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Testing for Multivariate Threshold Autoregression 

Shu-Ing LIU1,* 

Abstract: In this article we propose a testing procedure for multivariate threshold autoregression 

with the disturbances following conditional homoscedastic martingale difference sequences. A 

right-tailed asymptotic distribution of the proposed test statistics is derived and the accuracy is 

investigated by simulations. The numerical simulations however show a remarkable robustness 

to a miss-specification of the order of the AR model. This encourages one to apply the asymptotic 

results, which will make the computation more convenient in actual applications. Furthermore, 

some numerical simulations indicate that the proposed test is more powerful than the test in [12]. 

Key Words: Eigenvalues; Lagrange-multiplier test; Likelihood ratio test; Martingale differences; 

Threshold autoregression 

1.  INTRODUCTION 

The self-exciting threshold autoregressive model is one of the nonlinear time series models first proposed 

by Tong
[8]

 and later discussed in detail by Tong and Lim
[10]

. Since then, these models have become popular. 

They have a piecewise linear conditional mean in the threshold space, which is able to describe many 

phenomena such as jumps, limit cycles and financial data. A comprehensive review of these models can be 

found in Tong
[9]

. Tsay
[11]

 has used the arranged autoregression technique to test the existence of threshold 

nonlinearity. Chan
[3]

, Chan and Tong
[4]

, on the other hand, have proposed the likelihood ratio approach as a 

test for threshold autoregression with normally distributed noise. In some special cases, the problem may be 

reduced to a first-passage problem associated with a Gaussian process. Chan
[5]

 has derived an asymptotic 

tailed distribution of the test statistic for the general case when the threshold effect is absent. 

Later, Wong and Li
[14]

 presented an asymptotic null distribution of the Lagrange-multiplier test statistic 

for threshold autoregression with conditional heteroscedasticity. Some numerical results indicate that the 

likelihood ratio test may have a higher Type I error probability than the specified one when conditional 

heteroscedasticity exists. However, the Lagrange-multiplier test will be more robust when hetero- 

scedasticity exists. Tsay
[12]

 extended his previous work to multivariate data, giving descriptions of some 

multivariate threshold models, and proposed testing procedures, to detect the existence of threshold 

nonlinearity. In this paper, a unified testing procedure for a multivariate threshold model is investigated. 

Essentially, it is an extension of Chan
[3]

, Chan and Tong’s work
[4]

, and a partial extension of Wong and Li’s 

work
[14]

, but with martingale difference noise sequences under some regular conditions. 

The paper is organized as follows: In Section 2, the discussed testing procedure is introduced and an 

approximate tailed distribution of the test statistic is discussed. Illustrations of the accuracy of the 

approximation, the testing power investigated by simulations are included in Section 3. Finally, Section 4 

gives a brief conclusion. 
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2.  TEST FOR MULTIVARIATE THRESHOLD MODELS 

Chan and Tong
[4]

 applied the likelihood ratio statistic to test threshold nonlinearity for univariate data. Later, 

Wong and Li
[14]

 derived a Lagrange-multiplier test statistic for threshold nonlinearity with conditional 

heteroscedasticity. By using the properties of the mosaic process
[1]

, an approximation of the asymptotic 

tailed distribution of the test statistic was obtained. In the next subsection, a unified approach for producing 

test statistic for multivariate data will be investigated. 

2.1  The Model 

Consider a multivariate time series { },tX  where 
tX  is a k -dimension random vector, denoted 

by
1, ,( , , )T

t t k tX X X . A simple multivariate threshold model with an autoregression order p , a lag 

parameter d , 1 d p  , and a threshold parameter r is defined as follows: 

                              0 0 ,

1 1

( ( ) )( ) ,
p p

t j t j t d j t j t r

j j

X X I f X r X a  

 

                                              (1) 

for 1, ,t p n  . Here, ( )I   is an indicator function, and for simplicity, function f is a projection function 

defined by ,( )t i tf X X  for some i-th component of 
tX , with 1 i k  . 0  and 

0  are 1k   parameter 

vectors, and the i ’s and j ’s, for 1 ,i j p   are k k  parameter matrices, satisfying some stationary 

conditions: All the roots of the equation,  1

1det 0p p

pZ Z     , lie strictly inside the unit circle. 

The threshold parameter r  is supposed to belong to an finite interval of R , say ( , )b c . In the following 

analysis, for simplicity, the lag parameter d  and the order of autoregression p  are assumed to be known in 

advance. Moreover, the ,{ }t ra is a sequence of martingale differences satisfying , 1,( ) 0t r t rE a F   , 

, , 1, 1,( , )t r t r t r rCov a a F    and , , 1,( , ) 0t r s r t s rCov a a F    , for t s . min( , )t s t s  , 1,t rF   is the  -field 

generated by ,{ , 1,2, }t i t i rX a i   , and 1,r  is a symmetric positive definite matrix. Also, tX  and ,t i ra   

are uncorrelated for 0i  , and for all r . 

Before proposing the test statistics, model (1) is re-represented in a matrix form. Define 

1

2

T

p
T

p

T

n

X

XY

X





 
 

  
  
 

,      

1

1 2

1

1

1

1

T T

p
T T

p

T T

n n p

X X

X X
X

X X



 

 
 

  
 
 
 

,        

1,

2,
1,

,

T

p r
T

p r
r

T

n r

a

a

a







 
 

  
 
 
 

, 

1 1 1 1

2 2 1 2 2

1

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ( ) )

T T

p d p d p p d
T T

p d p d p p d
r

T T

n d n d n n d n p

I f X r I f X r X I f X r X

I f X r I f X r X I f X r X
Y

I f X r I f X r X I f X r X

     

      

    

   
   

  
 
     , 

( ) 0 1( , , , )T

F p      and ( ) 0 1( , , , )T

F p     . 

Then, model (1) is re-written as 

                                                      ( ) ( ) 1,F r F rY X Y      .                                                            (2) 

For convenience, model (2) will be re-written in a vector form. If A  is an m  matrix, let VA  denote the 

m -vector obtained by vectorizing A ; that is, by stacking the column of A  on top of one another. 
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Finally, model (2) is re-expressed as 

                                                     
( ) ( ) 1,( ) ( )V V V V

k F k r F rY I X I Y        ,                                                (3) 

where I  is an   identity matrix. Now, our null hypothesis is formulated as 

0 ( ): 0V

F    against 
1 ( ): 0V

F   . 

