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Abstract: 1fp(z) = Xj- ajzj is a polynomial of degree n satisfying
p(z) # 0in |z| <1, then forR > 1. Ankeny and Rivlin [1] proved

that M(p,R) < (Rn2+1
in this direction by considering polynomials of degree > 2, having all its

zeroson|z| =k k<1.

) M (p,1) . In this paper we obtain some results
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1. INTRODUCTION AND STATEMENT OF RESULTS

For an arbitrary entire function (2), let M(f,r) = 7|27 |f(2)|.Then for a

z|=r
polynomial p(z) of degree n, it is a simple consequence of maximum modulus
principle (for reference see [4, vol. |, p. 137, Problem III, 269]) that

M(p,R) <R"M (p,1),forR>1 (D

The result is best possible and equality holds for p(z) = Az", where [A| =
1.R>1.
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If we restrict ourselves to the class of polynomials having no zeros in |z| < 1,
then inequality (1) can be sharpened. In fact it was shown by Ankeny and Rivlin

[1] thatif p(z) # 0in |z| < 1, then (1) can be replaced by

R+1
2

M(p,R) < (=) M(p,1), R>1 2)

The result is sharp and equality holds for p(z) = o + Bz", where |a| = |B].

While trying to obtain inequality analogous to inequality (2) for polynomials
not vanishing in |z|] <k,k <1, K K Dewan and Arty Ahuja [2] proved the
following result.

Theorem A. If p(z) = Xj-, ajzj is a polynomial of degree n having all its zeros on

|z| = k, k < 1, then for every positive integer s

K1 (1+k)+(R™-1)
knlygn

Mo RY < ( ) M@, DY, R =1 3)
By involving the coefficients of p(z), Dewan and Ahuja [2] in the same paper
obtained the following refinement of Theorem A.

Theorem B. If p(2) = ¥, ajzj is a polynomial of degree n having all its zeros on

|z| = k, k < 1, then for every positive integer s

M, R)}®
1 [nla, [{k™"(1 + k?) + k2(R™ — r™)} + |a,_,|{2k™ + R™ — r"™5}
— kn 2|lap_1] + nla,|(1 + k?)
x{M(p 1}, R=>1 4)

In this paper, we restrict ourselves to the class of polynomials of degree n > 2
having all its zeros on |zl =k, k<1 and obtain an improvement and
generalization of Theorem A and Theorem B. More precisely, we prove
Theorem 1. Ifp(z) = ;‘:0 ajzj is a polynomial of degree n having all its zeros on

|z| = k, k < 1, then for every positive integer sand R > 1
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K11+ k) + (R —1)
k=1 + kn

M@, R} < ( ){M(p. Dy

RNS_—1 RNS—2_1

—s lay ( ) M@, DY,

ns ns—2
ifn>2 5)
and

k114 k) + (R™ —1)
kn=1 + fn

Rns -1 Rns—l -1
—s|a1|( — - — ){M(p, Dy,

M, R} < ( ){M(p, Dy

ifn=2 (6)
By choosing s = 1 in Theorem 1.we get the following result.
Corollary 1. Ifp(z) = X7, a;jz) is a polynomial of degreen > 2 having all its

zeroson |z] =k k< 1,thenforR > 1

o) < (“—E =D ey
oy (Rn -1 _Rn_1 - 1> '
n n—2
if n>2 (7)
and
M@,R} < (kn_l(lkt_?:,ff — 1)) M, 1}
e (Rnn— 1 R:Z_—l 1)’
ifn=2 (8

Next we prove the following result which is a refinement of Theorem 1.

Theorem 2. If p(z) = ;'l:o ajzj is a polynomial of degree n having all its zeros on
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|z] =k, k < 1, then for every positive integer sand R > 1

nla, | {k™(1 + k?) + k2(R™ — 1)} + |a,_, |{2k™ + R™ — 1}
2l|an-1| +nlan|(1 +k?)

1
M. R} < o

RNS—1 RMS—2_1

X {M(p, D} -5 lay] )M, P,

ns ns—2
ifn>2 ©
and
n 2 2 ns _ n ns
(M(p,R)}* < 1 [nlanl{k"(1 + k) + K2R D} + la,_1|{2k™ + R 1}
fer 2|lay_q| +nla,|(1 + k?)
R"™ —1 R®™1_1
= - s—-1
x {M(p, 1)} s|a1|< s p—] ){M(p, 1)},
ifn=2 o)

If we choose s = 1 in Theorem 2, we get the following result.
Corollary 2. Ifp(z) =X, ajzj is a polynomial of degree n = 2 having all its

zeros on |z| =k, k < 1, then for everyR > 1

{M(p R} < i[nlanl{kn(l + k2) + kZ(Rn -D}+ |an_1|{2kn +R"— 1}

kn 2|ap_1| + nla,|(1 + k?)

R"—1 R"™2-1
x{M(p, 1)} - |a1I< - )

n—2
ifn>2 an
and
n 2 2 n_ n n_
(M(p,R)}S < 1 [nlanlfk™(1 +k?) + kK*(R" — D} + lan-4|{2k" + R" — 1}
fe 2|an—1|+n|an|(1+k2)

R*—1 R"™1'-1
x (M(p, D}- |a1|( — - )

n—1

ifn=2 (12)
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2. LEMMAS

For the proof of these theorems, we need the following lemmas.
Lemma 1. Ifp(z) = }7-,c,z" is a polynomial of degree n having all its zeros on

|z| = k, k < 1, then

ma n ma.

