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Abstract: Many engineering problems and physical systems of fifth degrees of freedom are governed by
the fifth order nonlinear differential equations which are over-damped. In this article a fifth order nonlinear
differential equation modeling an over-damped symmetrical system is considered. A perturbation technique
based on the KBM method and the work of Akbar et al. is developed for obtaining the transient response
when the eigenvalues are in integral multiple. The results obtained by the presented technique agree with
those results obtained by the numerical method nicely. An example is solved to illustrated method.
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INTRODUCTION

The asymptotic method of Krylov-Bogoliubov—Mitropolskii (KBM)!®8! is particularly convenient, and one
of the widely-used tools to obtain solutions of nonlinear systems with small nonlinearities. The method orig-
inally developed by Krylov and Bogoliubov!®!, for systems with periodic solutions with small nonlinearities,
was later amplified and justified by Bogoliubov and Mitropolskiil®. Popov!!3! extended the method to non-
linear systems affected by strong linear damping forces. Owing to physical importance Popov’s results were
rediscovered by Mendelson®!. Later, Murty and Deekshatulul'! extended the method to over—damped non-
linear systems. Sattar!'®! has studied second order critically-damped nonlinear systems by making use of the
KBM method. Murty!"3Ipresented a unified KBM method for second order nonlinear systems which covers
the undamped, the over-damped and the damped oscillatory cases. First, Osiniskii'* extended the KBM
method to solve third-order nonlinear differential systems using some restrictions, which make the solution
over-simplified. Mulholland!'”! had removed these restrictions and found desired solutions of third-order
nonlinear systems. Sattar!!” investigated solutions of three-dimensional over-damped nonlinear systems.
Shamsul"®! presented an asymptotic method for second-order over-damped and critically-damped nonlin-
ear systems. Then Shamsul?”! extended the method presented in!'®! to third-order over-damped nonlinear
systems under some special conditions.

In article!'?! Murty et al. also extended the KBM method for solving fourth-order over-damped nonlinear
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systems which was a simple (particular) problem. Akbar et al.l'l generalized the method presented in!'?.
Akbar et al.l'l also show that their method is easier than the method of Murty et al.l'?!. Then Akbar et al.l*!
extended the method presented in!!! to damped oscillatory nonlinear systems. Akbar et al.l®! also presented
a simple technique for solving fourth order over-damped nonlinear systems. Akbar and Uddin®! found
solutions of an over-damped system in the case of special damping forces. Habibur et at.l’! investigated
solutions of certain forth order damped oscillatory systems.

Very recently, Akbar and Tanzer!*! extended the KBM method for solving the fifth order oscillatory nonlin-
ear systems with small nonlinearities.

In this article, an asymptotic solution of fifth-order over-damped symmetrical nonlinear system is investi-
gated, based on the KBM method and the work of Akbar et al.’!. The results obtained by the presented
technique show good coincidence with numerical results obtained by the fourth-order Runge-Kutta method.

1. THE METHOD

Consider a nonlinear symmetrical over—damped system governed by the fifth order differential equation:

dx d*x d*x d*x dx

I +k1W +k2% +k3W +k4z
where ki, ky, k3, k4, ks are characteristics parameter, f is such a nonlinear function that the system (1)
becomes symmetrical and & is a small parameter. When & = 0, the equation (1) becomes linear, let us
consider the five real and negative eigenvalues of the linear equation are—A;, —4;, —A3, — A4, —As. Here,
the over-damping forces are represented by the real and negative eigenvalues. In this case, the solution of
the linear equation is:

+ksx = —¢ f(x) (D

_ _ _ _ -5t
x(t,0)=ajpe M +arge ™ vazoe M +azoe ™ +ase )
where a0, a2,0, a3,0, ds,0 and as o are arbitrary constants.