Under the null hypothesis, model (3) is reduced to 

( ) 2( )V V V

k RY I X     . 

Here ( )

V

R  denotes the parameter matrix corresponding to 
( )

V

F , under 
0 . 2

V  has the same structure as 

1,

V

r  with 
2  as the covariance matrix corresponding to 1,r , under 0 . 

The least squares estimates of each parameter are respectively expressed as follows: 

  
1

( )
ˆ V T T V

R kI X X X Y


   , 

    
1 1

( ) ( )
ˆ ˆV V T T T T V

F R k r r rI X X X Y Y GY Y G Y
 

    , 

  
1

( )
ˆ V T T V

F k r r rI Y GY Y G Y


   , 

1, 1, 1,
ˆ ˆ ˆ ( )T

r r r n p     and 2 2 2
ˆ ˆ ˆ ( )T n p    , 

where 1( )T T

n pG I X X X X

  , 1, ( ) ( )
ˆ ˆˆ ( ) ( )V V V V

r k F k r FY I X I Y         and 2 ( )
ˆˆ ( )V V V

k RY I X     . It 

is worthy to note that the relation 
T T T

r r r rY X Y Y X Y   is true under model (1). 

2.2  The Proposed Test Statistics 

In this subsection, some convenient test statistics for testing 0  against 1  are defined in terms of the 

residual sum of the squares. First, define 

2 2 1, 1,( ) ( ) ( ) ( ) ( )T T

r r r           , 

where 

 1 2

2 2
ˆ( ) V

n pI 

      and  1 2

1, 1,
ˆ( ) V

r n p rI 

     . 

( )r   can be used to measure the difference in the weighted residual sum of the squares between the 

reduced model and the full model. After algebra, ( )r   can be re-expressed as 

     
1

1 2 1 2( ) ( )V T T T V

r r k r r rY GY I Y GY Y G Y


        . 

Now, a different estimate of   will produce a different test statistic. Here, two test statistics are 

investigated. They are (1) 1,
ˆsup ( )r r

b r c

 
 

    and   (2) 2
ˆsup ( )r

b r c

 
 

  . 

Suppose the normality assumptions for the disturbances are imposed in the following discussions: For a 

fixed r  and 1k  , 1,
ˆ( )r r   asymptotically reduces to the likelihood ratio test statistic proposed by Chan 

and Tong
[4]

; 2
ˆ( )r   asymptotically reduces to the Lagrange-multiplier test statistic discussed by Wong 

and Li
[14]

. For 1k  , it can be analytically proven that 2
ˆ( )r   is asymptotically equivalent to the 
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Lagrange-multiplier test statistic (see Appendix A), and that 1,
ˆ( )r r   is asymptotically equivalent to the 

Wald test statistic
[13]

. Moreover, it can be shown that the difference between the two covariance estimators, 

2̂  and 1,
ˆ

r , is  

 
1

2 1,
ˆ ˆ ( )T T T

r r r r rY GY Y GY Y GY n p


   
. 

Under hypothesis 
0 , the two covariance matrices, 1,

ˆ
r  and 2̂ , will converge to the same covariance 

matrix when the sample size is sufficiently large. Therefore, the asymptotical distribution of the two test 

statistics will be the same. 

Suppose the following assumption holds, 

. .1
T T a s

r r
nT T

r r
r r r

X X X Y

n Y X Y Y


             , 

then 
. .

1 1( )
a s

T

r r r r rn
n Y GY 


     . Furthermore, by applying the results of Lai and Wei

[7] 
(detailed 

proof referred to Appendix B), ( )
ˆ V

F  is asymptotically normally distributed. Therefore, under 0 , 

 1/2 1/2

2
ˆ

d
T V

r rn
n Y G Y  


   , 

where the random vector 
r  is 

1(0, ( ))k r r rI       distributed and Cov ( , )g h kI     

1( )g h g h



    . A straightly forward proof of the covariance stricture is given is Appendix C. Finally, 

under 0 , 

(2) sup
d

rn
b r c

 


 

 , 

where 
1 1[ ( ) ]T

r r k r r r rI          and 
r  is Chi-square distributed with ( 1)k pk   degrees of 

freedom. Actually, the aforementioned result can be found in Chan
[3]

, Theorem 2.2 and 2.3. The remaining 

problem is to find a suitable approximation of the asymptotic distribution of supr r . Moreover, since the 

distribution of r  is parameter-free, only depending upon the dimension of data random vector tX  and the 

order p  of the fitted model. Thus, we could infer that under hypothesis 0 , the distribution of (2)  or (1)  

will be parameter-free. Later some simulation results will provide partial evidences to the stated conclusion. 

When y  is sufficiently large, by using the mosaic process property
[1]

, the following approximation can 

be obtained: 

                           
1

2

( 1)

1

Pr(sup ) exp 2 ( ) ( ) ( )
1

pk

r k pk i i
b r c i

y
y k y t c t b

pk
 




  

   
       

    
 ,                             (4) 

where ( ) 0.5ln{ ( ) [1 ( )]}i i it r r r   , 1, , 1i pk  . ( )i r ’s are eigenvalues of 
1 2 1 2

r

    , and 

2

( ) ( )   is the density function of the Chi-square random variable with  degrees of freedom. In fact, when 

1k  , formula (4) is reduced to the same results as those given by Chan
[5]

, or Wong and Li
[14]

. Using their 

approach, a heuristic proof of the approximation (4) is given in Appendix D. Finally, when 0  is true, an 

approximate tailed probability of ( )j , 1,2j  , can be expressed as 
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1

2

( ) ( 1)

1

Pr( ) exp 2 ( ) ( ( ) ( ))
1

pk

j k pk i i

i

y
y k y t c t b

pk
 







   
       

    
 ,                                 (5) 

when y  is large enough. Furthermore, without the intercept term, that is, when 
0 0 0   , an 

approximated tailed probability is reduced to 

                                  2

2

( )

1

Pr( ) exp 2 ( ) ( ) ( )
pk

j i ipk
i

y
y k y t c t b

pk
 



   
       

    
 .                                        (6) 

It is worthy to note that the approximate probabilities in formulae (5)-(6) both formally depend upon the 

order of the model from which the data originated. 

3.  NUMERICAL ILLUSTRATIONS 

In this section, the accuracy of formulae (5)-(6), the power of the discussed test statistics, ( )i , 1,2i  , and 

Tsay’s test will be examined using simulations.  

