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On the Construction of Normal Subgroups 

ZENG Li-Jiang1,* 

Abstract:  Introduced extension of a group and other concepts, several of lemmas and theorems 
on the construction of normal subgroups were proved to use the theory of group characters, and 
then shows that the construction of normal subgroups of a finite group G. 
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The construction of normal subgroups of a finite group G is one of important problems in group theory. A 
theorem in the article enables us, under certain conditions, to show the existence of a normal subgroup with 
preassigned factor group. In this article we shall give theorems on the construction of normal subgroups, the 
proofs of which will use the theory of group characters. 

Let us make preparation for our proof as the following: 

Lemma 1  Let H�G, and set i=[G:H], j=[H:1]. If i and j are relatively prime, show that H is the only 
subgroup of G of order j.  

Proof. Let S be a subgroup of G of order j. Then HS/H is a subgroup of G/H whose order divides i. Also 
HS/H≌S/(S∩H) implies that the order of HS/H divides j. Therefore HS=H. The lemma is proved. 

Definition 1  A group U is called an extension of a group G by a group H if there exists a homomorphism φ 
of U onto G with kernel H. the extension is called a split extension if there exists a homomorphism ψ of G 
into U such that φψ=1. 

The example of the generalized quaternion groups shows that even when G and H are commutative, not 
every extension of G by H need be a split extension. However, there is one important case in which we 
know that an extension must split. We state without proof. 

Lemma 2 (Schur)  Let H�G, i=[G: H], j=[H: 1], and assume that i and j are relatively prime. Then G 
contains a subgroup S of order i , and G is a semi-direct product of S and H. 

For the proof the reader may consult Reference [1], [2], or [3]. 

Definition 2 Let the KG-module M afford a matrix representation T, and set µ(x)=tr(T(x)), x∈KG. The map 
µ: KG→K given by x→µ(x) is called the character of M (or of T), and we say that M (or T) affords the 
character µ. Obviously µ(1)=(M: K). where l is the unity element of KG. Furthermore we have 

(1) µ(x+y)=µ(x)+ µ(y), µ(α x)=α µ(x),    x, y∈KG, α ∈K. 
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By a group character we mean the restriction of µ to G. A character µ is completely determined by its 
restriction to G, as is evident from (1). We shall use repeatedly 

(2)  Each group character µ is a class function on G; that is for g∈G the value µ(g) depends only upon 
the conjugate class to which g belongs. 

(3) Let 

M=Mk⊃ Mk-1⊃…⊃ M1⊃ M0=(0), 

be a chain of KG-modules, and let µi be the character afforded by the factor module Mi/Mi-1, 1≦i≦k. Then 
we claim that M affords the character µ1+…+µk. For we may adapt a K-basis of M to the above chain of 
submodules. The matrix representation afforded by M takes the form 

1
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( ) * *
0 ( ) *

( )

0 0 ( )k

T x
T x

x T x

T x

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎝ ⎠

"
"

# # % #
"

, 

where Ti is the representation afforded by Mi/Mi-1, 1≤i≤k. Therefore, 

trT(x)=µ1(x)+…+µk(x),  x∈KG. 

As a consequence of Schur’s Lemma 2 above, we obtain the fundamental result: 

Lemma 3  The functions (1) ( ), , sζ ζ" are linearly independent over K under either of the following 
hypotheses: 

(i)K is a splitting field for G, 

(ii) char K=0. 
The proof of Lemma 3 can be found in Reference [4]. 

Let G be a finite group whose irreducible characters in the complex field K are 
(1) ( ), , sζ ζ"  ,where (1)ζ  is the l-character. By a class function on G is meant a map ψ: G→K such that ψ(g) 

depends only upon the conjugate class of g. Since there are s classes, the set of all class functions on G 
forms an s-dimensional vector space over K. By (2) and Lemma 3, (1) ( ), , sζ ζ"  are class functions which 
are linearly independent over K, and thus constitute a K-basis for this vector space. 

For and subset S of G, let G-S denote the set of elements in G which are not in S. Further define 

1 , .st s ts t s G−= ∈                

We may now state theorem 1 of this article. 
Theorem 1   Let H be a subgroup of G such that 

(4) H∩Ht=1    for all t∈G-H. 

Set 

(5) G*=G- ( 1)s

s G

H
∈

−∪ , 

Then G*�G, and we have 

(6) H∩G*=1, HG*=G,  G/G*≌H. 

Remark 1 The first two relations in (6) obviously imply the third. The formulas (6) assert that G is the 
semi-direct product [5] of G* and H. 
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 We shall prove here the following generalization. 

Theorem 2  Let H*�H⊂G be groups such that  

(7) H∩Ht⊂H*        for all  t∈G-H. 