When ¢ # 0, following Murty and Deekshatulu!!!! and Shamsul!!*!, we seek a solution of equation (1) in an
asymptotic expansion of the form:

x(1,8) = a1 + are ' + aze ™ + age ™ + ase ™ + cuy (ay, an, a3, aq, as, ) + & . .. 3)
where a;, j =1, 2, ...,5 satisfy the first-order differential equations
. 2

aj=¢eAi(a,ar,a3,a4,as5,1) +&° ... 4)

Differentiating (3) five times with respect to ¢, substituting (3) and the derivatives in the original equation
(1), using relations of (4), and finally extracting the coefficients of &, we obtain:

d d d
e’l"(—+/12—/11) (E + A3 /l]) (E+/l4—/l1) (E‘ +/15—/11)A1
d d d d
—Aot | _ - _ - _ - _
+e (dl‘ + /11 /12) (dt + /13 /12) (dt +/l4 /12) (dl‘ + /15 /lQ)Az
+6‘7/l3t i+/11—/l3 i+ﬂz—/13 i+/l4—ﬂ3 i+/l5—/l3 A3
dt dt dt dt 5)
+e‘*4’i+/1 -2 £+/i -2 i+/l -2 i+/l —A4)A
7 1 I\ 7 2— A4 s- A 5 4 |As
+e st i+/11—/15 £+/lz As| = + 25 = A5 i+/l4—/15 As
dt dt d
d d d d d
+(d_t + /11) (E + /12) ot /13) (E + /14) (E + /15) u = —fOay, a2, a3,a4,as,1)
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5
where f© = f(xo) and xo = 3} a;(t) e

j=1

In general, the functional £’ can be expanded in the Taylor series (see alsol!!?°! for details) as:

fO= Z F, -+ is(ar, az, a3, ay, as) e Atrs At (6)

.....

Substituting the value of £ from (6) into (5), we obtain:

-ﬂ”(imz )(£+/13 /ll)(i+/l4—/ll)(
d dt
d

et ( )(— + A3 — ) E + A4 — Ay
— A3t d

+e 3 —+/11 —+/12—/13 E+/l4_/13

+e‘ﬂ4t(—+/11 )( /7.2—/14) )
d

(—+/12—/15 E-F/b-/ls)

)
) (e o) o)

,,,,,

_ Al++5A5)t
=— 3 Fj--is(a,az,a3,a4,as) e A+ts As)

+e“5f 7 A -

+ /l5 - /14) A4 (7)

Since the order of the equation (1) is finite, therefore, it is possible to choose 4; > Ay > A3 > A4 > As.
Therefore, in order to solve equation (7) for the unknown functions A;, A,, A3, A4, As and uy, it is assumed

that u; does not contain terms e

“i it bt tisitisds)t where §; < 1 (see alsol® for details). This is a

significant assumption, since, under this assumption the coefficients of the terms of u; do not become large
as well as u;does not contain secular type terms ¢ e~*.Thus, in accordance with this assumptions, we obtain:

where i; < 1.

And:

where:

d d d
A r -l =+ - =+ - [=+5-2,]A
e (dt+2 1)(dt+3 1)(dt+4 1)( + As 1)1

d d d d
+€Azt(a + A —/12) (E‘ + A3 — /12) (E + Ay — /12) (E + As —/lz)Az
d d d d
B p - [+ =+ - =+ - 13]A
+e (dt+1 3)(dt+2 3)(dt+4 3)(dt+5 3)3 )
+*ﬂ4fd+ﬁ Pl d+/1 A d+/1 Pl d+/1 A)A
€ dr 1 4 dr 2 4 dr 3 4 dr 5 41 A4
d d d d
+e_15’(5 + A1 - /15) (E + Ay — /15) (E + A3 — /15) (E + Ay —/ls)A5
=— Y Fy-is(a,a,a3,a5,a5) e 00T )1
170,050
d d d d d
(E + /11) (d_l‘ + /12) (E‘ + /13) (E + /14) (E + /15) (9)
= — 3 Fy---is(ar,a, a3, a4,as) e @ AT )0
170,050
ip > 1. (10
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Now, we have to resolve the equation (8) for obtaining the unknown functions A;, A,, A3, A4 and As.
However, the unknown functions A;, A, A3, A4 and As cannot be found easily by solving equation (8) if
the nonlinear function f, and the eigenvalues, —1;, —4, —43, —As and —A5 are not specified. Therefore,
to resolve the equation (8) for the unknown functions A;, Ay, Az, A4, As and uy, in this article, we have
imposed the condition A;, = 3 A;, 41 (i; = 1, 2, 3, 4) among the eigenvalues. i.e. the eigenvalues are multiple
to one another. This condition is important, since such type of relation (1;, = 34;,11), among the eigenvalues
comes out naturally in the nonlinear equation with cubic nonlinearity. If the nonlinearity is the form other
than cubic, in that case the condition 4; = 34; 4 is not applicable and in that case different conditions
should be used, and it is our work in the future. Using the above condition, we obtain:

©0,...,00
A1 — Z l[ ; e—(—/11+l'1 A1 +ip Ap+iz A3+ig Ag+is /15) t
Iseees 15 ’
11=O ,,,,, i5=0
©0,...,00
A2 — Z m; ; e—(—/lg+i1 Ay +ip Ap+i3 A3+ig Ag+is As) t,
oo s 15
l|—0 ..... i5:0
©0,...,00 . . . X .
A3 — Z n; ; e—(—/13+l] Ay +iy Ap+isz A3+ig Ag+is As) t (11)
1seees 15
1120 ,,,,, 15=!
©,...,00
A4 — Z pl ; e*(*/l_ﬁ»[] Ay+ip Ady+iz A3+ig Ay+is As) t
Iseees 15 >
11=0,..., i5=l
©,...,00
AS — qi ; e—(—/l5 +i) Ay +ip Ap+is A3+ig Ag+is /15) t’
15eees 15
i1=0,...,i5=

where the coefficients [, i, m, i, R, . i P,,...is and g, i donotbecome large, as well as A, Az, Az, Ay
and As do not become large, for any time 7. Substituting the values of A}, A, A3, A4 and As from equation
(11) into equation (4), and integrating, we shall obtain the values of a;, ay, a3, a4 and as. Again, solving
equation (9), we shall obtain the value of u;.

Thus, the determination of the solution is completed.

2. EXAMPLE

As an illustration of the above method, we have considered the Duffing equation type fifth order nonlinear
differential systems:
&x d*x d*x d*x dx 3

F-’-klﬁ +k2% +k3ﬁ +k4E+k5x=—ex

(12)
Here f = x°, and thus, the system (12) is symmetrical (equation (12) remain unchanged if x is replaced
by—x).

Therefore,

O = a?e—s/m + Sa%aze‘(z’“ +A)t 3ala§e—(/11+2,12)t + age‘%’ + 3afa3e‘(2’l‘ )
+3atage” P 1 302 qsem Ut 6ajaraze MR 4 6ajayagem (A
+6a;aase” A 4 3a§a3e‘(2’lz”3)’ + 3a§a4e‘(2’lz”4)’ + 3a§a5e‘(2’12”5)’
+3a1a§e_(ﬂ‘+2’l3)’ + 3a1aie—(11+2/14)l + 3a1a§e—(11+2/15)1 + 6a1a3a4e—(/11+/13+14)z

o~ (h++as) e AT 4 3 a% o~ +225) o~ (a2t 13)

e—(ﬂ.z +A4+As)t

+ 6(11 aads
e—(ﬂg +A3+Ay)t

+6(11 asds
ge—(/12+2/15 )

+ 3612(1‘2‘
+3ara + 6arazay + 6arasas + 6ayazase A+
+a§e‘3’l3’ + 3alase” P 4 3gygle (2N 4 aie‘““ + 3a§ase‘(2ﬁ3+’l5)’

+6a3a4ase—(/13+/14+15)l + 3aia5 e—(2/14+15)l + 36136126_(/13 +245)t + 3a4a§e—(ﬁ4+215)l + ag e—3xl5t
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Therefore, for equation (12), equations (8)-(9) respectively become:

d
e‘”"(—+/lg—/11) ( /lz—/ll) (d—+/l4—/ll)

dt d
+e_}2t( + 4 - /lz) ( + A3 — /12) (i +A4— A (i + A5 — /IZ)AZ
dt dt
+e‘”3’(— +4 - ) ( " (% + 45— /13)143
+e‘”4’( +A - ) —+/lz—/l4 %+/l3—/l4 (%+/15—/l4)144
d

(G-

4o 1+M_@)
o

|

_ d
+e /l5t(a + A - /15) (dt A — /15) (E + A3 — A5

= —[Bajaje" M2 4 6a1ara3e” Mt 4 3a1a§e‘(4'+”3)’ +3ajaie A4 3a1a§e‘(/“+2/15)

e—(/11+/l3+/14)t e—(/11+14+/l5)t e—(/11+/13+/15)t e—(/l,+/12+/14)t

+6611(l3(14 + 6(11(14615 + 661](13615 + 6(1]612(14

+6alazase’(’1'”2+/l5)t + a3e—3/12t + 3aza367(242+/13)t + 3a%a4e’(2/12+/l4)’ i 3a%a567(212+’l5)’
—(A+2A3)t —(Ap+2A4)t —(A2+225)t e—(/'.2+/13+/l4)t