3.1  Accuracy of the Approximate Tailed Probability 

Both formulae (5)-(6) depend upon the eigenvalues of the corresponding matrix 
1 2 1 2

r

    . In real 

applications, this is replaced by 1 2 1 2ˆ ˆ ˆ
r

    , where ˆ TX X n   and ˆ T

r r rY Y n  . In order to prevent 

the initial value from influencing data generated in the following simulations, whenever a data set with n  

observations is needed, then 100n  data are generated, and the last n data are analyzed. 

3.1.1  Univariate Case 

Now, consider the testing of the univariate threshold nonlinearity. Data are generated using some special 

autoregressive processes, with or without an intercept term. First, consider cases where the data are 

generated from a model with an intercept term: 

(u1). 1 0(1 ) t tB X a    , 

(u2). 
2

1 0(1 )i i t tB X a     , 

(u3). 
3

1 0(1 )i i t tB X a     , 

(u4). 
4

1 0(1 )i i t tB X a     , 

(u5). 
5

1 0(1 )i i t tB X a     . 

Here, ~ (0,1)
iid

ta  . 

When data are generated from model ( )uj , the hypothesis testing is formulated as 

0 0

1

:
p

t j t j t

j

X X a  



    ,   

as against 

1 0 1 0 ,

1 1

: ( )( )
p p

t j t j t j t j t r

j j

X X I X r X a     

 

        , 
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where 1 5p  . Therefore, the sensitivity of the miss-specification of the order of the autoregressive 

process is simultaneously investigated. The values of the parameters are set as follows: 
0 0.3    and 

1 1 1 1 1

1 2 3 4 5( , , , , ) ( 2.5, 3.8,            1.4, 4.9, 2.0)   . After some sets of data with a sample size n  are 

generated from ( )uj , an upper percentile point computed from formula (5) is obtained, under a specified 

order “ p ” in 
0  and 

1 . 

For a given upper percentile  , the corresponding percentile point, denoted by ŷ , can be 

approximately obtained by solving the following equation: 

                                      
1

2

( 1)

1

ˆ
ˆ ˆˆexp 2 ( ) ( ) ( ) 1

1

pk

k pk i i

i

y
k y t c t b

pk


 







   
       

    
 ,                               (7) 

where b  and c  are respectively defined as the 10% and 90% data points. That is,
1( )nb X  and 

2( )nc X , 

with 
1 0.1n n  and 

2 0.9n n , and where ( ) 1{ }n

t tX   are the order statistics for the data set 1{ }n

t tX  . ˆ ( )it r   

 ˆ ˆ0.5ln ( ) [1 ( )]i ir r   and ˆ ( )i r ’s are the eigenvalues for the matrix 1 2 1 2ˆ ˆ ˆ
r

    . In order to obtain a 

more accurate percentile point, the average solutions of M data sets from equation (7) are used. That is, the 

  percentile point is estimated by 

                                                                         
( )

1

ˆ ˆ m

m

y y 





  ,                                                                       (8) 

where 
( )ˆ my  is solved from (7) by using the m -th data set. 

To numerically verify the accuracy of the percentile points obtained from (8), the empirical distribution 

of (1)  is estimated, by computing 

1 2

(1) 1,
ˆsup ( )

n n

r r
X r X

 
 

  . 

Suppose that L  sets of data are independently generated from the model ( )uj ; then we obtain ( )

(1) 1
ˆ{ }L  . 

This set can be used to construct an empirical distribution of (1) . Presumably, the empirical results can be 

regarded as the true one when the sample size is sufficiently large. Simulations are conducted for 500n  , 

5%  , 2.5% or 1%, 2,000   and 2,000L  . The simulation results expressed in Table 1 indicate 

that the approximated results are rather close to the empirical results. 

To investigate the accuracy in greater detail, the percentile error of the size is computed. Let 
 denote 

the proportion of cases (1)
ˆ ˆ{ }y   among L  replications. Then, comparisons between   and  , for 

example when the relative percentage error defined by,   100%     ,will be used to measure the 

accuracy of formula (5). In summary, the relative percentage errors for 5%   are less than 5%. Actually, 

when the   probability decreases, the percentage errors also decrease. To save time, the percentile points 

for a case without an intercept term are only investigated for an AR(1) model: Data are generated from 

10.4t t tX X a  , where ~ (0,1)
iid

ta   and the testing hypothesis is set as 0 :  1t t tX X a   ,as against 

1 1 1 1 ,: ( )( )t t t t t rX X I X r X a        . 

Both the true model and the hypothetical model are without an intercept term. A procedure similar to 

the aforementioned one is performed. This time an approximate upper percentile point may be obtained by 

solving formula (6). Similar conclusions to the ones mentioned above are indicated by the simulation 

results shown in Table 2. By comparing the percentile points for cases with or without an intercept term, 
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Table 1: Percentile points of the proposed test statistics 

 True model 

 p (u1) (u2) (u3) (u4) (u5) 

 5%   

1 12.89† 12.89 12.92 12.94 12.91 

 (12.52)‡ (12.59) (12.36) (12.77) (12.93) 

2 15.24 15.24 15.27 15.28 15.27 

 (14.43) (15.11) (14.95) (14.84) (15.31) 

3 17.40 17.40 17.43 17.44 17.38 

 (16.90) (16.68) (17.49) (16.79) (17.03) 

4 19.44 19.44 19.46 19.47 19.40 

 (19.88) (19.26) (18.70) (19.07) (19.12) 

5 21.38 21.38 21.40 21.41 21.32 

 (21.51) (21.07) (21.49) (20.86) (21.24) 

 
2.5%   

1 14.59† 14.59 14.63 14.64 14.59 

 (14.24)‡ (14.45) (14.03) (14.41) (14.35) 

2 17.04 17.04 17.07 17.08 17.03 

 (16.22) (16.93) (16.59) (16.47) (16.94) 

3 19.28 19.28 19.31 19.32 19.26 

 (18.91) (18.84) (19.13) (19.04) (18.74) 

4 21.39 21.39 21.41 21.42 21.35 

 (22.37) (21.47) (20.69) (21.37) (21.24) 

5 23.40 23.40 23.42 23.43 23.35 

 (23.77) (23.23) (23.91) (22.89) (23.17) 

   1%   

1 16.76† 16.76 16.79 16.81 16.75 

 (16.55)‡ (16.92) (16.50) (16.32) (16.79) 

