Proving the Twin Prime Conjecture

LIU Dan ${ }^{[\mathrm{ac}]}$; and LIU Jingfu ${ }^{[b]}$
${ }^{[a]}$ Department of Mathematics, Neijiang Normal University, Neijiang, China.
${ }^{[b]}$ Department of Mathematics, Sichuan Normal University, Chengdu, China.
* Corresponding author.

Address: Department of Mathematics, Neijiang Normal University, Neijiang, China; E-mail: zxc576672568@qq.com

Received: November 11, 2013/ Accepted: January 5, 2014/ Published online: February 26, 2014

Abstract

Presented and proved symmetry primes theorem, parallelism proving the twin primes conjecture, Goldbach conjecture. Give part of the calculation.

Key words: Integer; Primes; Composite number; Theorem
Liu, D., \& Liu, J. F. (2014). Proving the Twin Prime Conjecture. Studies in Mathematical Sciences, 8(1), 21-26. Available from URL: http://www.cscanada. net/index.php/sms/article/view/4014 DOI: http://dx.doi.org/10.3968/4014

1. INTRODUCTION

Mathematicians found that primes of distance 2, there are infinitely many numbers known as twin primes conjecture ${ }^{[1-3]}$, for example, $(11,13),(59,61)$. In 1742, the German mathematician Goldbach found even greater than 4 are each equal to two prime numbers and. known as Goldbach conjecture, For example, 6 $=3+3,8=3+5$, Here proved:

$$
\begin{equation*}
L(x) \sim \frac{\pi^{2}(x)}{x},(x \rightarrow \infty) \tag{1}
\end{equation*}
$$

Here (1) known as twin primes conjecture. Wherein $L(x)$ is the numbers of twin primes. And proved:

$$
\begin{equation*}
G(N) \sim \frac{\pi^{2}(N)}{N}, \quad(N \rightarrow \infty) . \tag{2}
\end{equation*}
$$

Here (2) known as Goldbach conjecture. Wherein $G(x)$ is the numbers of two primes and.

2. DISTRIBUTION DENSITY OF SYMMETRY PRIMES

Set the Integer $x=16$, we have:

$$
\begin{aligned}
k & \text { is } 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, \\
k+2 & \text { is } 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, \\
& \text { Wherein } k+2 \text { is the primes have: } 2,3,5,7,11,13,
\end{aligned}
$$

Set $k+2$ is the primes, the quantity as $\pi(x)$, we get ${ }^{[5-6]}$:

$$
\begin{equation*}
\frac{\pi(x)}{x} \tag{3}
\end{equation*}
$$

Here (3) as distribution density of symmetry primes.
Set the composite number h, here let 0 and 1 is the composite number, we have:

$$
\begin{aligned}
& h \quad \text { is } 0,1,4,6,8,9,10,12,14, \\
& h+2 \quad \text { is } 2,3,6,8,10,11,12,14,16
\end{aligned}
$$

Wherein $h+2$ is primes have: $2,3,11$. Set the h quantity as $F, h+2$ is the primes, the quantity as $F(x)$, we get:

$$
\begin{equation*}
\frac{F(x)}{F} \tag{4}
\end{equation*}
$$

Here (4) also as distribution density of symmetry primes. Wherein $F=x-\pi(x)$ -1 , for example, Let $x=16, \pi(16)=6$, and $F=9, F(16)=3$, by (3) and (4) get:
$\frac{\pi(16)}{16}=\frac{6}{16}$ and $\frac{F(16)}{9}=\frac{3}{9}$.

