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1. INTRODUCTION AND PRELIMINARIES

As an extension of classical notion of set, Zadeh[22] introduced the concept of fuzzy set that led to a rich
growth of fuzzy mathematics[20]. This theory got further developed as a result of lot of research done
by different mathematicians in various disciplines. In the sequel the concept of fuzzy metric space was
introduced by Kramsoil and Michalek[17].Afterward the most celebrated fixed point theorems due to Banach
and Eldestien in metric space were further extended by Grabiec[11] in fuzzy metric space. George and
Veeramani[10] initiated the concept of induced fuzzy metric space and adapted the notion of fuzzy metric
space with the help of t-norm defined by Schweizer and Sklar[19]. The study of fixed point theorems has
been followed by many authors, see[1−5,12−14,18]. There are many view points of the notion of metric space
in fuzzy topology. We are interested in the results in which the distance between the objects is fuzzy, the
objects themselves may be fuzzy or not .The most interesting references in this direction are[4,15,16]. Gähler
in a series of papers[7,8,9] investigated 2-metric spaces. Many authors investigated contraction mappings
in 2-metric spaces. Later on the notion of 3-metric space were introduced. Using the idea of fuzzy 2-
metric space and fuzzy 3-metric space Sharma[21] extended the result of Fisher[6] and established fixed
point theorems in fuzzy metric space.

The purpose of this paper is to generalize the result of Sharma[21] and obtain fixed point theorem in fuzzy
metric space and then extend to fuzzy 2-metric and fuzzy 3-metric space.

Now we recall some known definitions and preliminary concepts.

Definition 1 [19]: A binary operation ∗ : [0, 1]×[0, 1]→ [0, 1] is called a continuous t-norm if ([0, 1], ∗) is an
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abelian topological monoid with unit 1 such that a∗b ≤ c∗d whenever a ≤ c and b ≤ d i.e ∀a, b, c, d ∈ [0, 1].
Examples of t- norm are a ∗ b = ab and a ∗ b = min(a, b).

Definition 2 [17]: The 3-tuple (X,M, ∗) is called fuzzy metric space if X is an arbitrary set, M is a fuzzy set
in X2 × [0,∞) satisfying the following conditions:

(FM1 − 1) M(x, y, 0) = 0,
(FM1 − 2) M(x, y, t) = 1 for all t > 0 iff x = y,
(FM1 − 3) M(x, y, t) = M(y, x, t),
(FM1 − 4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s),
(FM1 − 5) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous ∀x, y, z ∈ X and t, s > 0.

Then M is called a fuzzy metric on X and M(x, y, t) denotes the degree of nearness between x and y with
respect to t.

Exampleb1[10](Induced fuzzy metric): Let (X, d) be a metric space, define a∗b = ab (or a∗b = min{a, b})
for all a, b ∈ [0, 1] and Let Md be fuzzy set on X2 × [0,∞) defined as.

Md(x, y, t) =
t

t + d(x, y)
(1)

∀ x, y ∈ X and t > 0.

Then (X,Md, ∗) is a fuzzy metric space. We call this fuzzy metric Md induced by the metric d as the standard
intuitionstic fuzzy metric.

Lemma 1[11]: For all x, y ∈ X, M(x, y, ·) is nondecreasing.

Definition 3 [11]: Let (X,M, ∗) be a fuzzy metric space. Then

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X, denoted by

lim
n→∞

xn = n if lim
n→∞

M(xn,xn, t) = 1 ∀ t > 0.

(ii) A sequence {xn} in X is called a Cauchy sequence if

lim
n→∞

M(xn+p,xn, t) = 1 ∀t > 0 and p > 0.

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Remark 1: Since * is continuous, it follows from (FM1 − 4), i.e.

M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s), that the limit of the sequence in fuzzy metric space is uniquely
determined.

Let (X,M, ∗) is a fuzzy metric space with the following condition.
(FM1 − 6) lim

t→∞
M(x, y, t) = 1 ∀x, y ∈ X

Lemma 2[3]: Let {xn} be a sequence in a fuzzy metric space (X,M, ∗) with condition (FM1 − 6). If there
exists a number q ∈ (0, 1) such that

M(xn+2, xn+1, qt) ≥ M(xn+1, xn, t) (2)

for all t > 0 and n = 1, 2, ....., then {xn} is a Cauchy sequence in X.

