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1-Soliton Solution of the Coupled Nonlinear
Klein-Gordon Equations
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Abstract: This paper studies the coupled Klein-Gordon equations in (1+1) and (1+2) dimen-
sions. The cubic law of nonlinearity and arbitrary power lawnonlinearity are considered in this
paper. The 1-soliton solution of the coupled system, for both cases, is obtained. The solitary wave
ansatz is used to carry out the integration.
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1. INTRODUCTION

The nonlinear Klein-Gordon equation (NKGE) is an importantequation in the area of nonlinear evolution
equations (NLEE) [1-10]. NKGE arises in theoretical physics, particularly in the area of relativistic quantum
mechanics. There has been various methods that has been applied to carry out the integration of this
equation. They are variational iteration method, exponential function method, Adomian decomposition
method,G′/G method of integration, semi-inverse variational principle. In this paper, the focus is going
to be on the integration of 2-coupled NKGE with cubic nonlinearity. The solitary wave ansatz method
will be used to carry out the integration. Finally, the results will be extended to the case of 2-coupled
NKGE with arbitrary power law nonlinearity. In both cases, the results will be studied in (1+1) and (1+2)
dimensions [3].

2. CUBIC NONLINEARITY
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In this section, the coupled NKGE will be studied with cubic law of nonlinearity. The study will be split
into the following two subsections which are on (1+1) and (1+2) dimensions respectively.

2.1 (1+1) Dimensions

The dimensionless form of the 2-coupled NKGE in (1+1)-dimensions with cubic nonlinearity is given by [3]

qtt − k2qxx + a1q + b1q3 + c1qr2 = 0, (1)

rtt − k2rxx + a2r + b2r3 + c2q2r = 0, (2)

where in (1) and (2), the dependent variablesq andr are the wave fields whilex andt are the independent
variables that respectively represent the spatial and temporal variables. This coupled equation was already
studied in 2005 where doubly periodic solutions were obtained [3]. In this paper, the search is going to be
for the non-topological 1-soliton solution to (1) and (2). Thus, the solitary wave ansatze are taken to be [6]

q(x, t) =
A1

coshp1 τ
, (3)

and

r(x, t) =
A2

coshp2 τ
, (4)

where

τ = B(x − vt), (5)

and in (3) and (4),A1 andA2 represent the soliton amplitudes whileB is the inverse width of the soliton and
v is the soliton velocity. The unknown exponentsp1 andp2 that are to be determined that will be discovered
by the balancing method during the soliton solution derivation process. Thus, from (3) and (4)

qtt =
p2

1v2A1B2

coshp1 τ
−

p1(p1 + 1)v2A1B2

coshp1+2
τ

, (6)

qxx =
p2

1A1B2

coshp1 τ
−

p1(p1 + 1)A1B2

coshp1+2
τ
, (7)

and

rtt =
p2

2v2A2B2

coshp2 τ
−

p2(p2 + 1)v2A2B2

coshp2+2
τ

, (8)

rxx =
p2

2A2B2

coshp2 τ
−

p1(2+ 1)A2B2

coshp2+2
τ
. (9)

Substituting (6)-(9) into (1) and (2) respectively gives

p2
1

(

v2 − k2
)

A1B2

coshp1 τ
−

p1(p1 + 1)
(

v2 − k2
)

A1B2

coshp1+2 τ

+
a1A1

coshp1 τ
+

b1A3
1

cosh3p1 τ
+

c1A1A2
2

coshp1+2p2 τ
= 0, (10)
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and

p2
2

(

v2 − k2
)

A2B2

coshp2 τ
−

p2(p2 + 1)
(

v2 − k2
)

A2B2

coshp2+2 τ

+
a2A2

coshp2 τ
+

b2A3
2

cosh3p2 τ
+

c2A2
1A2

cosh2p1+p2 τ
= 0. (11)

From (10) equating the exponents 3p1 andp1 + 2, by the aid of balancing principle, gives [7, 8]

3p1 = p1 + 2, (12)

which yields

p1 = 1, (13)

and similarly, from (11), equating the exponents 3p2 andp2 + 2 also yields

p2 = 1. (14)

Now, from (10), the linearly independent functions are 1/ coshp1+ j τ for j = 1, 2 and hence setting their
respective coefficients to zero yields

B =

√

−a1

v2 − k2
, (15)

and

b1A2
1 + c1A2

2 + 2a1 = 0. (16)

Similarly from (11), the linearly independent functions are 1/ coshp2+ j τ for j = 1, 2 and hence setting their
respective coefficients to zero yields [6]

B =

√

−a2

v2 − k2
, (17)

and

c2A2
1 + b2A2

2 + 2a1 = 0. (18)

From (15) and (18) equating the two values of the soliton width B gives

a1 = a2, (19)

and finally solving the coupled system of equations with the soliton amplitudes yield