14
+3aya3e + 3a2a4e +3arale + 6azazay + 6ayasase et datds) a4

+6a2a3a5e—(ﬂz+}3+/15)r + a3e—3/13t + a4e—3/l4t + 361 as e—(2/13+/l4)t + 361 aZe—(/h+2/l4)t + 361261 e—(2/13+/15)t
+3aga2 —(A3+245)t + 66136146!56‘ (A3+A4+A45)t + a e 3)5t + 3a as e—(214+/ls)t + 3a a —(/l4+2/ls)t]

And:
d d d d d
(dt+/11)(dt+/12)(dt+/lg)(dt+/l4)(a+/15)ul (15)

- _ ( ? =34t + 3&1026 QA +)t + 3a1a3e—(2/l]+/13)t + 3a%a4e—(2/l]+/l4)t + 3a%a56—(2/l]+/l5)t)

where 4; > A, > A3 > A4 > As. Solving equation (15), we obtain:

3 -3t

up = riaje eGR4 gl grem it

+ }’261 an
—-24 +/l5)t (16)

-(24 +/l4)t

+ryaiase + rsajase

where:
r1 = 1/{241(A2 = 341)(A3 = 341)(A4 — 321)(A5 — 341)}
ry = 3/{(A1 + 22)2A)2A + A2 — A3)2A; + Ay — A)2A + Ay — Ay)
r3 = 3/{(41 + 3)2A1)2A; + A3 — )24 + A3 — )24 + A3 — As) (17)
rg = 3/{(A1 + A)2A)R2A + Ay — )2A + Ay — A3)2A; + Ay — As)
{

rs = 3/{(A1 + A5)(2A1)2A1 + A5 — A2)(2A; + A5 — A3)(2A; + A5 — Ay)

—_— = = ==

For obtaining the unknown functions A;, A,, A3, A4 and As, we have to separate the equation (14). Under
the imposed condition (in this paper, we have imposed the condition A;, = 34;41, i1 = 1, 2, 3, 4), we

obtain:
[ d d d d
e E‘_/ll-'—/lz E—/l]-f-/l?, d_t_/ll+/l4 d——/ll-f-/ls Al

=-QGa a% —(+222)1 6a,a ase—(/h+/lz+/h)t +3a 1 2 p~(Li+223)1 3a ai —(A1+214) 1 (18)
+3ay a3 e M) 4 6ajazaze” MW L 6a1a4as M 1 6.ay az as et

+6a; ay ag e NP L6 a1 gy s e~ @ 3 g3t

ot i—/l+/1 i_l_,_,l i_/1+/1 i—/l+/l A
7N B V7R A 7R A V7R

— _(3 az as e—(zﬂ.zﬁ-/l;)t + 3 a% as e—(2/12+ﬂ4)[ + 3a2a e—(2/12+/li)f (19)

+3 a a2 —(Ap+243) t + 3 azaie—(/lz+2/l4)f + 3 a aé e—(/12+2/15)t + 6@2 az ay e—(/12+/l3+/l4)t

e —(A+A4+15) t e—(/12+13+/15)r 313t)

+6a2a4 as +6aasas +a§ e
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d d d d
e_’“’ (E -3 +/11) (d_ - A3 +/12) (d_ - A3 +/l4) (E - A3 +/15) Aj

= —(a} €34 + 3 a} aye Pt 1+ 3 g3 a3 oW1 4 3 g2 g5 e P11 (20)
+3a3 a3 PRNCRIIN azasase “3”4%)0 .
d d d d
I [ P P [ ey PR Y [y P 1Y f By Py 1 '
e (d 4 1) (dt st Al At Al At As ] A an

(a3 —34st + 3 aéz‘ as 87(2/14+/15)[ + 3 as ag 67(14+2/15)t)

d d d d
et (E — A5+ /11) (E — A5+ 42) (E - 13) (d—t — A5+ 44) As=0 (22)

Now we have to solve equations (18)-(22). Using the symbolic computation software, like, Maple, Math-
ematica, Matlab etc. solutions of equations (18)-(22) are utter simple. In this article, to solve equations
(18)-(22), we have used Maple 13.