Proof: For t > 0 and q ∈ (0, 1), we have M(x2, x3, qt) ≥ M(x1, x2, t) ≥ M(x0, x1, t/q)

or M(x2, x3, qt) ≥ M(x0, x1, t/q2)
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by simple induction with the condition (2)[17], we have for all t > 0 and n = 1, 2, .....

M(xn+1, xn+2, t) ≥ M(x1, x2, t/qn) (3)

thus by (3) and condition (FM1 − 4) for any positive integer p and real number t > 0, we have

M(xn, xn+p, t) ≥ M(xn, xn+1, t/p) ∗ .......p − times ∗ M(xn+p−1, xn+p, t/ p)
≥ M(x1, x2, t

/
pqn−1) ∗ .......p − times ∗ M(x1, x2, t

/
pqn+p−2)

therefore by (FM1 − 6) we have,

lim
n→∞

M(xn, xn+p, t) ≥ 1 ∗ ....p − times.... ∗ 1 ≥ 1.

which implies that {xn} is a Cauchy sequence in X. This completes the proof.

Lemma 3[18]: If for all x, y ∈ X, t > 0 and for a number q ∈ (0, 1), M(x, y, qt) ≥ M(x, y, t), then x = y.

Lemmas 1, 2, 3 and Remark (1) hold for fuzzy 2 – metric spaces and fuzzy 3 – metric spaces also.

Definition 4: A function M is continuous in fuzzy metric space iff whenever xn → x, yn → y then

lim
n→∞

M(xn, yn, t) = M(x, y, t).

for each t > 0.

Definition 5: Two mappings Aand S on fuzzy metric space X are weakly commuting iff

M(AS u, S Au, t) ≥ M(Au, S u, t).

for all u ∈ X and t > 0.

Definition 6: A binary operation ∗ : [0, 1] ∗ [0, 1] ∗ [0, 1]→ [0, 1] is called a continuous t-norm if ([0, 1], ∗)
is an abelian topological monoid with unit 1 such that

a1 ∗ b1 ∗ c1 ≤ a2 ∗ b2 ∗ c2 whenever a1 ≤ a2, b1 ≤ b2, c1 ≤ c2 for a1, a2, b1, b2 and c1, c2 are in [0, 1].

Definition 7: The 3- tuple (X,M, ∗) is a called a fuzzy 2-metric space if X is an arbitary set, ∗ is a continuous
t-norm and M is a fuzzy set in X3 × [0,∞) satisfying the following conditions; for all x, y, z, u ∈ X and
t1, t2, t3 > 0.

(FM2 − 1) M(x, y, z, 0) = 0,
(FM2 − 2) M(x, y, z, t) = 1, t > 0 and when at least two of the three points are equal,
(FM2 − 3) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t),
(Symmetry about three variables)
(FM2 − 4) M(x, y, z, t1 + t2 + t3) ≥ M(x, y, u, t1) ∗ M(x, u, z, t2) ∗ M(u, y, z, t3),
(This corresponds to tetrahedron inequality in 2-metric space)

The function value M(x, y, z, t) may be interpreted as the probability the area of triangle is less than 1.

(FM2 − 5) M(x, y, z, ·) : [0, 1)→ [0, 1] is left continuous.

Definition 8: Let (X,M, ∗) be a fuzzy 2-metric space, then

(i) A sequence {xn} in fuzzy 2-metric space X is said to be convergent to a point x ∈ X if lim
n→∞

M(xn, x, a, t) =

1∀a ∈ X and t > 0.

(ii) A sequence {xn} in fuzzy 2-metric space X is called a Cauchy sequence, if lim
n→∞

M(xn+p, xn, a, t) = 1,
∀a ∈ X t > 0, p > 0.
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(iii) A fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 9: A function M is continuous in fuzzy 2-metric space iff whenever

xn → x, yn → y then

lim
n→∞

M(xn, yn, a, t) = M(x, y, a, t) for all a ∈ X and t > 0.

