On Nonlinear Sum-difference Inequality with Two Variables and Application to BVP

Kelong ZHENG ${ }^{1, *}$

Abstract

Sum-difference inequalities with n nonlinear terms in two variables which generalize some existing results and can be used more effectively in the analysis of certain boundary value problem for certain partial difference equation are discussed. Application example is also given to show the boundedness of solutions of a difference equation.

Key Words: Sum-difference inequality; Nonlinear; Boundedness

1. INTRODUCTION

The well-known and widely used Gronwall-Bellman inequality plays a fundamental role in the study of existence, uniqueness, boundedness and other qualitative properties of the solution of differential equation. An enormous amount of effort has been devoted to the discovery of new types of inequalities and their applications in various branches of ordinary differential equations, partial differential equations and integral equations (see [1-5], and the references given therein). In the recent past, more attention has been paid to the discrete versions of such integral inequalities (for example, [6-10]). These inequalities are applied to study the boundedness and uniqueness of the solutions of the following boundary value problem (BVP, for short) for the partial difference equation

$$
\begin{align*}
& \Delta_{1} \Delta_{2} \psi(u(m, n))=F(m, n, u(m, n)), \\
& u\left(m, n_{0}\right)=f(m), \quad u\left(m_{0}, n\right)=g(n), \tag{1}
\end{align*}
$$

where ψ, F, f, g are given functions and u is the unknown function to be found.
Unfortunately, the discretization of some nonlinear integral inequalities can not directly be processed because there still exist some technical difficulties between a continuous form and a discontinuous form. In this paper, we investigate the sum-difference inequality in two variables with n nonlinear terms

$$
\begin{equation*}
\psi(u(m, n)) \leq a(m, n)+\sum_{i=1}^{k} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} f_{i}(m, n, s, t) w_{i}(u(s, t)), \tag{2}
\end{equation*}
$$

which modifies the incorrect proof in [11] and can be used more effectively in the study of the qualitative properties of solutions of the difference equation. Moreover, we also present an example to show boundedness of solution of a partial difference equation.

[^0]
2. STATEMENT OF MAIN RESULT

Assumptions 2.1

(A1) $\psi \in C\left(R_{+}, R_{+}\right)$is a strictly increasing function satisfying $\psi(\infty)=\infty$;
(A2) $a(m, n)$ is nonnegative for $m, n \in N_{0}$ and $a\left(m_{0}, n_{0}\right)>0$ for $m_{0}, n_{0} \in N_{0}$;
(A3) $f_{i}(m, n, s, t)(i=1, \cdots, k)$ is nonnegative for $m, n, s, t \in N_{0}$;
(A4) $w_{i}(u) \in C\left(R_{+}, R_{+}\right) \quad(i=1, \cdots, k)$ is a nondecreasing function. They satisfy the relationship $w_{1} \propto w_{2} \propto \cdots \propto w_{k}$, where $w_{i} \propto w_{i+1}$ means that $\frac{w_{i+1}}{w_{i}}$ is nondecreasing on $(0, \infty)$.

Definitions 2.2

(D1) $\tilde{a}(m, n)=\max _{m_{0} \leq \tau \leq m, n_{0} \leq \eta \leq n, \tau, \eta \in N_{0}} a(\tau, \eta)$. Clearly, $\tilde{a}(m, n)$ is nonnegative and nondecreasing in m and n, and $\tilde{a}(m, n) \geq a(m, n)$.
(D2) $\tilde{f}_{i}(m, n, s, t)=\max _{m_{0} \leq \tau \leq m, n_{0} \leq \eta \leq n, \tau, \eta \in \mathbf{N}_{0}} f_{i}(\tau, \eta, s, t)$. Then, $\tilde{f}_{i}(m, n, s, t)$ is nonnegative and nondecreasing in m and n, and $\tilde{f}_{i}(m, n, s, t) \geq f_{i}(m, n, s, t)$.
(D3) $\Delta_{1} u(m, n)=u(m+1, n)-u(m, n)$ and $\Delta_{3} r(m, n, s, t)=r(m, n, s+1, t)-r(m, n, s, t)$.
(D4) For $u \geq u_{i}>0, W_{i}(u)=\int_{u_{i}}^{u} \frac{d z}{w_{i}\left(\psi^{-1}(z)\right)}$. From Assumption (A4), W_{i} is strictly increasing so its inverse W_{i}^{-1} is well defined, continuous and increasing in its corresponding domain.
Our main result is given in the following.
Theorem 2.3 Under Assumptions (A1)-(A4), if $\Delta_{1} \tilde{a}(m, n)$ is nondecreasing in n and $u(m, n)$ is a nonnegative function for $m, n \in N_{0}$ satisfying (2), then

$$
\begin{align*}
u(m, n) \leq \psi^{-1}\left\{W _ { k } ^ { - 1 } \left[W_{k}\left(\tilde{a}\left(m_{0}, n\right)\right)\right.\right. & +\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{k}(m, n, s, t) \\
& \left.\left.+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{k}(m, n, s, n)}{\varphi_{k}\left(W_{k-1}^{-1}\left(r_{k}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\}, \tag{3}
\end{align*}
$$

for $m_{0} \leq m \leq M_{1}, n_{0} \leq n \leq N_{1}$, where $r_{k}(m, n, s, t)$ is determined recursively by