2 19.31 19.31 19.34 19.35 19.30 

 (18.61) (18.90) (18.95) (18.93) (18.83) 

3 21.65 21.65 21.67 21.68 21.63 

 (21.32) (21.40) (22.09) (21.50) (21.26) 

4 23.85 23.85 23.86 23.87 23.80 

 (24.05) (23.61) (22.98) (23.11) (23.39) 

5 25.93 25.93 25.95 25.95 25.88 

 (26.00) (25.67) (25.50) (25.82) (25.46) 

An AR( p ) model is specified in 0 ; †computed from formula (5); ‡computed from the empirical 

distribution of (1)̂
 

 



Shu-Ing LIU/Studies in Mathematical Sciences  Vol.2 No.1, 2011 

 

     8 

the presence of the intercept term seems to cause the tailed distribution of the test statistic (1)  to be slightly 

heavier. The reason for this is that more parameters lead to a greater uncertainty in the test statistic. It is 

worthy of note that it is more convenient and saves computing time to use formulae (5)-(6). 

Furthermore, by inspecting the numerical results in Tables 1-2, it is quite interesting to find that, for 

fixed b and c, when data are generated from an AR( q ) model, but with p q specified in the null 

hypothesis, then the percentile points will be automatically adjusted. Therefore, the numerical simulations 

show a remarkable robustness to the miss-specification of the model order. Indeed, Chan
[5]

 indicated 

similar results that the LRT percentiles depend only on the fitted autoregression order. Therefore, the 

miss-specification of the order, in particular its under-specification, does not cause difficulty in obtaining 

critical points. It is thus more convenient in practical applications. 

Table 2: Percentile points of test statistics, data generated from 10.4t t tX X a   

   

  p 5% 2.5% 1% 

1 6.39† 8.12† 10.26† 

 (6.77)‡ (8.19)‡ (10.23)‡ 

2 11.16 12.93 15.14 

 (10.88) (12.54) (15.16) 

3 14.05 15.89 18.20 

 (14.02) (16.09) (17.91) 

4 16.46 18.38 20.78 

 (16.80) (18.38) (20.91) 

5 18.64 20.63 23.11 

 (18.49) (20.85) (23.76) 

An AR( p ) model is specified in 0; †computed from formula (6);  

‡computed from the empirical distribution of (1)̂
 

 

3.1.2  Multivariate Case 

For the multivariate model, for simplicity, a two-dimensional autoregressive threshold model is discussed. 

Data are generated respectively from the following four models; the first two models have an intercept term 

while the last two models have no intercept term: 

(m1). 0 1 1t t tX X a    , 

(m2). 0 1 1 2 2t t t tX X X a      , 

(m3). 1 1t t tX X a   , 

(m4). 1 1 2 2t t t tX X X a     , 

 0

1.2
0.5

 


,    1

0.86 0.80
0.90 1.10


 


  and   2

0.40 0.30
0.53 0.21
 

 
 

. 

Here, ~ (0, )
iid

ta   , with  1.20 0.72
0.72 1.20

  . 
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Table 3: Percentile points of the proposed test statistics 

 True model 

 with intercept  without intercept 

p (m1) (m2) (m3) (m4) 

 5%   

1 21.54† 21.54 15.82* 15.81 

 (16.12) ٭(15.52) (21.87) ‡(20.99) 

2 28.55 28.55 24.12 24.12 

 (28.60) (28.61) (24.19) (23.93) 

 2.5%   

1 23.55† 23.55 17.77* 17.76 

 (17.95) ٭(17.11) (23.72) ‡(23.45) 

2 30.80 30.81 26.31 26.31 

 (30.54) (30.91) (26.25) (26.51) 

 

 

1%   

1 26.07† 26.07 20.20* 20.19 

 (20.77) ٭(20.10) (26.60) ‡(25.96) 

2 33.60 33.60 29.02 29.02 

 (33.88) (33.22) (29.16) (28.78) 

A VAR( p ) model is specified in 0;  
†computed from formula (5); *computed from formula (6) 
‡the empirical distribution of (1)̂ , with an intercept term 

the empirical distribution of (1)̂٭ , without an intercept term 

 

 

When data are generated from model ( )mj , 1,2j  , with an intercept term, the testing hypothesis is 

formulated as 

0 0

1

:
p

t j t j t

j

X X a



     , 

as against 

                                   1 0 1, 1 0 ,

1 1

: ( )( )
p p

t j t j t j t j t r

j j

X X I X r X a  

 

           .                               (9) 

On the other hand, in cases without an intercept term, the tested hypothesis is restricted by setting 

0 0 0   . To save time, the values of p  are investigated for 1,2p  . 

Adopting the previous setup, 500n  , 5%  , 2.5% or 1%, 2,000   and 2,000L   are assumed. 

We let 
11,( )nb X  and 

21,( )nc X , again 1 0.1n n  and 2 0.9n n , where 1,( ) 1{ }n

t tX   are the order statistics 

of the first component data set 1, 1{ }n

t tX  . Then, the tailed probability of some specified Type I error 

probability   is computed; when the fitted model has an intercept term, formula (5) is applied; without an 

intercept term formula (6) is used. Meanwhile, the desired percentage point, from the empirical distribution 

of (1) , is estimated by 
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1,( ) 1,( )1 2

(1) 1,
ˆsup ( )

n n

r r
X r X

 
 

  . 

The results, which are shown in Table 3, indicate that both approaches, the approximated and the 

empirical, are rather close. The relative percentage errors for each specified  -level are all less than 3% for 

the intercept term case; without the intercept term, the percentile point values tend to be smaller, with the 

corresponding relative percentage errors being less than 4%. 

Some of the aforementioned numerical studies (Tables 1-2) indicate that in the univariate case, the 

miss-specification of the order does not cause difficulty in computing critical points. To partially clarify 

this point in the multivariate case, some simulations are conducted. Data are generated respectively from 

the five two-dimensional vector autoregressive models denoted by VAR(j), say, 

0 1 1t t j t j tX X X a      , where 1,2, ,5j   . The definitions of 0 ,
1  and 

2  are the 

same as above, the remaining i ’s are defined as follows: 

 3

0.25 0.40
0.62 0.76


 


,      4

0.60 0.08
0.05 0.40


 
 

,      5

0.50 0.10
0.25 0.20

 


. 

Again, ~ (0, )
iid

ta   , with  1.20 0.72
0.72 1.20

   and the testing hypothesis is formulated as before, (9).  