Definition 10: Two mapping A and S on fuzzy 2-metric space X are weakly commuting iff M(AS u, S Au, a, t) ≥
M(Au, S u, a, t) for all u, a ∈ X and t > 0.

Definition 11: A binary operation ∗ : [0, 1] ∗ [0, 1] ∗ [0, 1] ∗ [0, 1]→ [0, 1] is called a continuous t-norm if
([0, 1], ∗) is an abelian topological monoid with unit 1 such that

a1 ∗ b1 ∗ c1 ∗ d1 ≤ a2 ∗ b2 ∗ c2 ∗ d2 whenever a1 ≤ a2, b1 ≤ b2, c1 ≤ c2 and d1 ≤ d2 for a1, a2, b1, b2,c1, c2
and d1, d2 are in [0, 1].

Definition 12: The 3- tuple (X,M, ∗) is called a fuzzy 3-metric space if X is an arbitary set, ∗ is a continuous
t-norm and M is a fuzzy set in X4 × [0,∞) satisfying the following conditions, for all x, y, z,w, u ∈ X and
t1, t2, t3, t4 > 0.

(FM3 − 1) M(x, y, z,w, 0) = 0,
(FM3 − 2) M(x, y, z,w, t) = 1 for all t > 0,
[only when the three simplex (x, y, z,w) degenerate]
(FM3 − 3) M(x, y, z, t) = M(x,w, z, y, t) = M(y, z,w, x, t) = M(z,w, x, y, t) = ......

(FM3 − 4) M(x, y, z,w, t1 + t2 + t3 + t4)
≥ M(x, y, z, u, t1) ∗ M(x, y, u,w, t2) ∗ M(x, u, z,w, t3) ∗ M(u, y, z,w, t4)

(FM3 − 5) M(x, y, z,w) : [0, 1)→ [0, 1] is left continuous.

Definition 13: Let (X,M, ∗) be a fuzzy 3-metric space, then-

(i) A sequence {xn} in fuzzy 3-metric space X is said to be convergent to a point x ∈ X if lim
n→∞

M(xn, x, a, b, t) =

1, ∀a, b ∈ X and t > 0.

(ii) A sequence {xn} in fuzzy 3-metric space X is called a Cauchy sequence, if lim
n→∞

M(xn+p, xn, a, b, t) =

1∀a, b ∈ X and t > 0, p > 0.

(iii) A fuzzy 3-metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 14: A function M is continuous in fuzzy 3-metric space iff whenever xn → x, yn → y, then
lim
n→∞

M(xn, yn, a, b, t) = M(x, y, a, b, t)∀a, b ∈ Xt > 0.

Definition 15: Two mappings A and S on fuzzy 3-metric space are weakly commuting iff M(AS u, S Au, a, b, t) ≥
M(Au, S u, a, b, t)∀u, a, b ∈ X and t > 0.

Fisher[12] proved the following theorem for three mappings in complete metric space.

Theorem A: Let S and T be continuous mappings of a complete metric space (X, d) into itself. Then S
and T have a common fixed point in X if there exists a continuous mapping A of X into S (X)∩ T (X) which
commute with S and T and satisfy, d(Ax, Ay) ≤ αd(S x,Ty) for all x, y ∈ X and 0 < α < 1. Indeed S , T and
A have a common unique fixed point.

Sharma[21] proved the following extend theorem A to fuzzy metric space, fuzzy 2-metric space and fuzzy
3-metric space.

Theorem B: Let (X,M, ∗) be a complete fuzzy metric space with the condition (FM1 − 6) and let S and T
be continuous mappings of X in X, then S and T have a common fixed point in X if there exists a continuous
mapping A of X into S (X) ∩ T (X) which commute with S and T and,

M(Ax, Ay, qt) ≥ Min{M(Ty, Ay, t),M(S x, Ax, t),M(S x,Ty, t)}
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for all x, y ∈ X, t > 0 and 0 < q < 1, then S , T and A have a unique common fixed point.

2. MAIN RESULT

In this paper we generalize the result of Sharma[21], Theorem B by using (FM1 − 6) to fuzzy metric space,
fuzzy 2-metric space and fuzzy 3-metric space.