$$
\begin{align*}
r_{1}(m, n, s, t)= & \tilde{a}(s, t), \\
r_{i+1}(m, n, s, t)= & W_{i}\left(r_{1}\left(m, n, m_{0}, t\right)\right)+\sum_{\tau=m_{0}}^{s-1} \sum_{\eta=n_{0}}^{t-1} \tilde{f}_{i}(m, n, \tau, \eta) \tag{4}\\
& +\sum_{\tau=m_{0}}^{s-1} \frac{\Delta_{3} r_{i}(m, n, \tau, t)}{\varphi_{i}\left(W_{i-1}^{-1}\left(r_{i}\left(m_{0}, n_{0}, \tau, n_{0}\right)\right)\right)}, i=1, \cdots, k-1,
\end{align*}
$$

$\varphi_{i}(u)=\frac{w_{i}\left(\psi^{-1}(u)\right)}{w_{i-1}\left(\psi^{-1}(u)\right)}, \varphi_{1}(u)=w_{1}\left(\psi^{-1}(u)\right), W_{0}=I$ (Identity), and M_{1} and N_{1} are positive integers satisfying

$$
\begin{align*}
W_{i}\left(\tilde{a}\left(m_{0}, N_{1}\right)\right)+\sum_{s=m_{0}}^{M_{1}-1} \sum_{t=n_{0}}^{N_{1}-1} \tilde{f}_{i}\left(M_{1}, N_{1}, s, t\right) & +\sum_{s=m_{0}}^{M_{1}-1} \frac{\Delta_{3} r_{i}\left(M_{1}, N_{1}, s, N_{1}\right)}{\varphi_{i}\left(W_{i-1}^{-1}\left(r_{i}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} \\
& \leq \int_{u_{i}}^{\infty} \frac{d z}{w_{i}\left(\psi^{-1}(z)\right)}, \quad i=1, \cdots, k \tag{5}
\end{align*}
$$

Remarks: If $w_{i}(i=1, \cdots, k)$ satisfies $\int_{u_{i}}^{\infty} \frac{d z}{w_{i}\left(\psi^{-1}(z)\right)}=\infty$, then we may choose $N_{1}=\infty$ and $M_{1}=\infty$. As explained in [3], different choices of u_{i} in W_{i} do not affect our results.

Before we prove the theorem, the following lemma should be introduced. For the proof, see [13].
Lemma 2.4 For $i=1, \cdots, k, \Delta_{3} r_{i}(m, n, s, t)$ is nonnegative and nondecreasing in m, n and t, and $r_{i}(m$, $n, s, t)$ is nonnegative and nondecreasing in its arguments.

3. PROOF OF THEOREM 2.3

Proof. Take any arbitrary positive integers M and N where $M \leq M_{1}, N \leq N_{1}$. By the definition of functions \tilde{a}, \tilde{f}_{i} and r_{1}, we have an auxiliary inequality from (2),

$$
\begin{equation*}
\psi(u(m, n)) \leq r_{1}(M, N, m, n)+\sum_{i=1}^{k} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i}(M, N, s, t) w_{i}(u(s, t)), \tag{6}
\end{equation*}
$$

for $m_{0} \leq m \leq M, n_{0} \leq n \leq N$, where $r_{1}(M, N, m, n)=\tilde{a}(m, n)$. Assume that $u(m, n)$ in (6) satisfies

$$
\begin{align*}
u(m, n) \leq \psi^{-1}\left\{W _ { k } ^ { - 1 } \left[W _ { k } \left(r_{1}(M,\right.\right.\right. & \left.\left.N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{k}(M, N, s, t) \\
& \left.\left.+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{k}(M, N, s, n)}{\varphi_{k}\left(W_{k-1}^{-1}\left(r_{k}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\} \tag{7}
\end{align*}
$$

for $m_{0} \leq m \leq \min \left\{M, M_{2}\right\}$ and $n_{0} \leq n \leq \min \left\{N, N_{2}\right\}$, where M_{2} and N_{2} are positive integers satisfying

$$
\begin{align*}
W_{i}\left(r_{1}\left(M, N, m_{0}, N_{2}\right)\right)+\sum_{s=m_{0}}^{M_{2}-1} \sum_{t=n_{0}}^{N_{2}-1} \tilde{f}_{i}(M, N, s, t)+ & \sum_{s=m_{0}}^{M_{2}-1} \frac{\Delta_{3} r_{i}\left(M, N, s, N_{2}\right)}{\varphi_{i}\left(W_{i-1}^{-1}\left(r_{i}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} \\
& \leq \int_{u_{i}}^{\infty} \frac{d z}{w_{i}\left(\psi^{-1}(z)\right)}, i=1, \cdots, k \tag{8}
\end{align*}
$$

Notice that we may choose $M_{1} \leq M_{2}$ and $N_{1} \leq N_{2}$. In fact, by Lemma 2.4 and Definition (D2), $r_{i}(M, N, m, n), \Delta_{3} r_{i}(M, N, m, n)$ and $\tilde{f}_{i}(M, N, m, n)$ are nondecreasing in M and N. Thus, M_{2} and N_{2} satisfying (8) get smaller as M and N are chosen larger. Moreover, M_{2} and N_{2} satisfy the same (5) as M_{1} and N_{1} for $M=M_{1}$ and $N=N_{1}$.