Table 4: Examinations of the percentile points in the multivariate cases 

 True model 

p VAR(1) VAR(2) VAR(3) VAR(4) VAR(5) 

 5%   

1 21.54 21.54 21.55 2159 21.58 

2 28.57 28.57 28.60 28.70 28.62 

3 35.15 35.14 35.15 35.21 35.13 

4 41.36 41.36 41.36 41.41 41.31 

5 47.35 47.35 47.36 47.35 47.27 

 2.5%   

1 23.55 23.55 23.59 23.56 23.58 

2 30.80 30.81 30.85 30.81 30.82 

3 37.58 37.58 37.58 37.68 37.57 

4 43.95 43.95 43.96 44.00 43.91 

5 50.10 50.10 50.11 50.09 50.08 

 1%   

1 26.07 26.08 26.11 26.21 26.12 

2 33.61 33.60 33.61 33.72 33.61 

3 40.59 40.59 40.60 40.67 40.58 

4 47.16 47.16 47.17 47.21 47.13 

5 53.48 53.48 53.49 53.47 53.48 

A VAR( p ) model is specified in 0; Each entry is computed from formula (5) 
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To investigate which percentile points are independent of the order of the vector autoregressive model 

generated by the data, the fitted order p is considered for 1,2, ,5p   . The remaining conditions are the 

same as those that produced Table 3. By inspecting the numerical results listed in Table 4, we may conclude 

that the percentile points are parameter-free and only depend upon the order of the fitted model in the 

discussed multivariate case again. This advantage is helpful in practical applications. 

3.2  Power Comparisons 

In this subsection, the power of the two defined test procedures, (1)  and (2) , and of Tsay’s test procedure, 

will be compared by simulations, for both univariate and multivariate data.  

3.2.1  Univariate Case 

Adopting Tsay’s
[11]

 numerical framework, consider the following univariate threshold model, 

                                                   1 1

1 1

0.5 , ,
, ,

t t t
t

t t t

X a if X r
X

X a if X r

 

 

 

  


  
                                                       (10) 

where the 
ta ’s are iid (0,1)  distributed and n=50 or 100 are set. Different values of   are set, say -2, -1, 

-0.5, 0 and 0.5. The testing power for 0.5   is then just the Type I error probability, which can be used to 

verify the applicability of the parameter-free conjecture, and the accuracy of formulae (5)-(6), in particular, 

in situations with a small sample size. To investigate the impact of the intercept term, the values of ( , )r  

are set as (1.0, 1.0) or (0.0, 0.0). 

For simplicity, the testing hypothesis is formulated by setting 1p   in (9). Moreover, the presence of 

an intercept term in the testing hypothesis depends upon the value of  . For each specified parameter value, 

10,000 sets of data are generated from model (10). For each data set, the value of the test statistic ( )
ˆ

i  is 

computed, to decide whether the null hypothesis should be rejected. (1)̂  has been defined in subsection 

3.1.1 and 

( ) ( )1 2

(2) 2
ˆ ˆsup ( )

n n

r
X r X

 
 

  . 

The critical values may be obtained from Tables 1-2. They are computed from (5) or (6); say 12.89 for 

5%   and 16.76 for 1%  , when the intercept term exists in the fitted model; without the intercept 

term, 6.39 and 10.26 are used respectively as the corresponding critical point. 

Let us first consider a model with an intercept, ( , ) (1.0,1.0)r  : When 0.5  , the powers of (1)̂  are 

quite close to the specified Type I error probability. This means that the approximation formula (5) still 

works well for small sample sizes. However, the other two test statistics, (2)̂ , or Tsay’s test statistic, are 

both less than the specified Type I error probability. This will cause the test statistic to be slightly 

conservative. They will therefore be less powerful than Chan and Tong’s test when the true model deviates 

gradually from the null hypothesis.  

Next, we consider a case without an intercept term, ( , ) (0.0,0.0)r  : The powers of Tsay’s test, at 

0.5  , will be larger than the specified probability, especially for a small error probability, say 1%. 

Under the alternative hypothesis, this will lead to an over-estimation of the power. Moreover, as the 

alternative hypothesis is far from the null hypothesis, especially, in a non-stationary situation, the power of 

Tsay’s test is rather low. The powers of (1)̂ , at 0.5  , is rather close to the desired one, but is sometimes 

over, therefore, it may be unfair to discuss the testing power further. However, the powers of (2)̂ , at 

0.5  , is rather conservative compared to that of (1)̂ , sometimes less than the specified one. 
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Nevertheless, even in the case when less than the given Type I error probability, the power is almost higher 

than that of Tsay’s test. From the numerical results presented in Table 5, in summary, if there is an intercept 

term, the 
(1)̂  test statistic is suggested, while the 

(2)̂  test statistic is suggested when the intercept term is 

absent.  

Table 5: Probability (%) of rejecting an AR model when the data follow model (10) 

 ( , ) (1.0,1.0)r    ( , ) (0.0, 0.0)r   

      

n  -2 -1 -0.5 0 0.5 -2 -1 -0.5 0 0.5 

 5%   

50 100.0* 98.4 68.9 14.7 4.6 99.9* 98.3 84.0 34.9 6.9 

 4.5 27.6 79.1 97.2 ٭99.9 1.0 4.3 45.9 94.7 ٭100.0 

 (100.0)† (99.0) (67.2) (12.0) (3.8) (61.2)† (53.9) (42.6) (20.7) (5.9) 

100 100.0 100.0 95.3 25.3 4.2 100.0 100.0 99.3 64.4 6.4 

 100.0 100.0 91.6 16.6 1.9 100.0 100.0 99.1 60.9 5.2 

 (100.0) (100.0) (94.3) (23.7) (2.6) (85.6) (80.4) (70.1) (37.4) (5.9) 

 1%   

50 100.0* 95.6 51.1 5.8 1.1 99.7* 92.7 61.8 13.5 1.1 

 0.3 6.5 45.5 86.1 ٭99.1 0.0 0.5 19.6 81.8 ٭100.0 

 (100.0)† (92.0) (41.6) (3.5) (0.9) (41.8)† (35.7) (25.1) (9.3) (1.8) 

100 100.0 100.0 87.5 11.6 0.9 100.0 99.9 95.3 35.7 1.3 

 100.0 99.9 77.2 5.3 0.2 100.0 99.9 92.7 29.2 0.7 

 (100.0) (100.0) (83.6) (8.7) (0.6) (74.0) (67.2) (53.5) (22.9) (1.9) 

*
(1)̂  test statistic, using 10,000 replications; ٭ (2)̂  test statistic, using 10,000 replications; 

†coded from Tsay[11], using 1,000 replications 

 

3.2.2  Multivariate Case 

To adopt the discussion to a univariate case, the same framework will be utilized for multivariate data. First, 

we consider the following two-dimensional threshold model with an intercept term: 

                                          0 1 1 1, 1

0 1 1, 1

, 0.2,
, 0.2.

t t t
t

i t t t

X a if X
X

X a if X
 

 

   
   

                                               (11) 

The i ’s are defined in subsection 3.1.2. 

