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Abstract: In this paper, we developed an order seven linear multistep
method, which is implemented in predictor corrector-method. The corrector
is developed by method of collocation and interpolation of power series, ap-
proximate solutions at some selected grid points, to give a continuous linear
multistep method, which is evaluated at some selected grid points to give
a discrete linear multistep method of order seven. The predictors were also
developed by method of collocation and interpolation of power series approx-
imate solution, to give a continuous linear multistep method. The continuous
linear multistep method is then solved for the independent solution to give a
continuous block formula, which is evaluated at some selected grid points to
give discrete block method. Basic properties of the corrector was investigated
and found to be zero stable, consistent and convergent. The efficiency of the
method was tested on some numerical experiments and found to compare
favorably with the existing methods.
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1. INTRODUCTION

This paper considers numerical method for solving first order initial value problems
of the form

y′ = f(x, y), y(x0) = y0, (1)

where f is continuous and satisfies Lipschitz’s conditions. Problems in the form
(1) has wide application in physical sciences, engineering, electronics, medicine,
etc. Very often, these problems do not have close solution which necessitate the
derivation of numerical method to approximate solution.

Scholars have developed different numerical methods for the solution of initial
value problems of ordinary differential equations. Awoyemi (2001), Adesanya et al.
(2008), Awoyemi et al. (2008), Kayode and Adeyeye, (2011), to mention a few,
individually proposed a multiderivative method which is implemented in predictor-
corrector method. The major setback of this method is that the predictors are in
reducing order of accuracy; hence it affects the accuracy of the method.

Scholars later proposed block method to cater for some of the setbacks of predictor-
corrector method. This block method has the properties of Runge Kutta method
for being self-starting and does not refuse development of separate predictors or
starting values. Among the authors that proposed block method are; Jator (2007),
Awoyemi et al. (2011), Adesanya et al. (2012), Zarina et al. (2005).

Block method was found to be cost effective and give better approximation.
However, the setback of block method is that the interpolation point must not
exceed the order of the differential equation, hence block method cannot exceed all
the interpolation point, therefore method of lower order are developed.

Adesanya et al. (2012) developed a constant order predictor-corrector method
in order to cater for some of the setbacks of block method. This method combined
the properties of predictor corrector and block method. This method was found
to give better approximation than both the predictor–corrector method and block
method.

In this paper, we adopted the method proposed by Adesanya et al. (2012), to
solve a one-step method with six hybrid points.

2. METHODOLOGY

2.1. Derivation of Constant Order Predictor

We consider a power series approximate solution in the form;

y(x) =

s+r−1∑
j=0

ajx
j , (2)
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where r and s are the number of interpolation and collocation points respectively.
The first derivative of (4.2.1) gives

y′(x) =

s+r−1∑
j=1

jajx
j−1. (3)

Substituting (3) into (1) gives

f(x, y) =

s+r−1∑
j=1

jajx
j−1. (4)

Interpolating (2) at xn+r, r =
1

6
,

1

3
,

1

2
,

2

3
; and Collocating (4) at xn+s, s =

0,
1

3
,

2

3
, 1, gives a system of non linear equation in the form

AX = U (5)

where

A = [a0, a1, a2, a3, a5, a6, a7]
T

U = [yn+ 1
6
, yn+ 1

3
, yn+ 1

2
yn+ 2

3
, fn, fn+ 1

3
, fn+ 2

3
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T
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6
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3
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Solving (5) for the unknown coefficients using Gaussian elimination method gives

a continuous hybrid linear multistep method in the form

y (t) = α 1
6
yn+ 1

6
+α 1

3
yn+ 1

3
+α 1

2
yn+ 1

2
+α 2

3
yn+ 2

3
+h

 1∑
j=0

βjfn+j + β 1
3
fn+ 1

3
+ β 2

3
fn+ 2

3


(6)

where

α 1
6

=
1

91

(
171072t7 − 59852t6 + 830304t5 + 208032t3−

32544t2 − 578496

)
α 1

3
=

1

169

(
892296t7 − 28197726 + 3398598t5 + 5340063−

56212t2 − 1952289

)
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α 1
2

=
1

1183

(
−13856832t7 + 4425321t6 − 54517536t5 − 9774432t3+

1220832t2 + 32729152

)
α 2

3
=

1

1183

(
5386824t7 − 1673010366 + 19933398t5 + 3331974t3−

404262t2 − 11541498

)
β0 =

1

4732

(
59292t7 − 222264t6 + 340713t5 + 128613t3−

34046t2 + 4732t− 277140

)
β 1

3
=

1

4732

(
5088420t7 − 17057628t6 + 22328055t5 + 4668525t3−

633177t2 − 1440895

)
β 2

3
=

1
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(
232308t7 − 705672t6 + 821475t5 + 132387t3−

15858t2 − 466140

)
β1 =

1

4732

(
16524t7 − 43092t6 + 44685t5 + 6171t3−

703t2 + 232225

)
Evaluating (6) at t = 1 gives

yn+1 = −384

91
yn+ 1

6
− 1375

169
yn+ 1

3
+

54400

1183
yn+ 1

2
− 24600

1183
yn+ 2

3
+ (7)

h

(
− 25
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3
+
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fn+ 2