Next, we use the mathematical induction to prove our result.
(I) $k=1$

Let $z(m, n)=\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, s, t) w_{1}(u(s, t))$. Obviously, $z\left(m_{0}, n\right)=0$ and $z(m, n)$ is nonnegative and nondecreasing in each variable. It follows from (6) that

$$
\psi(u(m, n)) \leq r_{1}(M, N, m, n)+z(m, n)
$$

for $m_{0} \leq m \leq M, n_{0} \leq n \leq N$. By Definition (D3), we get

$$
\Delta_{1} z(m, n)=z(m+1, n)-z(m, n)=\sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t) w_{1}(u(m, t))
$$

$$
\begin{aligned}
& \leq \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t) w_{1}\left(\psi^{-1}\left(r_{1}(M, N, m, t)+z(m, t)\right)\right) \\
& \leq w_{1}\left(\psi^{-1}\left(r_{1}(M, N, m, n)+z(m, n)\right)\right) \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t),
\end{aligned}
$$

where we apply the fact that w_{1} and ψ^{-1} are nondecreasing. Since $r_{1}(M, N, m, n)=\tilde{a}(m, n)>0$, we have

$$
\begin{align*}
& \frac{\Delta_{1} z(m, n)+\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right)\right)} \\
& \quad \leq \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t)+\frac{\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right)\right)} \\
& \quad \leq \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t)+\frac{\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, m, n_{0}\right)\right)\right)} . \tag{9}
\end{align*}
$$

Then

$$
\begin{aligned}
& \int_{z(m, n)+r_{1}(M, N, m, n)}^{z(m+1, n)+r_{1}(M, N, m+1, n)} \frac{d \tau}{w_{1}\left(\psi^{-1}(\tau)\right)} \\
& \quad \leq \int_{z(m, n)+r_{1}(M, N, m, n)}^{z(m+1, n)+r_{1}(M, N, m+1, n)} \frac{d \tau}{w_{1}\left(\psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right)\right)} \\
& \quad \leq \frac{\Delta_{1} z(m, n)+\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right)\right)} \\
& \quad \leq \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t)+\frac{\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, m, n_{0}\right)\right)\right)}
\end{aligned}
$$

So

$$
\begin{aligned}
\int_{z\left(m_{0}, n\right)+r_{1}\left(M, N, m_{0}, n\right)}^{z(m, n)+r_{1}(M, N, m, n)} \frac{d \tau}{w_{1}\left(\psi^{-1}(\tau)\right)} & =\sum_{s=m_{0}}^{m-1} \int_{z(s, n)+r_{1}(M, N, s, n)}^{z\left(s+1, n+r_{1}(M, N, s+1, n)\right.} \frac{d \tau}{w_{1}\left(\psi^{-1}(\tau)\right)} \\
& \leq \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, s, t)+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{1}(M, N, s, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}
\end{aligned}
$$

The definition of W_{1} and $z\left(m_{0}, n\right)=0$ shows that

$$
\begin{align*}
W_{1}\left(z(m, n)+r_{1}(M, N, m, n)\right) & \leq W_{1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, s, t) \\
& +\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{1}(M, N, s, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}, \quad m_{0} \leq m \leq M, n_{0} \leq n \leq N . \tag{10}
\end{align*}
$$

It is easy to check from (8) that the right side of (10) is in the domain of W_{1}^{-1} for all $m_{0} \leq m \leq M$ and $n_{0} \leq n \leq N$. Thus by the monotonicity of W_{1}^{-1}, we obtain

$$
\begin{align*}
u(m, n) \leq & \psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right) \\
\leq & \psi^{-1}\left\{W _ { 1 } ^ { - 1 } \left[W_{1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, s, t)\right.\right. \\
& \left.\left.+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{1}(M, N, s, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\}, \tag{11}
\end{align*}
$$

for $m_{0} \leq m \leq M$ and $n_{0} \leq n \leq N$, that is, (7) is true for $k=1$.
(II) For $k+1$

Assume that (7) is true for k. Consider

$$
\begin{equation*}
\psi(u(m, n)) \leq r_{1}(M, N, m, n)+\sum_{i=1}^{k+1} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i}(M, N, s, t) w_{i}(u(s, t)), \tag{12}
\end{equation*}
$$

for $m_{0} \leq m \leq M$ and $n_{0} \leq n \leq N$. Let

$$
z(m, n)=\sum_{i=1}^{k+1} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i}(M, N, s, t) w_{i}(u(s, t)) .
$$

Obviously, $z\left(m_{0}, n\right)=0$ holds and $z(m, n)$ is nonnegative and nondecreasing in m and n. (12) can be rewritten as $\psi(u(m, n)) \leq r_{1}(M, N, m, n)+z(m, n)$ for $m_{0} \leq m \leq M, n_{0} \leq n \leq N$. Moreover, we have

$$
\begin{aligned}
\Delta_{1} z(m, n) & =\sum_{i=1}^{k+1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i}(M, N, m, t) w_{i}(u(m, t)) \\
& \leq \sum_{i=1}^{k+1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i}(M, N, m, t) w_{i}\left(\psi^{-1}\left(r_{1}(M, N, m, t)+z(m, t)\right)\right)
\end{aligned}
$$