 1

3.86 1.10
13.25 4.00


 


,      2

2.86 0.90
9.42 3.10


 


  and  3 1   . 

The eigenvalues of the i  matrices are, respectively, (-0.94, 0.80) for 1 , (-0.75, 0.51) for 2 , and (-0.61, 

0.37) for 3 . Therefore, the 2  matrix is closer to the 3  matrix than the 1  matrix. 

Wong and Li
[14]

 have derived Lagrange-multiplier test statistic for a threshold autoregression with 

conditional heteroscedasticity. Owing to the complexity of the distribution of the test statistic, they 

suggested that the percentile points derived under homoscedasticity be used when conditional 
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heteroscedasticity exists. The applicability of the percentile points listed in Table 3 will be examined when 

the 
ta ’s follow the ARCH(1) model. Here, the distribution of the 

ta ’s is assumed to follow (0, )t  . To 

save time, only the iid normality and the ARCH(1) are investigated. For the latter, 1 1

T T

t t ta a     , 

where 

 1.20 0.72
0.72 1.20

  ,           0.10 0.20
0.20 0.30

 


, 

while for the former, t    is assumed. The sample sizes are set as 150n   or 300. Again, for each 

specified parameter value, 10,000 sets of data are generated from model (11). The critical values are 

obtained from Table 3, computed with (5), say 21.54 for 5%   and 26.07 for 1%  .  

Intuitively, since the 
1  matrix is farthest from the 

1  matrix, it should be best able to detect the 

existence of the threshold nonlinearity. The power of the 
3  matrix should be quite close to the specified 

Type I error probability. The numerical results exhibited in Table 6 really do reflect this phenomenon. 

Again, in the normally distributed case, the power of (1)  under 3  is closer to the specified Type I error 

probability. On the other hand, in the case of ARCH(1), the power of (2) , where 
1,( ) 1,( )1 2

(2) 2
ˆsup ( )

n n

r
X r X

 
 

  , 

under 3 , is closer to the specified significant level. Similarly, we would suggest that 
(1)  is suitable for 

cases with normally distributed noise; while (2)  is suitable for cases of heteroscedasticity. 

Table 6: Power(%) of detecting the threshold effect under model (11) 

 Normal  ARCH(1) 

n    1                          2                      3   
1                          2                        3  

 5%   

150 95.6* 81.3 5.1  98.8* 91.8 8.2 

 95.1† 78.6 2.5  98.7† 90.8 4.0 

300 99.5 94.6 4.6  99.9 99.0 7.2 

 99.4 94.2 3.1  99.9 99.0 5.0 

 1%   

150 94.9* 77.9 1.1  98.6* 90.3 2.4 

 94.4† 75.3 0.4  98.5† 89.4 0.8 

300 99.4 93.3 1.0  99.9 98.8 2.1 

 99.3 92.8 0.6  99.9 98.7 1.2 

  denotes the Type I error probability; *
(1)  test statistic; † (2)  test statistic 

 

Tsay
[12]

 considered the following two-dimensional vector model without an intercept term: 

                                                          
(1)

1 1 1, 1
(2)

2 1 1, 1

, 0,

, 0,
t t t

t
t t t

X a if X
X

X a if X
 

 

  
 

  
                                                 (12) 

where 
( ) ~ (0, )i

t ia   , 

 1

0.7 0.0
0.3 0.7

  ,  1

1.0 0.2
0.2 1.0

  , 2

0.7 0.0
0.3 0.7

      
 and 2

1.0 0.3
0.3 1.0

 
    

. 
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Our testing hypothesis is set as: 

0 1: t t tX X a   , 

as against 

                                                    1 1 1, 1 ,: ( )( )t t t d t t rX X I X r X a        .                                            (13) 

In the aforementioned discussion, the lag parameter d  is treated as known. However, in practical usage, 

it may be unknown. To examine how the power is influenced when the value of d  is miss-specified, 

different values of d  will be examined, say 1,2,3,4d  . According to Tsay’s demonstrations, the sample 

size is set to be 150n   and 300n  . To save time, only 5%   is used, with the corresponding critical 

point, 15.82, being obtained from Table 3, via formula (6). 10,000 data sets are generated with model (12). 

The results, exhibited in Table 7, again show that the proposed test statistics for either 
(1)  or 

(2)  are more 

powerful than Tsay’s test statistic, whether the lag parameter d  is correctly specified or not. 

Table 7: Power (%) of detecting the threshold effect,  =5% 

   Model (12)    Model (14) 

True d  Misspecified d True d  Misspecified d 

n   1  2                  3                 4   1 2 2                 3                  4    

 42.4 65.9 96.2  ٭100.0  24.8 33.0 67.9  ٭100.0 

150 100.0†  60.8 26.8 19.1  100.0†  94.5 59.3 35.1 

 (99.4)‡  (46.2) (23.2) (16.9)  (87.7)‡  (34.3) (25.4) (18.5) 

 100.0  94.4 52.0 32.6  100.0  100.0 86.1 54.7 

300 100.0  92.7 47.4 28.9  100.0  99.9 84.4 52.4 

 (100.0)  (80.3) (43.9) (25.6)  (97.9)  (66.8) (43.3) (29.6) 

٭
(1)  test statistic; 

†
(2)  test statistic; 

‡
coded from Tsay

[12]
 

 

Finally, data generated from the following three regime vector TAR models are investigated: 

                                         
1 1 1, 1

2 1 1, 1

3 1 1, 1

, 3.3,
, 3.3 3.3,
, 3.3,

t t t

t t t t

t t t

X a if X
X X a if X

X a if X

 

 

 

   


     
  

                                             (14) 

here 2~ (0, )ta I , 1

0.9 0.0
0.2 0.9
     

,  2

1.2 0.0
0.0 0.6

   and 3

0.8 0.0
0.2 0.8
 

   
 

. 