First we prove the following:

Theorem 1: Let (X,M, ∗) be a complete fuzzy metric space with the condition (FM1 − 6) and A and B be
continuous mappings of X in X, then A and B have a common fixed point in X if there exists mapping T of
X into A(X) ∩ B(X) which commute with A and B and

M(T x,Ty, qt) ≥ min{M(By,Ty, t),M(Ax,T x, t),
M(Ax, By, t), [M(T x, Bx, t/2) ∗ M(Bx,Ty, t/2)],
[M(T x, By, t/2) ∗ (By,Ty, t/2)]} (4)

for all x, y ∈ X, t > 0 and 0 < q < 1. Then A, B and T have a unique common fixed point.

Proof: We define a sequence {xn} such that

T x2n = Ax2n−1 and T x2n−1 = Bx2n, n = 1, 2, ...

we shall prove that {T xn}is a Cauchy sequence.

Suppose x = x2n and y = x2n+1 in (4), we write.

M(T x2n,T x2n+1, qt) ≥ min{M(Bx2n+1,T x2n+1, t),M(Ax2n,T x2n, t),M(Ax2n, Bx2n+1, t),
[M(T x2n, Bx2n, t/2) ∗ M(Bx2n,T x2n+1, t/2)],
[M(T x2n, Bx2n+1, t/2) ∗ M(Bx2n+1,T x2n+1, t/2)]}

≥ min{M(T x2n,T x2n+1, t),M(T x2n+1,T x2n, t),M(T x2n+1,T x2n, t),
[M(T x2n,T x2n−1, t/2) ∗ M(T x2n−1,T x2n+1, t/2)],
[M(T x2n,T x2n, t/2) ∗ M(T x2n,T x2n+1, t/2)]}

≥ min{M(T x2n,T x2n+1, t),M(T x2n,T x2n+1, t),
M(T x2n,T x2n+1, t),M(T x2n,T x2n+1, t),M(T x2n,T x2n+1, t)}

≥ min{M(T x2n−1,T x2n, t/q),M(T x2n,T x2n−1, t/q),
M(T x2n−1,T x2n, t/q),M(T x2n−1,T x2n, t/q),M(T x2n−1,T x2n, t/q)}

therefore
M(T x2n,T x2n+1, qt) ≥ M(T x2n−1,T x2n, t/q)

By induction
M(T x2k,T x2m+1, qt) ≥ M(T x2m,T x2k−1, t/q)

for every k and m in N.

Further, if 2m + 1 > 2k, then

M(T x2k,T x2m+1, qt) ≥ M(T x2k−1,T x2m, t/q)
..... ≥ M(T x0,T x2m+1−2k, t/q2k) (5)

If 2k > 2m + 1, then

M(T x2k,T x2m+1, qt) ≥ M(T x2k−1,T x2m, t/q)
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..... ≥ M(T x2k−(2m+1),T x0, t/q2m+1) (6)

By simple induction with (5) & (6) we have

M(T xn,T xn+p, qt) ≥ M(T x0,T xp, t/qn)

for n = 2k, p = 2m + 1 or n = 2k + 1, p = 2m + 1.

And by (FM1 − 4),

M(T xn,T xn+p, qt) ≥ M(T x0,T x1, t/2qn) ∗ M(T x1,T xp, t/2qn) (7)

if n = 2k, p = 2m or n = 2k + 1, p = 2m.

For every positive integer p and n in N, by noting that

M(T x0,T xp, t/qn)→ 1 as n→ ∞
Thus {T xn} is a Cauchy sequence. Since the space X is complete, there exists

z = lim
n→∞

T xn and z = lim
n→∞

Ax2n−1 = T x2n

It follows that Tz = Az = Bz and

M
(
Tz,T 2z, qt

)
≥ min {M (BTz,TTz, t) ,M (Tz, Bz, t) ,M (Tz, BTz, t) ,

[M (Az, Bz, t/2) ∗ M (Bz,TTz, t/2)] , [M (Tz, BTz, t/2) ∗ (BTz,TTz, t/2)]}
≥ min {1 , 1 ,M (Tz , BTz , t) ,M (Az ,TTz , t) ,M (Tz ,TTz)}
≥ min

{
M (Tz,T Bz, t) ,M

(
Az,T 2z, t

)
,M

(
Tz,T 2z, t

)}

≥ min
{
M(Tz,T 2z, t) ,M(Tz,T 2z, t) ,M(Tz,T 2z, t)

}

≥ M
(
Tz,T 2z, t

)

. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .

≥ M
(
Tz,T 2z, t/qn

)

Since lim
n→∞

M
(
Tz,T 2z, t/qn

)
= 1, so Tz = T 2z

Thus z is a common fixed point of T , A and B.

For uniqueness, let (w , z) be another common fixed point of A, B and T . By (4), we write

M (Tz,Tw, qt) ≥ min {M (Bw,Tw, t) ,M (Az,Tz, t) ,M (Az, Bw, t) ,
[M (Tz, Bz, t/2) ∗ M (Bz,Tw, t/2)] ,
[M (Tz, Bw, t/2) ∗ M (Bw,Tw, t/2)]}

which implies that
M (z,w, qt) ≥ M (z,w, t)

Therefore by lemma 3, we write z = w.

This completes the proof. �

We now prove Theorem 1 for fuzzy 2-metric space.

Theorem 2: Let (X,M, ∗) be a complete fuzzy 2-metric space and let A and B be continuous mappings
of X in X, then A and B have a common fixed point in X if there exists continuous mapping T of X into
A (X) ∩ B (X) which commute with A and B and

M (T x,Ty, a, qt) ≥ min {M (By,Ty, a, t) ,M (Ax,T x, a, t) ,M (Ax, By, a, t) ,
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[
M (T x,Ty, Bx, t/3) ∗ M (T x, Bx, a, t/3) ∗ M (Bx,Ty, a, t/3)

]
,[

M (T x,Ty, By, t/3) ∗ M (T x, By, a, t/3) ∗ M (By,Ty, a, t/3)
]}

(8)

for all x, y, a in X, t > 0 and 0 < q < 1,

lim
t→∞

M (x, y, z, t) = 1 for all x, y, z in X. (9)

Then A, B and T have a unique fixed point.

Proof: We define a sequence {xn} such that

T x2n = Ax2n−1 and T x2n−1 = Bx2n, n = 1, 2, ...

We shall prove that {T xn} is a Cauchy sequence.

Suppose x = x2n, y = x2n+1, in (8), we write

M(T x2n,T x2n+1, a, qt) ≥ min {M (Bx2n+1,T x2n+1, a, t) ,M (Ax2n,T x2n, a, t) ,M (Ax2n, Bx2n+1, a, t) ,
[M (T x2n,T x2n+1, Bx2n, t/3) ∗ M (T x2n, Bx2n, a, t/3) ∗
M (Bx2n,T x2n+1, a, t/3)] ,
[M (T x2n,T x2n+1, Bx2n+1, t/3) ∗ M (T x2n, Bx2n+1, a, t/3) ∗
M (Bx2n+1,T x2n+1, a, t/3)]}

≥ min
{
M (T x2n,T x2n+1, a, t) , M (T x2n+1,T x2n, a, t) ∗ M (T x2n+1,T x2n, a, t) ,

M
(
T x2n,T x2n+1, a,

t
3

+
t
3

+
t
3

)
,M

(
T x2n,T x2n+1, a,

t
3

+
t
3

+
t
3

)}

≥ min
{

M (T x2n,T x2n+1, a, t) ,M (T x2n,T x2n+1, a, t) ,M (T x2n,T x2n+1, a, t) ,
M (T x2n,T x2n+1, a, t) ,M (T x2n,T x2n+1, a, t)

}

≥ min



M (T x2n−1,T x2n, a, t/q) ,M (T x2n−1,T x2n, a, t/q) ,
M (T x2n−1,T x2n, a, t/q) ,M (T x2n−1,T x2n, a, t/q) ,
M (T x2n−1,T x2n, a, t/q)



which gives
M (T x2n,T x2n+1, a, qt) ≥ M (T x2n−1,T x2n, a, t/q)

By induction
M (T x2n,T x2m+1, a, qt) ≥ M (T x2m,T x2k−1, a, t/q)

for every k and m in N. Further, if 2m + 1 > 2k, then

M (T x2k,T x2m+1, a, qt) ≥ M (T x2k−1,T2m, a, t/q)