Since w_{i} is nondecreasing and $r_{1}(M, N, m, n)>0$, by Lemma 2.4, we have

$$
\begin{aligned}
& \frac{\Delta_{1} z(m, n)+\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right)\right)} \\
& \quad \leq \frac{\sum_{i=1}^{k+1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i}(M, N, m, t) w_{i}\left(\psi^{-1}\left(z(m, t)+r_{1}(M, N, m, t)\right)\right)}{w_{1}\left(\psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right)\right)}+\frac{\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(r_{1}(M, N, m, n)\right)\right)} \\
& \leq \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t)+\frac{\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, m, n_{0}\right)\right)\right)} \\
& \quad+\sum_{i=2}^{k+1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i}(M, N, m, t) \frac{w_{i}\left(\psi^{-1}\left(z(m, t)+r_{1}(M, N, m, t)\right)\right)}{w_{1}\left(\psi^{-1}\left(z(m, t)+r_{1}(M, N, m, t)\right)\right)} \\
& \leq \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, m, t)+\frac{\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, m, n_{0}\right)\right)\right)} \\
& \quad \quad+\sum_{i=1}^{k} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i+1}(M, N, m, t) v_{i+1}\left(z(m, t)+r_{1}(M, N, m, t)\right)
\end{aligned}
$$

for $m_{0} \leq m \leq M, n_{0} \leq n \leq N$, where

$$
v_{i+1}(u)=\frac{w_{i+1}\left(\psi^{-1}(u)\right)}{w_{1}\left(\psi^{-1}(u)\right)}
$$

for $i=1, \cdots, k$. Notice that

$$
\begin{aligned}
& \int_{z(m, n)+r_{1}(M, N, m, n)}^{z(m+1, n)+r_{1}(M, N, m+1, n)} \frac{d \tau}{w_{1}\left(\psi^{-1}(\tau)\right)} \\
& \quad \leq \int_{z(m, n)+r_{1}(M, N, m, n)}^{z(m+1, n)+r_{1}(M, N, m+1, n)} \frac{d \tau}{w_{1}\left(\psi^{-1}\left(z(m, n)+r_{1}(M, N, m, n)\right)\right)} \\
& \quad \leq \frac{\Delta_{1} z(m, n)+\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(r_{1}(M, N, m, n)+z(m, n)\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
\leq \sum_{t=n_{0}}^{n-1} & \tilde{f}_{1}(M, N, m, t)+\frac{\Delta_{3} r_{1}(M, N, m, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, m, n_{0}\right)\right)\right)} \\
& \quad+\sum_{i=1}^{k} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i+1}(M, N, m, t) v_{i+1}\left(z(m, t)+r_{1}(M, N, m, t)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{z\left(m_{0}, n\right)+r_{1}\left(M, N, m_{0}, n\right)}^{z(m, n)+r_{1}(M, N, m, n)} \frac{d \tau}{w_{1}\left(\psi^{-1}(\tau)\right)} \leq \sum_{s=m_{0}}^{m-1} & \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, s, t)+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{1}(M, N, s, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} \\
& +\sum_{i=1}^{k} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i+1}(M, N, s, t) v_{i+1}\left(z(s, t)+r_{1}(M, N, s, t)\right),
\end{aligned}
$$

that is,

$$
\begin{aligned}
& W_{1}\left(z(m, n)+r_{1}(M, N, m, n)\right) \leq W_{1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, s, t) \\
& +\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{1}(M, N, s, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} \\
& +\sum_{i=1}^{k} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i+1}(M, N, s, t) v_{i+1}\left(z(s, t)+r_{1}(M, N, s, t)\right),
\end{aligned}
$$

or equivalently

$$
\psi(\Xi(m, n)) \leq \theta_{1}(M, N, m, n)+\sum_{i=1}^{k} \sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i+1}(M, N, s, t) v_{i+1}\left(W_{1}^{-1}(\psi(\Xi(s, t)))\right),
$$

for $m_{0} \leq m \leq M$ and $n_{0} \leq n \leq N$ the same as (6) for k, where

$$
\begin{aligned}
& \psi(\Xi(m, n))=W_{1}\left(z(m, n)+r_{1}(M, N, m, n)\right) \\
& \begin{array}{c}
\theta_{1}(M, N, m, n)=W_{1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{1}(M, N, s, t) \\
\quad+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{1}(M, N, s, n)}{w_{1}\left(\psi^{-1}\left(r_{1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} .
\end{array}
\end{aligned}
$$