Therefore, solving equations (18)-(22), we obtain:

A =1l a a% e 20! 4 | ay ay azy et B 4 [ g, ag e 2! 4 [ a, ai e 2l 1 5 g ag e 2t
Heayazas e B L Layagas e 4 Lo ay azas e B 4 g ay ap ag e (23)
+lpay as as e~ tds)t 4 I a, 3 g3
Ay = my a% az et B 4y, a% ag e~ Rt | gy a% as et oy ay a% e 2t
+ms ay ai e+ mg ay ak e+ my ap az ay €Y+ mg a; ay as e ) (24)
—(/13 +/15)[ 3 (/12—3/13)1
+mg ar az as e + myo ase
A; =n ai B30t 4y, a% as e B 4 s gy at e 4 py a% as e~ (BHas) 25
e —(a+ )t 2251 (25)
sdsasase + ng a3a56
Ay = pi a3 SNBB L gy ag e 4 py a as et (26)
As =0 27

where:
I = 3/{(A1 + A)(A3 = A = 22)(As — Ay — 2A2)(A5s — A — 242)}

=6/{(l + )4 + ) Ag — A4 — A2 — B3)(As — 4y — b — B3)}

L =3/ + ) (A2 — 4 = 23) (A — 4t = 2243)(As — 4 — 243)}
Ly =3/{(4 + )2 — 41 = 2A4)(A3 — A1 = 24)(As — A1 — 224)}
Is =3/{(A4 + A5)(A2 — A1 = 225)(A3 — Ay = 2A5)(As — Ay — 225)}
—6/{(li + )4 + A2 — A1 — A3 — A)(As — A4y — A3 — )
—6/{(l + A4 + A5) (A2 — A1 — Ay — A5)(A3 — A4y — Ay — As)
=6/{(41 + )1 + A5) (A2 — Ay = A3 = A5)(Ag — Ay — A3 — As)

lo = =6/{(41 + L) + A)(A3 — Ay = A — A)(As — Ay — A — Ag)
Lo = =6/{(1 + )1 + A5)(A3 — A4y = A2 = A5)(As — A4y — A2 — As)}

L = 1/{222(23 = 322)(A4 = 32)(As — 342)}

}
}
}
}

my = 3/{(2A2)(4
my = 3/{(2A2)(4
m3 = 3/{(2A2)(4,

=2 — A3)(Ag — 225 — A3)(A5 — 245 — A3)}
=240 = A4)(A3 — 225 — A4) (A5 — 245 — A3)}
=21 = A5)(A3 — 225 — A5)(A4 — 245 — A5)}
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my = 3/{(A2 + A3)(A; — A2 = 243)(A4 — A = 223)(A5 — A2 — 243)}
ms = 3/{(Ax + A4)(A — A2 — 2A4)(A3 — Ay — 244)(A5 — A2 — 244)}
me = 3/{(A2 + A5)(A1 — A2 — 245)(A3 — A2 — 245)(Ag — A2 — 245)}
—6/{(a + 3)(A2 + W) — A2 — A3 — A)(As — A — A3 — )}
—6/{(A2 + A)(2 + A5)(A — A — Ay — A5)(A3 — A — Ag — As5)}
= =6/{(A2 + 3) (A2 + As)(A1 — A2 — A3 = A5)(Ag — A2 — A3 — As)}
mio = 1/{(2A3)(A1 — 323)(A4 — 343)(A5 — 343)}
ny = 1/{244)(A1 = 324)(A2 = 344)(As5 — 314)}
ny = 3/{2A3) (A = 243 = A4)(A2 — 223 — Ag)(As — 245 — Ay)}
n3 = 3/{(A3 + )41 — A3 = 24)(A — A3 — 24)(A5 — A3 — 244)}
ng = 3/{Q2A3) (A1 = 243 — As)(Ay — 243 — As)(Ay — 245 — As)}
ns = —6/{(A43 + A4z + As) (A — A3 — Ay — As)(Ar — A3 — A4 — 4s)}
ne = 3/{(A3 + As)(A1 — A3 — 245)(A2 — A3 = 245)(Ag — A3 — 245)}
1= 1/{(4 = 345)(A2 = 325)(A3 — 345)(A4 — 345)}
P2 = 3/{(Ag + A5)(A41 — Ay — 245)(A2 — Ay — 245)(A3 — A4 — 245)}
p3 = 3/{Q2A4)(A — 244 — A5)(Ay — 244 — A5)(A3 — 244 — As5)}
Substituting the values of A;, A», A3, A4 and As from equations (23)-(27) into equation (4), we obtain:

da1
— =c(lhay a%e_

dt

2t 2 215t

+bhayayaz et B 4 g, ase 2 o2t

+lyaiage 2e=24st

+Isay-ase
+lgay azay e~ (BHar 4 l7aya4as e~ (ards)t 4 lga; az as e~ (Bras)t | lya;ayay e+t
+lipay ax as e+ )t | I a; 8(11_3/12”)

ddz (28)
it (my a3 aze™ 2 4 my a3 ay e+ my a3 as e 4 my ay af e
+ms ap a4e 24 L omg ay ase 2851 Ly ay az ag e B 4 mg ay ay as et

+my ap az as e B 4 myg @l 03B

day
dr

24t

=e(may, 3e(s=3)r n2a3a4e ~(ada)r n3aga4e + n4a%a5e‘“3”5)’

Ay +A5)t —21st
+n5a304a56 ~(datds) +n5a3ase 5Ty

%
iy
dt

Since € is a small quantity, we can solve (28) by assuming that a;, a», as, a4 and as are constants in the right-
hand side of (28). This assumption was first made by Murty et al''*'?! to solve similar type of nonlinear
equations. Thus the solutions of the equations of (28) are:

_ 3 ,(A4=345)t 2,-21st 2 (A As)t
—s(plase( 4=34s) + pragase” """ + piazase (atds)ry

-2t 1 _ e—(/12+/13)t 1 _ e—2/13l

—e
- tbhagmotrg————— +l3ajpa® ,———
7 2010020830 = 7~ 301085 0~
e o2t . | — o=+ Ao
_— _— a a a _—
0 s 6010830 40— =
1-— —(/14+/15)f 1 — e~ Watds) 1-— e—(/12+/14)l
+lyapasg as,o— + g agazpas, o loarp azp aso——————
(A4 + 15) A3 + As) (A2 + )
1— —()o+/ls)r 1 — - 17)1

- +l -
T e TEn T

2
a(t) = ap+ée L a0 a;

=24t

2 2
+ly ao a4,0 + 5 ao aS,O

+lioaipazpasp
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5 1 — e~ “atda)t 5 1 — e~ “atda)t ) 1 — e~ atds)t
a(t) =arpg+e|mas; yaz0o———————— +mp a5 a4 0——————— + M3 a5 ,dsg———————
2(t) = azp 1,0 @30 A 245,040 3920950 "1
N , 1- o2t . , 1- o2t . , 1- o~ 2Ast . 1 — e~ (a+da
My aroQs . ————— + M5 a0 05 n————— + Mg dagds n.———— + M7 dy A3 0dsg———————
402,045 o 5a2,0 Ay 0 6 d2,0 ds 25 7 02,0030 44,0 s+ 1)
1 — g~ (ats)t 1 — e~ a+ds)t 1 = ell2- 313”}
tmzazpasoas0—>———~ tMoar0a30ad50— 5 TM1043 57 3
(A4 + A5) (A3 + As) 3 O (BAz -y
(29)
3 1 _ 8(13—3/14)1 ) l _ e—(/13+/l4)[ ) l _ 6—2/14f
az(t)=azgt+e|ma, ,——— +ma; a,o———— +n3azpa
( ) ’ 4.0 3/14 - /13 3,07 (/13 + /14) 74,0 214
N ) 1- e—(/13+/ls)f . 4 1- e—(/14+/15)t . 5 1= e—2}5t
ngasz aso—————— tN5d;,040050—————— tN6a3005 y— =7
3070 (A3 + As) ORI (A + As) TS0 2
11— e(/l4 325)t ) 11— 8—2/151 5 11— e—(/l4+ﬂ5)t
as(t) = asp + ¢ @A —— 4 prasgd: — + p3a® a5 g———————
® Pr5oT oy —ayy P20 00 T TGS TR T
as(t) = asy
l e(/l] 3)t
when A;, = 34;4+1, i1 = 1,2,3,4. But whend;, = 34;4+1, i = 1,2,3,4, the terms 111a20(3/l—/1)
2— A
1 — -3 , 1- eAa=340)1 1 — =325

and p1a5 0(3/1— of the first, second, third and fourth equa-

3 3
MO0 G =) e TR, )
tion of (29) will be replaced by /; ag obs mma3 obs n1a4 ofand plag o f respectively.