Again, the hypothesis is formulated as (13). Results exhibited in Table 7 indicate that both the (1)  and 

(2)  test statistics perform significantly better than does Tsay’s test. 

4.  CONCLUSIONS 

This article has proposed some test procedures, an extension of Chan
[3]

, Chan and Tong
[4]

, and Wong and 

Li’s
[14]

 works, for multivariate threshold autoregression with conditional homoscedastic martingale 

difference noise sequences. An approximate asymptotic tailed distribution of the proposed test is derived. 

Some numerical illustrations, which include an examination of the accuracy of the approximate tailed 

distribution and the power of the suggested testing procedure are also investigated. The simulation results 
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suggest that the approximate tailed distribution is rather accurate and parameter-free on the original model. 

Though the results depend on the order of the fitted autoregression model, however, a remarkable 

robustness to a miss-specification of the model order is shown. These results have also been pointed out by 

Chan
[5]

 in a univariate study. Some simulations indicate that this property still holds to the discussed 

multivariate models. This makes the proposed testing procedure simpler and more convenient in real 

applications.  

Furthermore, based on the simulated data, we suggest that when the noise is normally distributed, the 

test statistic (1)  be used; while under a conditional heteroscedasticity situation, the test statistic (2)  may 

be safer to use to guarantee that the Type I error probability will be closer to the specified one. Moreover, 

for small or moderate sample sizes, the simulated results show some evidence that the proposed test may be 

more powerful than Tsay’s test
[11,12]

, for the discussed cases. Tsay’s test essentially treating the arranged 

autoregression model as a linear regression model, the core test statistic of the threshold effect is the 

simple F -statistic. Since the dependence between response variables and explanatory variables are ignored, 

this may cause the test to be less informative, and thus less powerful than the discussed test in this paper.  

In this paper, the discussed threshold model is defined by a simple threshold structure, an indicator 

function that is only dependent upon one component. A further theoretical study on how to relax the 

threshold restriction would be worthy of investigation. 
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Appendix A 

Proof that 2
ˆ( )r   is asymptotically the Lagrange-multiplier test. 

Under a normality assumption, the log-likelihood function of model (3) is 

1

1, 1, 1, 1,

1 1
ln ( ) ( ) ( )

2 2

V T V

n p r r n p r rl I I 

      . 

Let 
( )

( )

1,

V

F
V

F
V

r



 
  
 
  

 and 
( )

2

ˆ
ˆ 0

ˆ

V

R

V



 
 
   

 be the MLE under 0 . Then the Lagrange-multiplier test statistic
LM  is 

1
2

ˆ ˆ ˆ| | |

T

LM T

l l l
E

  


  



       
       

       
. 

After algebra, it can be shown that 

ˆ

( )

| 0
V

F

l






, 

1

ˆ 2

( )

ˆ| ( )T V

rV

F

l
Y G Y




  


, 

 
ˆ

1

1,

| 0
V

r

l





 
, 

2 2

1 1

1, ( ) 1, ( )

0
( ) ( ) ( ) ( )V V T V V T

r F r F

l l
E E

 

    
    

             

, 

2
1

ˆ 2

( ) ( )

ˆ| ( )
( )

T

rV V T

F F

l
Y X




   

  
, 

2
1

ˆ 2

( ) ( )

ˆ| ( )
( )

T

V V T

F F

l
X X




   

  
 and 

2
1

ˆ 2

( ) ( )

ˆ| ( )
( )

T

r rV V T

F F

l
Y Y




   

  
. 

Therefore, the Lagrange-multiplier test statistic is asymptotically equivalent to 

1

2
ˆ( ) { ( ) }T T

r r k r r rI Y GY     ,  

where 
1 2

2
ˆ( )T V

r rY G Y    . 

Appendix B 

Proof that ( )
ˆ V

F  is asymptotically normally distributed. 

Model (2) could be re-written as  

 
( ) ( )

1, 1,

( ) ( )

V V

F FV V V

k k r r rV V

F F

Y I X I Y Z 
    

        
       

,  

where ( )k k rZ I X I Y   . By assumption, 
1 TZ Z
n

 converges almost surely. Define 
22 ( 1)q k p  , 

( )m k n p  , 
T

iz  the i -th row vector of Z , say,   1 2

T

i i i iqz z z z , and  1 2

T

mZ z z z , 

then 
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1 1 1 2 1

1 1 1

2 1 2 2 2

1 1 1

1

1 2

1 1 1

1 1 1

m m m

i i i i i iq

i i i

m m m

m
T T i i i i i iq

i i ii i

i

m m m

iq i iq i iq iq

i i i

z z z z z z

z z z z z z
Z Z z z

n n n

z z z z z z

  

  



  

 
 
 
 
  
 
 
 
  
 

  

  


  

. 

Let 
2

1 1 1

qm m

m ij ij i

i j i

S z z z
  

   , then 
. .a s

m mS S n

m n m
   , and 

. .
1 0

a s
m mS S

m m

  . 

Thus 
. .

0
a s

mz

m
 ; that is 0  , M , such that 

mz

m
 , as m M . Moreover, 

1 1
max max max 0

i i i

i m i M M i m m

z z z
c

mm m m




      
     , where 

1
max i

i M
c z

 
   . 

Therefore, applying result of Theorem 3 of Lai and Wei (page 164), and taking ( )nB k n p  , then the 

asymptotically normally distributed of ( )
ˆ V

F  is established. 

Appendix C 

Prove that under 0 , 

1/2 1/2 1/2 1/2 1

2 2
ˆ ˆ( ( ) , ( ) ) ( )T V T V

g h k g h g hn
Cov n Y G Y n Y G Y I    


          pf): By assumption, 

under 0 ,  

    
. .