A1 =

√

2a1 (c1 − b2)
b1b2 − c1c2

, (20)

and

A2 =

√

2a1 (b1 − c2)
c1c2 − b1b2

. (21)

Hence, the 1-soliton solution to (1) and (2) are respectively given by

q(x, t) =
A1

cosh[B(x − vt)]
, (22)

and

r(x, t) =
A2

cosh[B(x − vt)]
, (23)

where the amplitudesA1 andA2 are respectively given by (20) and (21), while the soliton width B is given
by (15) or (17). These introduce the solvability condition given by (19).
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2.2 (1+2) Dimensions

The (1+2) dimensional extension of the NKGE with cubic law of nonlinearity is given by

qtt − k2
(

qxx + qyy

)

+ a1q + b1q3 + c1qr2 = 0, (24)

rtt − k2
(

rxx + ryy

)

+ a2r + b2r3 + c2q2r = 0, (25)

where in (24) and (25), the dependent variablesq andr are the wave fields. The independent variablesx
andy are both spatial variables, in this case andt stays as the temporal variables. The solitary wave ansatze
are same as given by (3) and (4) respectively withτ in this case being given by

τ = B1x + B2y − vt. (26)

Here, in (26),B1 andB2 are the inverse widths of the two solitons in thex andy directions respectively
and againv is the soliton velocity. The unknown exponentsp1 andp2 will again be computed later. Thus,
from (3) and (26)

qtt =
p2

1v2A1

coshp1 τ
−

p1(p1 + 1)v2A1

coshp1+2 τ
, (27)

qxx =
p2

1A1B2
1

coshp1 τ
−

p1(p1 + 1)A1B2
1

coshp1+2 τ
, (28)

qyy =
p2

1A1B2
2

coshp1 τ
−

p1(p1 + 1)A1B2
2

coshp1+2 τ
, (29)

and

rtt =
p2

2v2A2

coshp2 τ
−

p2(p2 + 1)v2A2

coshp2+2 τ
, (30)

rxx =
p2

2A2B2
2

coshp2 τ
−

p1(2+ 1)A2B2
2

coshp2+2
τ
, (31)

ryy =
p2

2A2B2
2

coshp2 τ
−

p1(2+ 1)A2B2
2

coshp2+2 τ
. (32)

Substituting (27)-(32) into (24) and (25) respectively yields

p2
1

(

v2 − k2B2
1 − k2B2

2

)

A1

coshp1 τ
−

p1(p1 + 1)
(

v2 − k2B2
1 − k2B2

2

)

A1B2

coshp1+2 τ

+
a1A1

coshp1 τ
+

b1A3
1

cosh3p1 τ
+

c1A1A2
2

coshp1+2p2 τ
= 0, (33)

and

p2
2

(

v2 − k2B2
1 − k2b2

2

)

A2

coshp1 τ
−

p2(p2 + 1)
(

v2 − k2B2
1 − k2B2

2

)

A2

coshp2+2 τ
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+
a2A2

coshp2 τ
+

b2A3
2

cosh3p2 τ
+

c2A2
1A2

cosh2p1+p2 τ
= 0. (34)

Similarly from (33) and (34), as before the same values ofp1 andp2 are obtained as in the previous case.
Identifying the linearly independent functions in (33) and(34) yields the relations [7, 8]

B2
1 + B2

2 =
v2 + a1

k2
, (35)

B2
1 + B2

2 =
v2 + a2

k2
, (36)

along with the same coupled equations for the amplitudes that are given by (16) and (18). Therefore the
amplitudesA1 andA2 are the same as in (20) and (21) and from (35) and (36), the sameconstraint condition
as in (19) is obtained. Hence, finally, the 1-soliton solution to (24) and (25) is given by

q(x, y, t) =
A1

cosh(B1x + B2y − vt)
, (37)

and

r(x, y, t) =
A2

cosh(B1x + B2y − vt)
, (38)

where the amplitudesA1 andA2 are respectively given by (20) and (21), while the soliton widthsB1 andB2

are given by (35) or (36). These solutions introduce the solvability condition given by (19).

3. POWER LAW NONLINEARITY

In this section, the coupled NKGE will be studied with power law of nonlinearity. The study will be split
into the following two subsections which are on (1+1) and (1+2) dimensions respectively.