From the Assumptions (A1) and (A4), each $v_{i+1}\left(W_{1}^{-1}(\psi)\right), i=1, \cdots, k$, is continuous and nondecreasing on $[0, \infty)$ and is positive on $(0, \infty)$ since W_{1}^{-1} is continuous and nondecreasing on $[0, \infty)$. Moreover, $v_{2}\left(W_{1}^{-1}(\psi)\right) \propto v_{3}\left(W_{1}^{-1}(\psi)\right) \propto \cdots \propto v_{k+1}\left(W_{1}^{-1}(\psi)\right)$. By the inductive assumption, we have

$$
\begin{align*}
& \Xi(m, n) \leq \psi^{-1}\left\{\Upsilon _ { k + 1 } ^ { - 1 } \left[\Upsilon_{k+1}\left(\theta_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{k+1}(M, N, s, t)\right.\right. \\
& \left.\left.\quad+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} c_{k}(M, N, s, n)}{\phi_{k+1}\left(\Upsilon_{k}^{-1}\left(\theta_{k}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\} \tag{13}
\end{align*}
$$

for $m_{0} \leq m \leq \min \left\{M, M_{3}\right\}$ and $n_{0} \leq n \leq \min \left\{N, N_{3}\right\}$, where

$$
\Upsilon_{i+1}(u)=\int_{\tilde{u}_{i+1}}^{u} \frac{d z}{v_{i+1}\left(W_{1}^{-1}(\psi(z))\right)},
$$

$u>0, \Phi_{1}=I$ (Identity), $\tilde{u}_{i+1}=W_{1}\left(\psi\left(u_{i+1}\right)\right), \Upsilon_{i+1}^{-1}$ is the inverse of Υ_{i+1},

$$
\begin{gathered}
\phi_{i+1}(u)=\frac{v_{i+1}\left(W_{1}^{-1}(\psi(u))\right)}{v_{i}\left(W_{1}^{-1}(\psi(u))\right)}=\frac{w_{i+1}\left(\psi^{-1}\left(W_{1}^{-1}(\psi(u))\right)\right)}{w_{i}\left(\psi^{-1}\left(W_{1}^{-1}(\psi(u))\right)\right)}, \quad i=1, \cdots, k, \\
\theta_{i+1}(M, N, m, n)= \\
\Upsilon_{i+1}\left(\theta_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{i+1}(M, N, s, t) \\
\quad+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} \theta_{i}(M, N, s, n)}{\phi_{i+1}\left(\Upsilon_{i}^{-1}\left(\theta_{i}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}, \quad i=1, \cdots, k-1,
\end{gathered}
$$

and M_{3} and N_{3} are positive integers satisfying

$$
\begin{align*}
\Upsilon_{i+1}\left(\theta_{1}\left(M, N, m_{0}, N_{3}\right)\right)+\sum_{s=m_{0}}^{M_{3}-1} \sum_{i=n_{0}}^{N_{3}-1} \tilde{f}_{i+1}(M, N, s, t)+ & \sum_{s=m_{0}}^{M_{3}-1} \frac{\Delta_{3} \theta_{i}\left(M, N, s, N_{3}\right)}{\phi_{i+1}\left(\Upsilon_{i}^{-1}\left(\theta_{i}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} \\
& \leq \int_{\tilde{u}_{i+1}}^{W_{1}(\infty)} \frac{d z}{v_{i+1}\left(W_{1}^{-1}(\psi(z))\right)}, \quad i=1, \cdots, k \tag{14}
\end{align*}
$$

Note that

$$
\begin{aligned}
\Upsilon_{i}(u) & =\int_{\tilde{u}_{i}}^{u} \frac{d z}{v_{i}\left(W_{1}^{-1}(\psi(z))\right)}=\int_{W_{1}\left(\psi\left(u_{i}\right)\right)}^{u} \frac{w_{1}\left(\psi^{-1}\left(W_{1}^{-1}(\psi(z))\right)\right) d z}{w_{i}\left(\psi^{-1}\left(W_{1}^{-1}(\psi(z))\right)\right)} \\
& =\int_{u_{i}}^{W_{1}^{-1}(\psi(u))} \frac{d z}{w_{i}\left(\psi^{-1}(z)\right)}=W_{i} \circ W_{1}^{-1} \circ \psi(u), \quad i=2, \cdots, k+1,
\end{aligned}
$$

and

$$
\begin{aligned}
\phi_{i+1}\left(\Upsilon_{i}^{-1}(u)\right) & =\frac{w_{i+1}\left(\psi^{-1}\left(W_{1}^{-1}\left(\psi\left(\Upsilon_{i}^{-1}(u)\right)\right)\right)\right)}{w_{i}\left(\psi^{-1}\left(W_{1}^{-1}\left(\psi\left(\Upsilon_{i}^{-1}(u)\right)\right)\right)\right)} \\
& =\frac{w_{i+1}\left(\psi^{-1}\left(W_{1}^{-1}\left(\psi\left(\psi^{-1}\left(W_{1}\left(W_{i}^{-1}(u)\right)\right)\right)\right)\right)\right)}{w_{i}\left(\psi^{-1}\left(W_{1}^{-1}\left(\psi\left(\psi^{-1}\left(W_{1}\left(W_{i}^{-1}(u)\right)\right)\right)\right)\right)\right)} \\
& =\frac{w_{i+1}\left(\psi^{-1}\left(W_{i}^{-1}(u)\right)\right)}{w_{i}\left(\psi^{-1}\left(W_{i}^{-1}(u)\right)\right)}=\varphi_{i+1}\left(W_{i}^{-1}(u)\right), \quad i=1, \cdots, k .
\end{aligned}
$$