1/2 1/2 1/2

2 2 2
ˆ 0

a s
T V T V

g g n
n Y G Y W   


      , 

where 1

g g gW Y X     . Let ( )g ijW  be the ( , )i j -th entry of matrix gW , therefore by definition ( )g ijW  is 

a function of { : 1}X p i   . Let 2 1 2( , , , )V T T T T

ke e e   and 1, 2, ,( , , , )T

i p i p i n ie e e e  , then under 0 , 

1
2

0 , ,
( , )

( ) , .i j i j

if i j
Cov e e F

otherwise 


 





 

Define 1/2

2( )T

g gZ W   , 2 1 2( , , , )V T T T T

g g kgZ Z Z  and 1/2

1 2( )k T

ig i gZ W e  



   . The s -th element of 

igZ  is 

1/2

1 2 1 , 1 ,( ) ( ) { ( ) } ( )k n p n p

ig s i g s p g s p iZ W e W u        

  

          , 

where 
1/2

1 2( )k

vi T vT iTu e 

   . Therefore, under 0  

1

0 ,
( , ) .iq j i j

q

if i j
Cov u u F otherwise 


  
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Here, 1q  , if ; 0q   , otherwise. After algebra, ( ) ( )T T

ig jh ij g hE Z Z E W W . Since 

. .
1 1

a s
T

g h g h g hn
n W W 


    , thus 1 1

, ,( ) ( ).T

i g i h ij g h g hn
n E Z Z  


     Finally, we have 

1 1( , ) ( )g h k g h g hn
n Cov Z Z I 


      . 

Appendix D 

Derivation of the approximate tailed distribution (4), under hypothesis 
0 .  

Let 
1/2( )r k rI    and 

1/2 1/2

r r

      , then covariance between 
r , is ( , ) (g h k g hCov I      

)g h  . Moreover, since 
r  is symmetric, by using Basilevsky’s result

[2]
, there exists an orthogonal mat- 

rix 
rQ , such that 

T

r r r rQ Q D  , where 1 1( ( ), , ( ))r pkD diag r r    and 1 2 1( ) ( ) ( )pkr r r      , for 

each r . Then after algebra, 

     
1

( ) ( ) ( )
T T

r k r r k r r r r r k r rI Q I Q Q I Q  


        

     
1

( ) ( ) ( )
T

k r r k r r r k r rI Q I D D D I Q 


    
  

( ) 21
( )

2
1 1

( )
,

( ) ( )

i

jpkk
r

j i i ir r



 



 





  

where 
1 1 1 1 1 1

(1) (1) (2) (2) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( , , , , , , , , , )
pk pk pk

k k T

k r r r r r r r rI Q      
  

        . 

For a fixed j , ( )

( ) ( ){ }
i i

j

r r   is a Gaussian process with mean zero and  

( ) ( )

( ) ( )( , ) 0,
u v

e f

g hCov    
 

for e f or u  . Let  1, 2, ,, , ,
T

T T T

g g g k g    , then 
1 1

( ) ( )

, ( ) ( )( , , )
pk

j j T

g j g g gQ  


   . Since ( , )g hCov    

 k g h g hI      , therefore,    , ,,i g i h g h g hCov       ,  , ,, ( )g i g h i h g g h g hCov Q Q Q       

T

hQ  , and 

( ) ( )

( ) ( ) , ,( , ) { ( ) ( ) ( )}
i i

j j T

g h i i i i g i hCov g h g h Q Q        
, 

where ,

T

i gQ  is the i -th row of the matrix gQ .  

Since , , , , , , , ,

T

i g i h i g i h i g h i g hQ Q Q Q Cos Cos   , where , ,i g h  is an angle between the two vectors ,i gQ  and 

,i hQ , by a first order Taylor expansion of , ,i g h  at , , 0i g h  , then , , 1T

i g i hQ Q  . The monotone property of 

( )i r  in i  will make the true , ,i g h  more close to 0. Therefore, in the following discussion, we treat               

( ) ( )

( ) ( )( , ) ( ) ( ) ( ).
i i

j j

g h i i iCov g h g h        
 

Define  ( ) 0.5ln ( )i it r r ,  ( ) ( ) 1 ( )i i ir r r    , and  ( ) ( )

( ) ( ) 1 ( )
i i

j j

r r iX r     , then 

 ( ) exp 2 ( )i ir t r  ,  ( ) ( ) 1 ( )i i ir r r    , and  ( )

( )i

j

rX  is a Gaussian process, such that 

 ( ) ( )

( ) ( ), ( )
i i

j j

r s iCov X X r s    . That is  ( )

( )
( )i

i

j

r
r

X


 is a Brownian motion. 
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Define  

   
( )

( ) ( )

, exp 2 ( )2
( ( )) exp ( )

( ) ( )

i

i

j

r j

j i i it r

i i

U t r X t r
r r



 


   


,  

then by results of Karatzas
[6]

, , ( ){ ( ( ))}
ij i i t rU t r  becomes an independent Ornstein-Uhlenbeck process with 

covariance, 
,[ ( ( )),j i iCov U t r s   , ( ( ))] exp ( ) ( ) .j i i i iU t s t r s t s    By using Aldous’s result

[1]
, , ( ( ))j i iU t r  

satisfies the following stochastic differential equation 

, , ,( ( )) ( ( )) ( ) 2 ( ( ))j i i j i i i j i idU t r U t r dt r dW t r   , 

where  , ( )
( ( ))

i
j i i t r

W t r  is the Brownian motion. After algebra, it turns out that 

1
2

,

1 1

( ( ))
pkk

r j i i

j i

U t r


 

 , 

and by using Ito’s lemma 

1 1
2 2

, , ,

1 1 1 1

2 [ ( ( ) 1] ( ) 2 2 ( ( )) ( ( ))
pk pkk k

r j i i i j i i j i i

j i j i

d U t r dt r U t r dW t r
 

   

     . 

If ( , )r b c , then by using the properties of the mosaic process
[1]

, the following approximation can be 

obtained: 

Pr(sup ) exp ( )

c

r
b r c

b

y r dr 
 

 
   

 
 . 

Here the clump rate ( )r  is defined as 

1
2

,

1 1

( )
( ) max 0,2 [ ( ( )) 1] | ( )

r

pkk
i

j i i r

j i

dt r
r E U t r y f y

dr
 



 

   
     

   
  

              
1

2 2

, ( 1)

1 1

( )
max 0,2 ( ( ( )) 1) | ( )

pk k
i

j i i r k pk

i j

dt r
E U t r y y

dr
 





 

 
     

 
 . 

By the independently and identically distributed property of  , ( ( ))j i iU t r , ( )r  is simplified as 

1
2

( 1)

1 1

( )
( ) max 0,2 1 ( )

( 1)

pk k
i

k pk

i j

dt r y
r y

dr k pk
 





 

   
   

   

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Therefore, when y is large enough, ( )r  is approximated by 
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