3.1 (1+1) Dimensions

The dimensionless form of the 2-coupled NKGE in (1+1)-dimensions with cubic nonlinearity is given by [9]

qtt − k2qxx + a1q + b1qm+n + c1qmrn = 0, (39)

rtt − k2rxx + a2r + b2rm+n + c2qnrm = 0, (40)

where in (39) and (40), the exponentsm andn are positive numbers. The starting hypothesis is going to be
the same as (3) and (4). In this case (10) and (11) respectively reduce to

p2
1

(

v2 − k2
)

A1B2

coshp1 τ
−

p1(p1 + 1)
(

v2 − k2
)

A1B2

coshp1+2
τ

+
a1A1

coshp1 τ
+

b1Am+n
1

cosh(m+n)p1 τ
+

c1Am
1 An

2

coshmp1+np2 τ
= 0, (41)

and

p2
2

(

v2 − k2
)

A2B2

coshp2 τ
−

p2(p2 + 1)
(

v2 − k2
)

A2B2

coshp2+2 τ

34



Ryan Sassaman, Matthew Edwards, Fayequa Majid, & Anjan Biswas/Studies in Mathematical Sciences
Vol.1 No.1, 2010

+
a2A2

coshp2 τ
+

b2Am+n
2

cosh(m+n)p2 τ
+

c2An
1Am

2

coshnp1+mp2 τ
= 0. (42)

From (41) equating the exponents (m + n)p1 andp1 + 2 gives [7, 8]

(m + n)p1 = p1 + 2, (43)

which gives

p1 =
2

m + n − 1
, (44)

and similarly, from (42), equating the exponents (m+ n)p2 andp2 + 2 that yields the same value ofp2 as in
p1 seen in (44).

Now, from (42), the linearly independent functions are 1/ coshp1+ j τ for j = 1, 2 and hence setting their
respective coefficients to zero yields

B =
m + n − 1

2

√

−a1

v2 − k2
, (45)

and

2b1Am+n−1
1 + 2c1Am−1

1 An
2 + (m + n − 1)a1 = 0. (46)

Similarly from (42), the linearly independent functions are 1/ coshp2+ j
τ for j = 1, 2 and hence setting their

respective coefficients to zero yields

B =
m + n − 1

2

√

−a2

v2 − k2
, (47)

and

2c2An
1Am−1

2 + 2b2Am+n−1
2 + (m + n − 1)a1 = 0. (48)

From (45) and (47), equating the two values of the soliton width B gives the same constraint condition as
(19). The amplitudes of the soliton are obtained by solving the coupled system given by (46) and (48).
Hence, the 1-soliton solutions to (39) and (40) are given by

q(x, t) =
A1

cosh
2

m+n−1 [B(x − vt)]
, (49)

and

r(x, t) =
A2

cosh
2

m+n−1 [B(x − vt)]
, (50)

where the amplitudesA1 and A2 are respectively given by the coupled system (46) and (48), while the
soliton widthB is given by (45) or (47). These lead to the solvability condition given by (19).

3.2 (1+2) Dimensions

The (1+2) dimensional extension of the NKGE with cubic law of nonlinearity is given by

qtt − k2
(

qxx + qyy

)

+ a1q + b1qm+n + c1qmrn = 0, (51)
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rtt − k2
(

rxx + ryy

)

+ a2r + b2rm+n + c2rmqn = 0, (52)

where in (51) and (52), the dependent variablesq andr are the wave fields whilex, y andt are the indepen-
dent variables that respectively represent the spatial andtemporal variables. In order to solve (51) and (52)
for soliton solution the starting hypothesis is the same as (3) and (4) withτ being given by (26). Substituting
(27)-(32) into (51) and (52) respectively yields

p2
1

(

v2 − k2B2
1 − k2B2

2

)

A1

coshp1 τ
−

p1(p1 + 1)
(

v2 − k2B2
1 − k2B2

2

)

A1B2

coshp1+2 τ

+
a1A1

coshp1 τ
+

b1Am+n
1

cosh(m+n)p1 τ
+

c1Am
1 An

2

coshmp1+np2 τ
= 0, (53)

and

p2
2

(

v2 − k2B2
1 − k2b2

2

)

A2

coshp1 τ
−

p2(p2 + 1)
(

v2 − k2B2
1 − k2B2

2

)

A2

coshp2+2 τ

+
a2A2

coshp2 τ
+

b2Am+n
2

cosh(m+n)p2 τ
+

c2An
1Am

2

coshnp1+mp2 τ
= 0. (54)

Equations (53) and (54) yields as before the same values ofp1 and p2 as in (44). Identifying the linearly
independent functions in (53) and (54) yields the relations

B2
1 + B2

2 =
4v2 + a1(m + n − 1)2

4k2
, (55)

B2
1 + B2

2 =
4v2 + a2(m + n − 1)2

4k2
, (56)

along with the same coupled equations for the amplitudes that are given by (46) and (48) and the same
constraint condition as in (19) is obtained. Hence, finally,the 1-soliton solution to (51) and (52) is given by

q(x, y, t) =
A1

cosh
2

m+n−1 (B1x + B2y − vt)
, (57)

and

r(x, y, t) =
A2

cosh
2

m+n−1 (B1x + B2y − vt)
, (58)

where the amplitudesA1 and A2 are respectively given by the coupled system (46) and (48), while the
soliton widthB is given by (55) or (56). These give the solvability condition given by (19). Additionally,
the solitons (57) and (68) introduce the constraint on the exponentsm andn that is given by

m + n > 1, (59)

which must hold for the solitons to exist.
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