Thus, using the fact that $\theta_{1}\left(M, N, m_{0}, n\right)=W_{1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)$, we have from (13) that

$$
\begin{align*}
& u(m, n) \leq \psi^{-1}\left(r_{1}(M, N, m, n)+z(m, n)\right)=\psi^{-1}\left(W_{1}^{-1}(\Xi(m, n))\right) \\
& \leq \psi^{-1}\left\{W _ { k + 1 } ^ { - 1 } \left[W_{k+1}\left(W_{1}^{-1}\left(\theta_{1}\left(M, N, m_{0}, n\right)\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{k+1}(M, N, s, t)\right.\right. \\
& \left.\left.\quad+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} \theta_{k}(M, N, s, n)}{\varphi_{k+1}\left(W_{k}^{-1}\left(\theta_{k}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\} \tag{15}
\end{align*}
$$

for $m_{0} \leq m \leq \min \left\{M, M_{3}\right\}$ and $n_{0} \leq n \leq \min \left\{N, N_{3}\right\}$.
In the following, we prove that $\theta_{i}(M, N, m, n)=r_{i+1}(M, N, m, n)$ by induction again. It is clear that $\theta_{1}(M, N, m, n)=r_{2}(M, N, m, n)$ for $i=1$. Suppose that

$$
\theta_{l}(M, N, m, n)=r_{l+1}(M, N, m, n)
$$

for $i=l$. We have

$$
\begin{aligned}
& \theta_{l+1}(M, N, m, n)= \Upsilon_{l+1}\left(\theta_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{l+1}(M, N, s, t) \\
&+\sum_{s=m_{0}}^{n-1} \frac{\Delta_{3} \theta_{l}(M, N, s, n)}{\phi_{l+1}\left(\Upsilon_{l}^{-1}\left(\theta_{l}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} \\
&= W_{l+1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{l+1}(M, N, s, t) \\
& \quad+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{l+1}(M, N, s, n)}{\varphi_{l+1}\left(W_{l}^{-1}\left(r_{l+1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}
\end{aligned}
$$

$$
=r_{l+2}(M, N, m, n),
$$

where $\theta_{1}\left(M, N, m_{0}, n\right)=W_{1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)$ is applied. It implies that it is true for $i=l+1$. Thus, $\theta_{i}(M, N, m, n)=r_{i+1}(M, N, m, n)$ for $i=1, \cdots, k$. (14) becomes

$$
\begin{gather*}
W_{i+1}\left(r_{1}\left(M, N, m_{0}, N_{3}\right)\right)+\sum_{s=m_{0}}^{M_{3}-1} \sum_{t=n_{0}}^{N_{3}-1} \tilde{f}_{i+1}(M, N, s, t)+\sum_{s=m_{0}}^{M_{3}-1} \frac{\Delta_{3} r_{i+1}\left(M, N, s, N_{3}\right)}{\varphi_{i+1}\left(W_{i}^{-1}\left(r_{i+1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)} \\
\quad \leq \int_{\tilde{u}_{i+1}}^{W_{1}(\infty)} \frac{d z}{v_{i+1}\left(W_{1}^{-1}(\psi(z))\right)}=\int_{\tilde{u}_{i+1}}^{W_{1}(\infty)} \frac{w_{1}\left(W_{1}^{-1}(\psi(z))\right)}{w_{i+1}\left(W_{1}^{-1}(\psi(z))\right)} d z=\int_{u_{i+1}}^{\infty} \frac{d z}{w_{i+1}\left(\psi^{-1}(z)\right)}, \tag{16}
\end{gather*}
$$

for $i=1, \cdots, k$. It implies that we may choose $w_{1}(u)=\sqrt{u}, w_{2}(u)=u$ and $N_{3}=N_{2}$. Thus, (15) becomes

$$
\begin{aligned}
u(m, n) \leq \psi^{-1}\left\{W _ { k + 1 } ^ { - 1 } \left[W_{k+1}\left(r_{1}\left(M, N, m_{0}, n\right)\right)\right.\right. & +\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{k+1}(M, N, s, t) \\
& \left.\left.+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{k+1}(M, N, s, n)}{\varphi_{k+1}\left(W_{k}^{-1}\left(r_{k+1}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\}
\end{aligned}
$$

for $m_{0} \leq m \leq M$ and $n_{0} \leq n \leq N$. It shows that (7) is true for $k+1$. Thus, the claim is proved.
Now we prove (3). Replacing m and n by M and N in (7) respectively, we have

$$
\begin{aligned}
u(M, N) \leq \psi^{-1}\left\{W _ { k } ^ { - 1 } \left[W_{k}\left(r_{1}\left(M, N, m_{0}, N\right)\right)\right.\right. & +\sum_{s=m_{0}}^{M-1} \sum_{t=n_{0}}^{N-1} \tilde{f}_{k}(M, N, s, t) \\
& \left.\left.+\sum_{s=m_{0}}^{M-1} \frac{\Delta_{3} r_{k}(M, N, s, N)}{\varphi_{k}\left(W_{k-1}^{-1}\left(r_{k}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\} .
\end{aligned}
$$

Since (7) is true for any $M \leq M_{1}$ and $N \leq N_{1}$, we replace M and N by m and n and get

$$
\begin{array}{r}
u(m, n) \leq \psi^{-1}\left\{W _ { k } ^ { - 1 } \left[W_{k}\left(r_{1}\left(m, n, m_{0}, n\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{k}(m, n, s, t)\right.\right. \\
\left.\left.+\sum_{s=m_{0}}^{m-1} \frac{\Delta_{3} r_{k}(m, n, s, n)}{\varphi_{k}\left(W_{k-1}^{-1}\left(r_{k}\left(m_{0}, n_{0}, s, n_{0}\right)\right)\right)}\right]\right\} .
\end{array}
$$