Then there is a unique solution G* of the equations  
(8) G*�G,   H∩G*=H*,   HG*=G. 

Indeed G* coincides with the subset of G given by  

(9) *( )g

g G

S G H H
∈

= − −∪ . 

We begin the proof with a pair of lemmas. Throughout this article, “character” will mean “character of 
a representation [6] by matrices over K”. 

Lemma 4  Let H*�H⊂C be groups such that (8) holds for some G*. Then we have 

(i)  G/G*≌H/H*. 

(ii) Every character of H which is constant on H* can be extended to a character of G constant on G*. 

(iii) If F is a group such that H⊂F⊂G, then there exists a subgroup F*� F such that H∩F*=H*,  
HF*=F. 

Proof.  The homomorphism theorems [7] easily imply (i). Now let T be a representation of H (by matrices 
over K) with character τ , and let τ (h)=τ (1)for h∈H*. Then T(h)=T(1) for all h∈H*, by (3). Extend T to 
a representation of G by setting  

T(g)=T(h),   g∈G, h∈H, 

Where gG* and hH* correspond to each other in the isomorphism (i). Then the character of T on G is the 
desired extension of τ . Finally we set F*=G*∩F and easily verify (iii). 

A partial converse of the first lemma is the following: 

Lemma 5  Let H*�H⊂G be groups, and S any subset of G containing 1. suppose that every irreducible 
character ψ of H which is constant on H* can be extended to a character of G constant on S [8]. Then there 
exists a subgroup G*�G such that 

G* ,S⊃  * *H G H=∩ . 

Remark 2 However, HG*=G need not hold, as may be seen from the example [9] where G is cyclic of order 
p2 (p a prime), H is its subgroup of order p, and H*=S=(1). 

Proof The irreducible characters [10] ψ of H which are constant on H* are in one-to-one correspondence 

with the irreducible characters 
~
ψ  of H/H*, according to the rule 

Ψ(h)= 
~
ψ ( hH*),     h∈H. 

The character 
~
χ  of the regular representation [11] of H/H* can be expressed as a sum of irreducible 

characters 
~

iψ , say 

~
χ =a1

~

1ψ +…+ar
~

rψ ,  

Then 
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1 1 r ra aχ ψ ψ= + +" , 

is a character of a representation of H which is constant on H* by (3). By the hypothesis, each iψ  can be 
extended to a character 'iψ  of G which is constant on S∪H*. Let T be the representation of G whose 
character is 1 1 ' 'r ra aψ ψ+ +" . Then T is constant on S∪H* by (3), and for h∈H, T(h)=I implies h∈H*, 

since 
~
χ  is the character of a faithful representation of H/H*. Now define G*={ g∈G | T(g)=I }.Then 

G*�G, H∩G*=H*, and S⊂G*. This proves the lemma. 

Now let us start the proof of theorem 2. We are given groups H*�H⊂G for which (7) holds. The 
theorem is trivially true for the case H*=H since then G* must be G. For the remainder of the proof, we may 
assume that H* is a proper subgroup of H. We show first the uniqueness of the solution G*, if there is a 
solution. For suppose G* satisfies (8); then on the one hand H∩G*=H* implies that (H-H*)∩G* is empty, 
whence also 

(H-H*)g ∩ G*, 

is empty for each g∈G, and so G*⊂ S. On the other hand, we note that from (7) we may deduce that 

(H-H*)x,  (H-H*)y, 

either are disjoint or coincide, according to whether or not y∈Hx. Hence the number of elements in S is 

[G: 1]-[G: H]([H: 1]-[H*: 1]); that is, S contains [G: H][H*: 1] elements. But G/G*≌H/H* shows that 

[G: H][H*: 1]=[G*: 1], so S contains[G*:1]elements, and thus G*=S. 

Second, we turn to the more difficult “existence” part of the theorem, and shall show that every 
irreducible character ψ  of H constant on H* may be extended to a character of G constant on S. The result 
is clear when ψ  is the l-character ψ (1), so we exclude this case hereafter. Let χ  be a (complex-valued) 
class function on G which extends ψ  and which is constant on S. Then necessarily, 

1 *

(1), ,
( )

( ), ( ) .x x

g S
g

g g H H

ψ
χ

ψ
−

∈⎧⎪= ⎨
∈ −⎪⎩  

Conversely the above serves to define a class function on G which is constant on S and extends ψ . We 
wish to show that χ  is indeed a character of G, and to do this we shall make use of the orthogonality 
relations. Set 

,tω χ= −              t= (1) (1),t χ ψ= =   

so that ω is also a class function, and is given by 

1 *

0, ,
( )

( ) , ( ) .x x

g S
g

g t g H H
ω

ψ
−

∈⎧⎪= ⎨
− ∈ −⎪⎩

 

Now we may write ω as a K-linear combination of the irreducible characters ζ (1), …, ζ  (s) of G, say 

ω=a1ζ  (1)+…+asζ  (s),    ai ∈ K. 