Therefore, the first-order approximate solution of the equation (12) is:

—Ait —Aat —Ayt

x(t,e) = aje + e ™ + aze™™ + age +ase ™™ +eu 30)

where a;, a, as,as and as are given by equation (29) and u;is given by equation (16).

3. RESULTS AND DISCUSSION

In order to test the accuracy of an approximate solution obtained by a certain perturbation method, we
compare the approximate solution to the numerical solution. With regard to such a comparison concerning
the presented technique of this article, we refer to the work of Murty et al.l'?!.

First of all, we have considered the eigenvaluesd; = 42.0, 1, = 13.60, 13 = 4.55, 14 = 1.6, s = 0.5.
Therefore A;, = 34,41, i1 = 1,2,3,4. We have computed x(z, &) by equation (30) in which a;,as,as, a4
and as are computed by equation (29) together with initial conditions a;¢ = 0.25, a9 = 0.25, azo = 0.25,

2 3
aso = 0.25 and aso = 025 [or x(0) = 1250000, 2O _ _i5 562494, 4 x(O) — 493118114, & x(O)
d*x(0)
ar

—19175.469518 and = 786588.807443] for various values of ¢ when ¢ = 0.1. The perturbation

results are presented in Figure 1, plotted by the dot line. The corresponding numerical solution has been
computed by a fourth-order Runge-Kutta method, and the results are presented in Figure 1, plotted by the
continuous line. The correlation between these two results has also been calculated which is 0.999505.

Secondly, we have considered the eigenvalues 4; = 52.0, 4, = 17.30, A3 = 5.70, 44 = 1.92, 15 = 0.63.
Therefore A;, = 34,41, 11 = 1,2,3,4. We have computed x(¢, &) using equation (30) in which ay, as, az,a4
and as are computed by equation (29), together with initial conditions a; g = 0.28, a9 = 0.32, a3 = 0.32,

dx(0 2x(0 Bx(0
aio = 0.40 and aso = 040 [or x(0) = 1720000, 9 = _22 939976, xt( ) _ 364.920842, LX) x( ) _
4
x(0)

-41089.306748 and prae = 2076284.765397] for various values of ¢t when € = 0.25 and the perturbation
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Figure 1
Perturbation Results are Plotted by Dot Line and Numerical Results are Plotted by Continuous Line

results are presented in Figure 2, plotted by the dot line. The corresponding numerical solution has been
computed by a fourth-order Runge-Kutta method, and the results are presented in Figure 2, plotted by the
continuous line. The correlation between these two results have also been calculated which is 0.997105.
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Figure 2
Perturbation Results are Plotted by Dot Line and Numerical Results are Plotted by Continuous Line

Finally, we have considered the eigenvalues 4; = 21.30, 1, = 7.09, A3 = 2.35, 44 = 0.77, As = 0.250.
Therefore A;, = 34;,41, i1 = 1,2, 3,4. We have again computed x(z, ) by equation (30) in which a;, as, az, a4
and as are computed by equation (29), together with initial conditions a; o = 0.25, ay¢ = 0.25, a3y = 0.25,
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dx(0 d*x(0 d*x(0
asp = 0.25 and aso = 0.25 [or x(0) = 2.100000, );(t ) = —13.568513, st(z) = 222.005787, ;t(* ) =
d*x(0
—4445.7000619 and ;ti ) = 94031.172125] for various values of  when € = 0.1. The perturbation results

are presented in Figure 3, plotted by the dot line. The corresponding numerical solution has been computed
by a fourth-order Runge-Kutta method, and the results are presented in Figure 3, plotted by continuous line.
The correlation between these two results have also been calculated which is 0.999995.
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Figure 3
Perturbation Results are Plotted by Dot Line and Numerical Results are Plotted by Continuous Line

CONCLUSION

A perturbation technique, based on the work of Akbar et al.!®! is developed to obtain the transient response
of fifth-order over-damped symmetrical nonlinear systems. We calculated the correlation between the re-
sults obtained by the presented perturbation technique and the corresponding numerical results obtained
by the fourth-order Runge-Kutta method. These two results are strongly-correlated. The results obtained
for different sets of initial conditions, as well as for different damping forces, show good coincidence with
those results obtained by numerical method.
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