This is exactly (3) since $r_{1}\left(m, n, m_{0}, t\right)=\tilde{a}\left(m_{0}, t\right)$. This proves Theorem 2.3.
Remarks: If we exchange the order of the two sum symbols for s and $t,(2)$ also holds. Therefore, with a suitable modification in the proof, another form of our result can be obtained as follows

$$
\begin{aligned}
& u(m, n) \leq \psi^{-1}\left\{W _ { k } ^ { - 1 } \left[W_{k}\left(\tilde{a}\left(m, n_{0}\right)\right)+\sum_{s=m_{0}}^{m-1} \sum_{t=n_{0}}^{n-1} \tilde{f}_{k}(m, n, s, t)\right.\right. \\
& \left.\left.\quad+\sum_{t=n_{0}}^{n-1} \frac{\Delta_{4} r_{k}(m, n, m, t)}{\varphi_{k}\left(W_{k-1}^{-1}\left(r_{k}\left(m_{0}, n_{0}, m_{0}, t\right)\right)\right)}\right]\right\}, \quad m_{0} \leq m \leq \tilde{M}_{1}, n_{0} \leq n \leq \tilde{N}_{1}
\end{aligned}
$$

where $r_{k}(m, n, s, t)$ is determined by

$$
\begin{aligned}
& r_{1}(m, n, s, t)=\tilde{a}(s, t) \\
& \begin{aligned}
r_{i+1}(m, n, s, t)= & W_{i}\left(r_{1}\left(m, n, s, n_{0}\right)\right)+\sum_{\tau=m_{0}}^{s-1} \sum_{\eta=n_{0}}^{t-1} \tilde{f}_{i}(m, n, \tau, \eta) \\
& +\sum_{\eta=n_{0}}^{t-1} \frac{\Delta_{4} r_{i}(m, n, s, \eta)}{\varphi_{i}\left(W_{i-1}^{-1}\left(r_{i}\left(m_{0}, n_{0}, m_{0}, \eta\right)\right)\right)}, \quad i=1, \cdots, k-1
\end{aligned} \\
& \Delta_{4} r_{i}(m, n, s, t)= \\
& r_{i}(m, n, s, t+1)-r_{i}(m, n, s, t), i=1, \cdots, k
\end{aligned}
$$

\tilde{M}_{1} and \tilde{N}_{1} are positive integers satisfying

$$
\begin{aligned}
W_{i}\left(\tilde{a}\left(\tilde{M}_{1}, n_{0}\right)\right)+\sum_{s=m_{0}}^{\tilde{M}_{1}-1} \sum_{t=n_{0}}^{\tilde{N}_{1}-1} \tilde{f}_{i}\left(\tilde{M}_{1}, \tilde{N}_{1}, s, t\right) & +\sum_{t=n_{0}}^{\tilde{N}_{1}-1} \frac{\Delta_{4} r_{i}\left(\tilde{M}_{1}, \tilde{N}_{1}, \tilde{M}_{1}, t\right)}{\varphi_{i}\left(W_{i-1}^{-1}\left(r_{i}\left(m_{0}, n_{0}, m_{0}, t\right)\right)\right)} \\
& \leq \int_{u_{i}}^{\infty} \frac{d z}{w_{i}\left(\psi^{-1}(z)\right)}, \quad i=1, \cdots, k
\end{aligned}
$$

and other functions are defined in Theorem 2.3. Here the condition in Theorem 2.3 that $\Delta_{1} \tilde{a}(m, n)$ is nondecreasing in n is replaced by the condition that $\Delta_{2} \tilde{a}(m, n)=\tilde{a}(m, n+1)-\tilde{a}(m, n)$ is nondecreasing in m.

4. APPLICATION TO A DIFFERENCE EQUATION

In this section, we apply our theorem to study the boundedness of solutions of a nonlinear difference equation

$$
\begin{equation*}
\psi(u(m, n))=a(m, n)+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} f_{1}(m, n, s, t) \sqrt{u(s, t)}+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} f_{2}(m, n, s, t) u(s, t), \tag{17}
\end{equation*}
$$

for $m, n \in N_{0}$, where ψ is a known function satisfying condition (A1) and $u(m, n)>0$ is an unknown function for $m, n \in N_{0}$.