............ ≥ M
(
T x0,T2m+1−2k, a, t

/
q2k

)
(10)

If 2k > 2m + 1, then

M (T x2k,T x2m+1, a, qt) ≥ M
(
T x2k−(2m+1),T x0, a, t

/
q2m+1

)
(11)

By simple induction with (10) and (11) we have

M
(
T xn,T xn+p, a, qt

)
≥ M

(
T x0,T xp, a, t/qn

)

for n = 2k, p = 2m + 1 or n = 2k + 1, p = 2m + 1
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And by
(
FM1 − 4

)

M
(
T xn,T xn+p, a, qt

)
≥ M

(
T x0,T xp,T x1,

t
3qn

)
∗ M

(
T x0,T x1, a,

t
3qn

)
∗ M

(
T x1,T xp, a,

t
3qn

)
(12)

if n = 2k, p = 2m or n = 2k + 1, p = 2m.

For every positive integer p and n in N, by noting that

M
(
T x0,T xp, a,

t
qn

)
→ 1 as n→ ∞.

Thus {T xn} is a Cauchy sequence. Since the space X is complete, these exists

z = lim
n→∞

T xn and z = lim
n→∞

T x2n−1 = T x2n

It follows that Tz = Az = Bz and

M
(
Tz,T 2z, a, qt

)
≥ min

{
M (BTz,TTz, a, t) ,M (Az,Tz, a, t) ,M (Az, BTz, a, t) ,

[
M

(
Tz,TTz, Bz,

t
3

)
∗ M

(
Tz, Bz, a,

t
3

)
∗ M

(
Bz,TTz, a,

t
3

)]
,

[
M

(
Tz,TTz, BTz,

t
3

)
∗ M

(
Tz, BTz, a,

t
3

)
∗ M

(
BTz,TTz, a,

t
3

)]}

≥ M (Az,T Bz, a, t)

≥ M (Tz,TTz, a, t)

≥ M
(
Tz,T 2z, a, t

)

..........................

..........................

≥ M
(
Tz,T 2z, a,

t
qn

)
.

Since lim
n→∞

M
(
Tz,T 2z, a, t/qn

)
= 1, so Tz = T 2z.

Thus z is a common fixed point of T , A and B. For uniqueness, let w (w , z) be another common fixed point
of A, B and T . By (8), we write –

M (Tz,Tw, a, qt) ≥ min {M (Bw,Tw, a, t) ,M (Az,Tz, a, t) ,M (Az, Bw, a, t) ,
M (Tz,Tw, a, t) ,M (Tz,Tw, a, t)}

which implies that
M (z,w, a, qt) ≥ M (z,w, a, t)

therefore by lemma 3 we write z = w.

This completes the proof. �

Now we prove Theorem 1 for Fuzzy 3-metric space as follows :

Theorem 3: Let (X,M, ∗) be a complete fuzzy 3metric space and let A and B be continuous mappings
of X in X, then A and B have a common fixed point in X if there exists continuous mapping T of X into
A (X) ∩ B (X) which commute with A and B and

M (T x,Ty, a, b, qt) ≥ min {M (By,Ty, a, b, t) ,M (Ax,T x, a, b, t) ,M (Ax, By, a, b, t) ,
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[
M

(
T x,Ty, a, Bx,

t
4

)
∗ M

(
T x,Ty, Bx, b,

t
4

)
∗ M

(
T x, Bx, a, b,

t
4

)
∗

M
(
Bx,Ty, a, b,

t
4

)]
,
[
M

(
T x,Ty, a, By,

t
4

)
∗ M

(
T x,Ty, By, b,

t
4

)
∗

M
(
T x, By, a, b,

t
4

)
∗ M

(
By,Ty, a, b,

t
4

)]}
(13)

for all x, y, a, b in X, t > 0 and 0 < q < 1,

lim
t→∞

M (x, y, z,w, t) = 1 (14)

for all x, y, z, w in X. Then A, B and T have a unique common fixed point.

Proof: We define a sequence {xn} such that T x2n = Ax2n−1 and T x2n−1 = Bx2n, n = 1, 2, ...

We shall prove that {T xn} is Cauchy sequence.