Calculate:

$$
\begin{array}{lll}
x, & \pi(x) / x, & F(x) / F, \\
10^{1}, & 0.4, & 0.4, \\
10^{2}, & 0.25, & 0.23, \\
10^{3}, & 0.168, & 0.162, \\
10^{4}, & 0.1229, & 0.1168, \\
10^{5}, & 0.09592, & 0.09256, \\
10^{6}, & 0.078498, & 0.076321, \\
10^{7}, & 0.0664579, & 0.0648711, \\
10^{8}, & 0.05761455, & 0.05646461,
\end{array}
$$

3. THE TWIN PRIMES

Set primes p, we have:

$$
\begin{aligned}
& p \quad \text { is } 2,3,5,7,11,13 \\
& p+2 \text { is } 4,5,7,9,13,15
\end{aligned}
$$

Wherein $p+2$ is the primes have: $5,7,13$, the twin primes $(3,5),(5,7),(11$, 13). Set $p+2$ is the primes, the quantity as $L(x)$, we can get [1]:

$$
\begin{equation*}
\pi(x)=F(x)+L(x) \tag{5}
\end{equation*}
$$

By (5) we can prove the twin primes conjecture.

4. SYMMETRY PRIMES THEOREM

The T theorem:

$$
\begin{equation*}
F(x) \sim \frac{F \pi(x)}{x}, \quad(x \rightarrow \infty) \tag{6}
\end{equation*}
$$

Here (6) known as symmetry primes theorem [5].
Proof: by (4) we get:

$$
\begin{equation*}
F=x-\pi(x)-1=x\left(1-\frac{\pi(x)+1}{x}\right) . \tag{7}
\end{equation*}
$$

By (7) can get:

$$
\lim _{x \rightarrow \infty} \frac{x}{F}=1 .
$$

If $F \sim x$, then $F(x) \sim \pi(x)$, by (3), (4) we can get:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x}{F} / \frac{\pi(x)}{F(x)}=1 \tag{8}
\end{equation*}
$$

By (8) can get:

$$
\begin{equation*}
\frac{F(x)}{F} \sim \frac{\pi(x)}{x},(x \rightarrow \infty) \tag{9}
\end{equation*}
$$

By (9) The T theorem proved.

5. PROVE THE TWIN PRIMES CONJECTURE

By (5) we get:

$$
\begin{equation*}
L(x)=\pi(x)-F(x) . \tag{10}
\end{equation*}
$$

By (6), (10) can get:

$$
\begin{equation*}
L(x) \sim \pi(x)-\frac{F \pi(x)}{x}, \quad(x \rightarrow \infty) . \tag{11}
\end{equation*}
$$

By (11) we get:

$$
L(x) \sim \frac{\pi^{2}(x)}{x},(x \rightarrow \infty)
$$

The twin primes conjecture proved. The number of twin primes. By (10) we get ${ }^{[6-7]}$:

$$
\pi(x) \sim \sum_{n=2}^{x} \frac{1}{\ln (n)} \text { and } F(x) \sim \frac{x}{\ln x} .
$$

Can get:

$$
L(x) \sim \sum_{n=2}^{x} \frac{1}{\ln (n)}-\frac{x}{\ln x}, \quad(x \rightarrow \infty) .
$$

Generally speaking:

$$
L(x) \sim c \sum_{n=2}^{x} \frac{1}{\ln (n)}-c \frac{x}{\ln x}, \quad c=1.32 \ldots \ldots
$$

6. PROVE GOLDBACH CONJECTURE

Set even $N=16, k<N$, we have:

$$
\begin{aligned}
k & \text { is } 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \\
N-k & \text { is } 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1 .
\end{aligned}
$$

Set $N-k$ is the numbers of primes as $\pi(N)$, we get [4]:

$$
\begin{equation*}
\frac{\pi(N)}{N} \tag{12}
\end{equation*}
$$

Set composite number h, the numbers of composite number as F, we have:

$$
\begin{aligned}
h & \text { is } 4,6,8,9,10,12,14,15, \\
N-h & \text { is } 12,10,8,7,6,4,2,1 .
\end{aligned}
$$

Set $N-h$ is the numbers of primes as $F(N)$, we get [5]26,[6]:

$$
\begin{equation*}
\frac{F(N)}{F} . \tag{13}
\end{equation*}
$$

Set the primes p, we have [4]:

$$
\begin{array}{cl}
p & \text { is } 2,3,5,7,11,13 \\
N-p & \text { is } 14,13,11,9,5,3,
\end{array}
$$

Set $N-p$ is the numbers of primes as $G(N)$, we can get:

$$
\begin{equation*}
\pi(N)=F(N)+G(N) . \tag{14}
\end{equation*}
$$

By (12), (13) can prove:

$$
\begin{equation*}
F(N) \sim \frac{F \pi(N)}{N},(N \rightarrow \infty) . \tag{15}
\end{equation*}
$$

The proof and the twin primes conjecture are the same. by (14), (15) we can get ${ }^{[8]}$:

$$
G(N) \sim \frac{\pi^{2}(N)}{N},(x \rightarrow \infty) .
$$

The Goldbach conjecture proved.

