
i k

w z




                       (8) 

Notice that we may choose 1 2M M  and 1 2N N . In fact, by Lemma 2.4 and Definition (D2), 

( )ir M N m n   , 3 ( )ir M N m n     and ( )
i

M N m nf     are nondecreasing in M  and N . Thus, 2M  and 2N  

satisfying (8) get smaller as M  and N  are chosen larger. Moreover, 2M  and 2N  satisfy the same (5) as 

1M  and 1N  for 1M M  and 1N N .  

Next, we use the mathematical induction to prove our result.  

(I) 1k   
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       . Obviously, 0( ) 0z m n   and ( )z m n  is nonnega- 

tive and nondecreasing in each variable. It follows from (6) that  
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where we apply the fact that 
1w  and 1   are nondecreasing. Since 
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It is easy to check from (8) that the right side of (10) is in the domain of 1

1W   for all 0m m M   and 

0n n N  . Thus by the monotonicity of 1

1W  , we obtain  
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for 
0m m M   and 

0n n N  , that is, (7) is true for 1k  .  

(II) For 1k   

Assume that (7) is true for k . Consider  
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0u  , 
1 I  (Identity), 1 1 1( ( ))i iW uu   , 1
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for 0m m M   and 0n n N  . It shows that (7) is true for 1k  . Thus, the claim is proved.  

Now we prove (3). Replacing m  and n  by M  and N  in (7) respectively, we have  

0 0

1 1
1 1

1 0( ) { [ ( ( )) ( )
M N

k k k
s m t n

u M N W W r M N m N M N s tf
 

 

 

           

0

1
3

1

1 0 0 0

( )
]}

( ( ( )))

M
k

s m k k k

r M N s N

W r m n s n




 

   
 

  
  

Since (7) is true for any 1M M  and 1N N , we replace M  and N  by m  and n  and get  

0 0

1 1
1 1

1 0( ) { [ ( ( )) ( )
m n

k k k
s m t n

u m n W W r m n m n m n s tf
 

 

 

           

0

1
3

1

1 0 0 0

( )
]}

( ( ( )))

m
k

s m k k k

r m n s n

W r m n s n




 

   
 

  
  

This is exactly (3) since 1 0 0( ) ( )r m n m t a m t     . This proves Theorem 2.3.     

Remarks:  If we exchange the order of the two sum symbols for s  and t , (2) also holds. Therefore, with a 

suitable modification in the proof, another form of our result can be obtained as follows  
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0 0

1 1
1 1

0( ) { [ ( ( )) ( )
m n

k k k
s m t n

u m n W W a m n m n s tf
 

 

 

         

0

1
4

1 10 01

1 0 0 0

( )
]}

( ( ( )))

n
k

t n k k k

r m n m t
m m n n NM

W r m n m t




 

   
       

  
  

where ( )kr m n s t    is determined by  

1( ) ( )r m n s t a s t       

0 0

1 1

1 1 0( ) ( ( )) ( )
s t

i i i
m n

r m n s t W r m n s n m nf
 

 
 



 

             

0

1
4

1

1 0 0 0

( )
1 1

( ( ( )))

t
i

n i i i

r m n s
i k

W r m n m



 




 

   
      

  
  

4 ( ) ( 1) ( ) 1i i ir m n s t r m n s t r m n s t i k                   

1M  and 
1N  are positive integers satisfying  

1 1 1

0 0 0

1 11

1 114
1 1 10 1

1 0 0 0

( )
( ( )) ( )

( ( ( )))

N NM
i

i i
s m t n t n i i i

r tNM M
W a n s tf NM M

W r m n m t

 


   

   
     

  
    

1
1 .

( ( ))iu
i

dz
i k

w z




      

and other functions are defined in Theorem 2.3. Here the condition in Theorem 2.3 that 1 ( )a m n   is 

nondecreasing in n  is replaced by the condition that 2 ( ) ( 1) ( )a m n a m n a m n        is nondecreasing in 

m .   

4.  APPLICATION TO A DIFFERENCE EQUATION 

In this section, we apply our theorem to study the boundedness of solutions of a nonlinear difference 

equation  

1 1 1 1

1 2

0 0 0 0

( ( )) ( ) ( ) ( ) ( ) ( ),
m n m n

s t s t

u m n a m n f m n s t u s t f m n s t u s t
   

   

                                  (17) 

for 0m n N  , where   is a known function satisfying condition (A1) and ( ) 0u m n   is an unknown 

function for 0m n N  .  

Let  

1 2( ) ( )w u u w u u     

Clearly, 2 1( ) ( )w u w u u  is nondecreasing for 0u  , that is, 1 2w w . Hence, for 1 2 0u u  , we have  

1 2
1 21 1

1 2

( ) ( )
( ( )) ( ( ))

u u

u u

dz dz
W u W u

w z w z  
      

Applying Theorem 2.3, we can compute  

1 1( ) ( ) 0 ( 0 ) (0 )r m n s t a s t r m n t a t              

3 1 1( ) ( )r m n t a t          
1 1

1 0 1 1( ( (0 0 0))) ( ( ( 0)))W r w a           
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1 1 1
1

2 1 11
0 0 0 1
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( ) ( (0 )) ( )

( ( ( 0)))

s t s a t
r m n s t W a t m nf
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1
1

3 2 11
0 1

( )
( ) ( )

( ( ( 0)))

t a s t
r m n s t m n sf

w a s









 
         


  

1
1

2 1 1
0 1

( 0)
(0 0 0) ( (0 0))

( ( ( 0)))

s a
r s W a

w a



 






 
      


  

1

12

2 1

1

( ( ))
( ) ( )

( ( ))

w u
u u

w u


 








    

So  

1 1
1 1

2 2 2
0 0

( ) { [ ( (0 )) ( )
m n

s t

u m n W W a n m n s tf
 

 

 

        

                                                    

1

1
1

1 ( )
1

10 ( ( ( 0)))

1 1
0

1 2

( )
]},

( ( (0 0 0)))

t a s n
m

w a s

s

m n sf

W r s

 






  


 

 


   


  


                                                 (18) 

which implies the boundedness of solutions of the difference equation (17).  
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