Iz = |p @ < = 1 | | P@ (13)

The above lemma is due to Govil [3].
Lemma 2. Ifp(2) = }j., ajzj is a polynomial of degree n having all its zeros on
|z] =k k < 1, then

nlanlkz + |an—1| ma
nla,|(1+k?) + 2|an—4| IZI

/@] < = @ a4

lz| =1
The above lemma is due to Dewan and Mir [5].

Lemma 3. If p(z) = ¥, a;z’ is a polynomial of degree, then forall R > 1

Iz I _ g IP@I<R"M(, 1)~ R =R [p(O)], if n>1 (15)

And

ma.

The above lemma is due to Frappier, Rahman and Ruscheweyh [6].

g PAI<RMpP,D-R-DIpO], ifn=1 (16)

3. PROOF OF THE THEOREMS
Proof of Theorem 1. Let(p,1) = ;2] Ip(2)|. Sincep(z)is a polynomial of

degree n having all its zeros on |z| = k, k < 1, therefore, by Lemma 1, we have

M(p,1) for|z| =1 (17)

n
Pl <

Now applying inequality (1) to the polynomial p/(z) which is of degree n — 1 and
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noting (17), it follows thatforallr = 1and 0 < 6 < 2m

/(+oif nr
[p/(re®)| < iy MeD (18)

Also foreach 6,0 < 6 < 2mand R > 1, we obtain
; d
(R} (o)) = [ 1 (plee®)) a
1

= flR s{p(teie)}s_l p/(te'®)e® dt
This implies
[p(Re®)} — (p(re®))’| <5 [{Ip(ce®)] " [p/(te®)[d  (19)
Since p(z) is a polynomial of degree > 2, the polynomial p/(z) which is of degree
n — 1 > 2, hence applying inequality (15) of Lemma 3 to p/(z), we have forr > 1
and 0 <06 <2m
lp/(rei®)| < r"tM(p/,1) — (™1 — r™=3)|p/ (0)] (20)
Inequality (20) in conjunction with inequalities (19) and (1), yields forn > 2

andforR>1

[{p(Re®)} = {p(re)}']

R
<s f t"M(p, DS [e" M (p/, 1) — (£ 1 — £=3)|p/ (0)|1de

R
=s f 51 (M(p, DY M(p/,1)

1

_(tns—l _ tns—3){M(p, 1)}5_1|p/(0)|]dt

ns—2

2>{ﬂ4(p,1)}5‘1|p/(0)|

R™ —1 R™ -1 R
= M, DY *M(p/,1) — -
S [ ns { (p )} (p ) ( ns ns —

On applying Lemma 1 to the above inequality, we get for n > 2
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. S . S RTlS - 1
{p(Re®)}" = {p(re®)} | < mmmgm M. DY

Rns -1 RnS—Z -1
- ( ns ns—2

- ) {M(p, D¥1|p/(0)]

This gives

R™ — 1+ k™14 km
kn=1 4 fn

M, R} < M@, D}

RnS -1 RTLS—Z -1
_S —_—
( ns ns —2

from which proof of inequality (5) follows.

> M@, DY [p/ (0]

The proof of inequality (6) follows on the same lines as that of inequality (5), but

instead of using inequality (15) of Lemma 3 we use inequality (16) of Lemma 3.

Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as that of

Theorem 1. But for the sake of completeness we give a brief outline of the proof.

We first consider the case when polynomial p(z) is of degreen > 2, then the

polynomial p/(z) is of degree (n — 1) > 2, hence applying inequality (15) of

Lemma 3 to p/(z), we haveforr > 1 and 0 < 8 < 2m
I/ (re®)| <M (p/,1) = ¢t =1 )|p/ (0)]

Also foreach 6,0 < 60 < 2mand R = 1, we obtain
; d
(R ~ o)) = [ 2 pee)) ac
1

=[F s {p(te®)) " p/(tei®)ei® dt
This implies

[p(Re®)Y ~ {p(re®)Y’| < 5 [ [p(te®)[" |p/ (te'®)| dt

(21)

(22)

Inequality (22) in conjunction with inequalities (21) and (1), yields forn > 2
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l{p(Re®)} — {p(re®)}]

R
<s f[t"M(p, DS e tM(p/, 1) — (¢71 = t73)|p/ (0) |1dt
1

R

=s j =1 (M(p, DM (p/, 1)
1

_(tns—l _ tn5‘3){M(P, 1)}5_1|P/(0)|]dt

. [Rns_l {M(p, 1)}5_1M(p/, 1) _ (R"S—l _ RnS—Z—l) {M(P, 1)}5—1|p/(0)| ]

ns ns ns—2

Which on combining with lemma 2, yields forn > 2

[{p(Re®)} — {p(re®)}|

< R™ —1 nlanlkz + |an—1|
- kn nla,|(1 + k?) + 2|a,_4|

) M, D}

Rns -1 RnS—Z -1
—S
< ns ns—2

- ) {M(p, D}¥1|p/(0)]

From which we get the desired result.
The proof of inequality (10) follows on the same lines as that of inequality (9),
but instead of using inequality (15) of Lemma 3 we use inequality (16) of

Lemma 3.
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