Suppose x = x2n, y = x2n+1 in (13), we write

M (T x2n,T x2n+1, a, b, qt) ≥ min
{
M (Bx2n+1,T x2n+1, a, b, t) ,M (Ax2n,T x2n, a, b, t) ,M (Ax2n, Bx2n+1, a, b, t) ,

[
M

(
T x2n,T x2n+1, a, Bx2n,

t
4

)
∗ M

(
T x2n,T x2n+1, Bx2n, b,

t
4

)
∗

M
(
T x2n, Bx2n, a, b,

t
4

)
∗ M

(
Bx2n,T x2n+1, a, b,

t
4

)]
,

[
M

(
T x2n,T x2n+1, a, Bx2n+1,

t
4

)
∗ M

(
T x2n,T x2n+1, Bx2n+1, b,

t
4

)
∗

M
(
T x2n, Bx2n+1, a, b,

t
4

)
∗ M

(
Bx2n+1,T x2n+1, a, b,

t
4

)]}

≥ min {M (T x2n,T x2n+1, a, b, t) ,M (T x2n+1,T x2n, a, b, t) ,
M (T x2n+1,T x2n, a, b, t) ,M (T x2n,T x2n+1, a, b, t) ,
M (T x2n,T x2n+1, a, b, t)} (15)

which gives
M (T x2n,T x2n+1, a, b, qt) ≥ M (T x2n−1,T x2n, a, b, t/q) .

By induction
M (T x2k,T x2m+1, a, b, qt) ≥ M (T x2m,T x2k−1, a, b, t/q)

for every k and m in N.

Further, if 2m + 1 > 2k, then

M (T x2k,T x2m+1, a, b, qt) ≥ M (T x2k−1,T x2m, a, b, t/q)

.......................

.......................

≥ M
(
T x0,T x2m+1−2k, a, b,

t
q2k

)
(16)

If 2k > 2m + 1, then

M (T x2k,T x2m+1, a, b, qt) ≥ M
(
T x2k−(2m+1),T x0, a, b,

t
q2m+1

)
(17)

By simple induction with (16) and (17) we have

M
(
T xn,T xn+p, a, b, qt

)
≥ M

(
T x0,T xp, a, b,

t
qn

)
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for n = 2k, p = 2m + 1 or n = 2k + 1, p = 2m + 1.

And by
(
FM1 − 4

)

M
(
T xn,T xn+p, a, b, qt

)
≥ M

(
T x0,T xp, a,T x1,

t
4qn

)
∗ M

(
T x0,T xp,T x1, b,

t
4qn

)
∗

M
(
T x0,T x1, a, b,

t
4qn

)
∗ M

(
T x1,T xp, a, b,

t
4qn

)
(18)

if n = 2k, p = 2m or n = 2k + 1, p = 2m.

For every positive integer p and n in N, by noting that

M
(
T x0,T xp, a, b,

t
qn

)
→ 1 as n→ ∞.

Thus {T xn} is a Cauchy sequence. Sine the space X is complete, these exists

z = lim
n→∞

T xn and z = lim
n→∞

T x2n−1 = T x2n.

It follows that Tz = Az = Bz and

M (Tz,TTz, a, b, qt) ≥ min {M (BTz,TTz, a, b, t) ,M (Az,Tz, a, b, t) ,M (Az, BTz, a, b, t) ,
M (Tz,TTz, a, b, t) ,M (Tz,TTz, a, b, t)}

≥ M (Az,TTz, a, b, t)

≥ M (Tz,TTz, a, b, t/qn)

Since lim
n→∞

M
(
Tz,T 2z, a, b, t/qn

)
= 1

So Tz = T 2z.

Thus z is a common fixed point of T, A and B.

For uniqueness, let w (w , z) be another fixed point of A, B and T .

By (13) we write

M (Tz,Tw, a, b, qt) ≥ min {M (Bw,Tw, a, b, t) ,M (Az,Tz, a, b, t) ,M (Az, Bw, a, b, t) ,

M (Tz,Tw, a, b, t) ,M (Tz,Tw, a, b, t)}
which implies that

M (z,w, a, b, qt) ≥ M (z,w, a, b, t) .

Therefore by lemma 3, we have z = w.

This completes the proof. �
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