Let

$$
w_{1}(u)=\sqrt{u}, \quad w_{2}(u)=u .
$$

Clearly, $w_{2}(u) w_{1}(u)=\sqrt{u}$ is nondecreasing for $u>0$, that is, $w_{1} \propto w_{2}$. Hence, for $u_{1}, u_{2}>0$, we have

$$
W_{1}(u)=\int_{u_{1}}^{u} \frac{d z}{w_{1}\left(\psi^{-1}(z)\right)}, \quad W_{2}(u)=\int_{u_{2}}^{u} \frac{d z}{w_{2}\left(\psi^{-1}(z)\right)},
$$

Applying Theorem 2.3, we can compute

$$
\begin{aligned}
& r_{1}(m, n, s, t)=\tilde{a}(s, t)>0, \quad r_{1}(m, n, 0, t)=\tilde{a}(0, t), \\
& \Delta_{3} r_{1}(m, n, \tau, t)=\Delta_{1} \tilde{a}(\tau, t) \\
& \varphi_{1}\left(W_{0}^{-1}\left(r_{1}(0,0, \tau, 0)\right)\right)=w_{1}\left(\psi^{-1}(\tilde{a}(\tau, 0))\right),
\end{aligned}
$$

$$
\begin{aligned}
& r_{2}(m, n, s, t)=W_{1}(\tilde{a}(0, t))+\sum_{\tau=0}^{s-1} \sum_{\eta=0}^{t-1} \tilde{f}_{1}(m, n, \tau, \eta)+\sum_{\tau=0}^{s-1} \frac{\Delta_{1} \tilde{a}(\tau, t)}{w_{1}\left(\psi^{-1}(\tilde{a}(\tau, 0))\right)}, \\
& \Delta_{3} r_{2}(m, n, s, t)=\sum_{\eta=0}^{t-1} \tilde{f}_{1}(m, n, s, \eta)+\frac{\Delta_{1} \tilde{a}(s, t)}{w_{1}\left(\psi^{-1}(\tilde{a}(s, 0))\right)}, \\
& r_{2}(0,0, s, 0)=W_{1}(\tilde{a}(0,0))+\sum_{\tau=0}^{s-1} \frac{\Delta_{1} \tilde{a}(\tau, 0)}{w_{1}\left(\psi^{-1}(\tilde{a}(\tau, 0))\right)}, \\
& \varphi_{2}(u)=\frac{w_{2}\left(\psi^{-1}(u)\right)}{w_{1}\left(\psi^{-1}(u)\right)}=\sqrt{\psi^{-1}(u)} .
\end{aligned}
$$

So

$$
\begin{align*}
u(m, n) \leq & \psi^{-1}\left\{W _ { 2 } ^ { - 1 } \left[W_{2}(\tilde{a}(0, n))+\sum_{s=0}^{m-1} \sum_{t=0}^{n-1} \tilde{f}_{2}(m, n, s, t)\right.\right. \\
& \left.\left.+\sum_{s=0}^{m-1} \frac{\sum_{\eta=0}^{t-1} \tilde{f}_{1}(m, n, s, \eta)+\frac{\Delta_{1} \tilde{a}(s, n)}{w_{1}\left(\psi^{-1}(\tilde{a}(s, 0))\right)}}{\sqrt{\psi^{-1}\left(W_{1}^{-1}\left(r_{2}(0,0, s, 0)\right)\right)}}\right]\right\}, \tag{18}
\end{align*}
$$

which implies the boundedness of solutions of the difference equation (17).

ACKNOWLEDGEMENTS

This work is supported by Scientific Research Fund of Sichuan Provincial Education Department (No. 09ZC109).

REFERENCES

[1] Agarwal, R. P., Deng, S., \& Zhang, W. (2005). Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput., 165(3), 599-612.
[2] Cheung, W. (2006). Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal. 64(9), 2112-2128.
[3] Choi, S. K., Deng, S., Koo, N. J., \& Zhang, W. (2005). Nonlinear integral inequalities of Bihari-type without class. Math. Inequal. Appl., 8(4), 643-654.
[4] Pachpatte, B. G. (2002). Integral inequalities of the Bihari type. Math. Inequal. Appl., 5(4), 649-657.
[5] Pinto, M. (1990). Integral inequalities of Bihari-type and applications. Funkcial. Ekvac., 33, 387-403.
[6] Cheung, W. (2004). Some discrete nonlinear inequalities and applications to boundary value problems for difference equations. J. Difference Equ. Appl., 10(2), 213-223.
[7] Cheung, W., Ren, J. (2006). Discrete non-linear inequalities and applications to boundary value problems. J. Math. Anal. Appl., 319(2), 708-724.
[8] Meng, F. W., \& Ji, D. H. (2007). On some new nolinear discrete inequalities and their applications. J. Comput. Appl. Math., 208(2), 425-433.
[9] Salem, Sh., \& Raslan, K. R. (2004). Some new discrete inequalities and their applications. J. Inequal. Pure Appl. Math., 5(1), Article 2, 9 pages.
[10] Zhao, X. Q., Zhao, Q. X., \& Meng, F. W. (2006). On some new nolinear discrete inequalities and their applications. J. Inequal. Pure Appl. Math., 7(2), Article 52, 9 pages.
[11] Wang, W., \& Zhou, X. An extension to nonlinear sum-defference inequality and applications. $A d v$ ances in Difference Equations, Volumn 2009, Aritcle ID 486895, 17 pages.
[12] Zhang, W., \& Deng, S. (2001). Projected Gronwall-Bellman's inequality for integrable functions. Math. Comput. Modelling, 34(3-4), 393-402.
[13] Deng, S. (2010). Nonlinear discrete inequalities with two variables and their applications. Appl. Math. Comput., 217(5), 2217-2225.

[^0]: ${ }^{1}$ School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. E-mail address: zhengkelong@swust.edu.cn.
 *Corresponding author.
 ${ }^{\dagger}$ 'Received 2 December 2010; accepted 5 January 2011.