The orthogonality relations yield 

1 ( )[ :1] ( ) ( )i
i

g G
a G g gω ζ−

∈

= ∑ . 
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Since ω vanishes on S and is class function, we have 

1 ( )[ :1] ( ) ( )i
i

g G S
a G g gω ζ−

∈ −

= ∑
 

*

1 ( )

( )
mod

[ :1] ( ) ( )
x

i

x G g H H
x H

G g gω ζ−

∈ ∈ −

= ∑ ∑  

*

1 ( )[ :1] [ : ] ( ) ( )i

g H H

G G H g gω ζ−

∈ −

= ∑ , 

so that 

1 ( )[ :1] ( ) ( )i
i

g H
a H g gω ζ−

∈

= ∑            1≤i≤.s. 

In particular 

1
1 [ :1] ( ( ) )

g H
a H g t tψ−

∈

= − = −∑ , 

since ψ  is not the l-character of H. 

From the orthogonality relations on H and the fact that ω|H and ( )iζ |H are Z-linear combinations of 
characters of H, it follows that all the coefficients ai∈Z. Further, from ω ( )i

ia ζ= ∑ , we have  

2 22 1 1 2

1

[ :1] | ( ) | [ :1] | ( ) | 1
s

i
i g G h H

a G g H h tω ω− −

= ∈ ∈

= = = +∑ ∑ ∑ , 

the second equality holding because ω vanishes outside H, and the last equality following from the fact that 

ω|H= (1)tψ ψ− i . 

However, we know that a1=-t and that 2
ia∑ =t2+1, and so, for i＞l, all but one ai=0, and that exceptional ai 

is ±1. Hence 

ω=±ζ -tζ (1), 

where ζ  is an irreducible character of G, ζ ≠ζ  (1) and so χ =±ζ . Since χ (1)=t＞0, we conclude that 
χ =ζ  and we have shown that χ  is a character of G. 

The above discussion has shown that every irreducible character of H which is constant on H* may be 
extended to a character of G constant on Lemma 5, it follows that there exists a subgroup G*�G such that 

G*⊃ S,     H∩ G*= H* . 

To complete the proof, we need show only that HG*=G. But 

*
*

* *

[ :1][ :1] [ :1][ :1][ :1]
[ :1] [ :1]

H G H SHG
H H

= ≥  

                  
*

*

[ :1][ : ][ :1] [ :1]
[ :1]

H G H H G
H

= = , 

where [S: 1]=number of elements in S. Thus HG*=G. and theorem 2 is proved. 
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It is easy to prove the deduction of the following formulation of the theorem above in terms of 
permutation groups (The detail of proof can be found in Reference [5]): 

Corollary, let G be a transitive permutation group on the symbols x1,…,xn. and let 

H={g∈G | gx1=x1}, 

and 

V={g∈H | gxi=xi for at least one i＞1}, 

and suppose that V generates the subgroup H* of H. Then G contains exactly one transitive normal subgroup 
G* such that G*∩H=H*. 

Let us observe now that if H≠NG(H), the normalizer of H in G, we may choose t∈NG(H) such that t ∈ 
G-H. For this t, we have 

H∩Ht=H, 
and so (7) can only hold when H*=H. Thus the only time the theorem 2 can be used is when H coincides 
with its own normalizer. We shall generalize Theorem 2 still further so as to be able to obtain non-trivial 
results even when H≠NG(H). 

Theorem 3  Let H*�H⊂G be groups, and set F=NG(H). Assume that 

([F: H], [H: H*])=1, 

and that 

H∩Ht⊂H*      for all t ∈ G-F. 

Then there is at most one solution G* of 

(10) G*�G,  H∩G*=H*, HG*=G. 
Such a solution exists if and only if there is a solution F * of 

(11) H*⊂F*� F,   [F: F*]=[H: H*]. 

This latter set of equations has at most one solution. From a solution F* of (11) one obtains a solution G* 
of (10) by setting 

(12) G*=G- *( )x

x G

F F
∈

−∪ , 

Proof.  If F* satisfies (11), then [F: HF*] divides both[F: F*] and[F: H]; hence[F: HF*]=1. But then, [H: 
H∩F*]=[HF*: F*]=[F: F*]=[H: H*]. 

And since H*⊂H∩F*, we conclude that 

H ∩ F*=H*, 
and therefore H*� F. In that case we may form the factor group F/H*, and notice that F*/H* is a normal 
subgroup of F/H*, whose index [F:F*](=[H: H*]) and order [F*: H*](=[F: H])are relatively prime. It then 
follows (see Lemma 1)that the subgroup F*/H* is uniquely determined in F/H*, and so there is at most one 
F* satisfying (11). 