7. GOLDBACH'S CONJECTURE CALCULATION

Formulas are [3]:

$$
\begin{equation*}
G(N) \sim \frac{2 c(N) N}{\ln ^{2}(N)} . \tag{16}
\end{equation*}
$$

Here (16) known as Hardy formula. Which Laman Niu Yang factor:

$$
c(N)=\prod_{P \leq N} \frac{p(P-2)}{(P-1)^{2}} \prod_{P \mid N} \frac{P-1}{P-2} .
$$

8. WANG XINYU DOUBLE SIEVE TRANSFORM

Set $p>2$, have:

$$
\begin{equation*}
G(N) \sim \frac{N}{2} \prod_{P \mid N}\left(1-\frac{1}{P}\right) \prod_{P \perp N}\left(1-\frac{2}{P}\right), \quad p \leq N^{1 / 2} . \tag{17}
\end{equation*}
$$

Here (17) known as double sieve transform formula. qingdao china Wang Xinyu transform: $\frac{N}{2} \prod_{P \mid N} \frac{P-1}{P} \prod_{P \perp N} \frac{P-2}{P}=\frac{N}{2} \frac{\prod_{P \mid N} \frac{P-1}{P}}{\prod_{P \mid N} \frac{P-2}{P}} \prod_{P \mid N} \frac{P-2}{P} \prod_{P \perp N} \frac{P-2}{P}$

$$
\begin{aligned}
& =\frac{N}{2} \prod_{P \mid N} \frac{P-1}{P-2} \prod_{P \leq \sqrt{N}} \frac{P-2}{P} \\
= & \frac{N}{2} \prod_{P \mid N} \frac{P-1}{P-2} \prod_{P \leq \sqrt{N}} \frac{P-2}{P} \frac{P^{2}}{(P-1)^{2}} \frac{(P-1)^{2}}{P^{2}} \\
= & \frac{N}{2} \prod_{P \mid N} \frac{P-1}{P-2} \prod_{P \leq \sqrt{N}} \frac{P(P-2)}{(P-1)^{2}} \prod_{P \leq \sqrt{N}} \frac{(P-1)^{2}}{P^{2}}
\end{aligned}
$$

Can get ${ }^{[2]}$:

$$
\prod_{P \leq \sqrt{N}} \frac{(P-1)^{2}}{P^{2}} \sim \frac{4 \pi^{2}(N)}{N^{2}}
$$

Get:

$$
\begin{equation*}
G(N) \sim 2 \prod_{P \mid N} \frac{P-1}{P-2} \prod_{P \leq \sqrt{N}} \frac{P(P-2)}{(P-1)^{2}} \frac{N}{\ln ^{2} N} . \tag{18}
\end{equation*}
$$

Here (18) also double sieve transform formula. And Hardy formulas are the same.

REFERENCES

[01] Manin (Russian) et al. (2006). Modern number theory guided. Science Press.
[02] Hua, L. G. (1979). Number theory guide. Science Press.
[03] Neukirch, J.(2007). Algebraic number theory. Science Press.
[04] Wang, Y. (Ed.). (1987). Goldbach conjecture research. Heilongjiang Community Education.
[05] Liu, D. (2005). Goldbach conjectureelementary discussion. Neijiang Science and Technology, (2).
[06] Liu, D. (2013). Elementary discussion of the distribution of prime numbers. Progress in Applied Mathematics, 5(2).
[07] Liu, D., \& Liu, J. F. (2013). Riemann hypothesis elementary discussion. Progress in Applied Mathematics, 6(3).
[08] Liu, D. (2013). The proof of the jie bove conjecture. Studies in Mathematical Sciences, 7(2).