Suppose now that F* is a solution of (11), and let us show that 

F∩Ft⊂F*    for all t∈G-F, 

For let t∈G-F , x∈ F∩Ft, and set 
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i=[F: H], j=[H: H*]=[F: F*]. 

Since x∈F we have xi∈H; likewise xi∈Ht, and so xi∈H∩Ht⊂  H*⊂F*. On the other hand xj∈F*. 
Thus also x∈ F*, since [F: H] and [H: H*] are relatively prime. 

We may therefore apply Theorem 2 to deduce the existence of a subgroup G* of G satisfying 

G*�G,  F∩G*=F*, FG*=G, 
and G* is given by (12). We find readily that G* satisfies (10). 

Finally we must show that there is at most one solution G* of (10). For let G* be any such solution and 
set F*=F∩G*. We have  H*⊂H⊂F,   H*⊂G*, 

So 

H*⊂F∩G*=F*, 

Certainly, H*� F*. Finally, 

G=HG*⊂FG*⊂G, 

so that FG*=G, and we have [F: F*]=[G: G*]=[H: H*]. Thus F* is the unique solution of (11), and so G* 
must be given by (12). This completes the proof.   

As an application of this result, let us consider the problem of determining the number of solutions of 
xn=1,   x∈G, where n is some fixed divisor of [G: 1]. 

Theorem 4  Let H*�H ,G be groups such that 

H∩Hg⊂H*  for all g∈G-NG(H). 

Set [H: H*]=j, [G: 1]=mj, and assume that (m, j)=1.  If the equation 

xm=1,    x∈G, 

has precisely m solutions, these solutions form a characteristic subgroup G* of G, and we have 

H∩G*=H*,  HG*=G. 

Proof. Set F=NG(H), i=[F: H], s=[H*: 1],and let M={x∈G | xm=1}, M0={x∈F | xm=1}. We note that H*�H 
and s|m , so that H* is a normal subgroup of H whose index j is relatively prime to its order s. By Lemma 1, 
it follows that H* is the only subgroup of H of order s, and consequently H*� F. there fore we may form 
F/H*, and we observe that 

H/H*� F/H*. 
Now H/H* has order j, and index i (in F/H*) which is relatively prime to j. by Lemma 2, we may 

conclude that F/H* contains a subgroup F*/H* of order i , where F* is some subgroup of F. We have 

H*⊂F*⊂F, [F*: H*]=i=[F: H], [F: F*]=[H: H*]=j. 
In order to apply Theorem 3, we must verify that F*� F, and this we do by proving that F*=M0. Since 

F* has order i·s which divides m, it is clear that F*⊂M0. We are now going to show that M0 contains i·s 
elements, and we already know (since F*⊂M0) that M0 contains at least i·s elements. Note that F contains 
ijs elements, so that the number of elements in F-M0 is at most ijs-is. 

Suppose next that y∈G-M; the order of y cannot divide m, and so there exists a prime p such that p|j and 
p| order of y. Hence some power of y, call it u, has order p, and u=uy. Now u lies in some p-Sylow subgroup 
P0 of G; since p†[G: H], we see that any p-Sylow subgroup P of H is also a p-Sylow group of G, and so we 
may write P0=Pt for some t∈G. Then uy∈Pty, and hence 
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u∈Pt∩pty=
1

( )tyt tP P
−

∩ , 

If tyt-1∈G-F, then 

1 1 *tyt tytP P H H H
− −

⊂ ⊂∩ ∩ , 

which is impossible because the order of H* is relatively prime to p, whereas u has order p. This shows that 
tyt-1∈F; that is , y lies in some conjugate of F. Consequently 

G-M= 0( )t

t G

F M
∈

−∪ . 

The number of distinct conjugates of F is at most [G: F], and the number of elements in F-M0 is at most 
ijs-is, so the number of elements in G-M is at most 

[G: F](ifs-is)=[G:1]-m 

Since G-M contains exactly [G: 1]-m elements by hypothesis, this shows that F-M0 contains exactly 
ijs-is elements, and so M0 contains i·s elements. Therefore F*=M0 as stated above, which implies that 
F*� F 

Now we use Theorem 3 to deduce the existence of a normal subgroup G* in G such that 

H∩G*=H*, HG*=G, 
Then we find at once that 

[G*: 1] *

[ : 1]
[ : ]

G
H H

= =m. 

So, every element of G* satisfies xm=1. The hypothesis implies that G* coincides with {x∈G| xm=1},and the 
theorem is proved. 
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