3
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90

1183
fn+1

)
2.2. Derivation of Predictor

Collocating (4) at xn+s, s = 0(
1

6
)1 and interpolating (2) at xn gives a system of

non-linear equations of the form (5) where

A = [a0, a1, a2, a3, a4, a5, a6, a7]T

U = [yn, fn, fn+ 1
6
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Solving for the unknown parameters ajs and substituting back into (2) gives a

continuous hybrid linear multistep method in the form

y(x) = α0yn + h

 1∑
j=0

βj(x)fn+j + β 1
6
fn+ 1

6
+ β 1

3
fn+ 1

3
+ β 1

2
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2
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 (8)
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where α0 = 1

β0 =
1

840

(
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6
= −

1

35

(
1944t7 − 7560t6 + 11718t5 − 9135t4 + 3654t3 − 630t2

)
β 1

3
=

1

280

(
38880t7 − 143640t6 + 207144t5 − 145215t4 + 49140t3 − 6300t3

)
β 1

2
= −

1

105

(
19440t7 − 68040t6 + 91476t5 − 58590t4 − 17780t3 − 2100t2

)
β 2

3
=

1

280

(
38880t7 − 12820t6 − 161784t5 − 96705t4 + 27720t3 − 3150t2

)
β 5

6
= −

1

35

(
1944t7 − 6048t6 + 7182t5 − 4095t4 + 1134t3 − 126t

)
β1 =

1

280

(
7776t7 − 22680t6 + 25704t5 − 14175t4 + 3836t3 − 420t2

)
t =

x− xn
h

, fn+j

Solving for the independent solution at the selected grid points gives a continous
block formula of the form

yn+k = yn + h

 1∑
j=0

σj(x)fn+j + σ 1
6
fn+ 1

6
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6

 (9)
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Evaluating (9) at t =
1

6
,

1

3
,

1

2
,

2

3
,

5

6
, 1.

A(0)Ym = eyn + h [dF (yn) + dF(Ym)] (10)

where A(0) = 6× 6 identity matrix,

e =
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0 0 0 0 0 1
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0 0 0 0 0 1
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0 0 0 0 0 1
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3. ANALYSIS OF THE BASIC PROPERTIES OF CORREC-
TOR

3.1. Order of the Method

We define a the linear operator L{y(x);h} on (7) as

L{y(x);h} = y(x)− αµ (x) yn+µ + h

 1∑
j=0

β (x) fn+j + βk(x)fn+k

 (11)

Expanding (7) in Taylor series expansion and comparing the coefficient of h gives

L {y(x) : h} =
(
C0y(x) + C1hy

′(x) + C2h
2y′′(x) + ...+ Cph

pyp(x)

+ Cp+1h
p+1yp+1(x) + Cp+2h

p+2yp+2(x) + ....
) (12)

Definition
The linear operator L and the associated continuous linear multistep method

(7) is said to be of order p if CO = C1 = C2 = ... = CP = 0 and Cp+1 6= 0. Cp+1 is
called the error constant and implies that the local truncation error is given by

tn+k = Cp+1h
p+1yp+1(x) +O

(
hp+2

)
tn+k (13)

C0 = C1 = ... = C6 = 0. = C7 = 0, C8 6= 0, hence the order of the method is 7 with
error constant cp+1 = −1.4678× 10−10.

3.2. Consistency of Our Schemes

3.2.1. Definition

A linear multistep method is said to be consistent if it has order ρ ≥ 1 and if
ρ (1) = 0, ρ′ (1) = σ (1) where ρ (r) is the first characteristic polynomial and σ(r)
is the second characteristic polynomial for our method.

3.2.2. Consistency

The first and second characteristic polynomial of (7) are given

ρ(r) = −384

91
z

1
6 − 3375

169
z

1
3 +

54400

1183
z

1
2 − 24600

1183
z

2
3

σ (r) =

(
− 25

1183
− 3600

1183
r

1
3 +

375

169
r

2
3 − 24600

1183
r

2
3

)
ρ (1) = 0, ρ

′(1) = σ (1) hence is consistent.

3.3. Zero Stability

A linear multistep method is said to be zero stable if the zeros of the first charac-
teristic polynomial σ(r) satisfies |r| = 1 is simple for our method. The root of the
first characteristic polynomial is 0 and 1.

36



James, A. A., Adesanya, O. A., & Fasasi, M. K./Progress in Applied Mathematics,
6 (1), 2013

3.4. Convergence

The necessary and sufficient condition for a linear multistep method to be conver-
gent is that it must be consistent and zero stable, hence our method is convergent.

4. NUMERICAL EXAMPLES

4.1. Problem 1

We consider a linear order ordinary differential equation:
y′ = −y, y(0) = 1, 0 ≤ x ≤ 1, h = 0.1,
Exact solution y(x) = e−x.
This problem was solved by Areo et al. (2011).

Table 1
Table 1 for Problem 1

x Exact solution Computed solution
Error in

new method
Error in Areo

0.1 0.90487418035959 0.90483741801514 1.7444(-11) 2.1(-10)
02 0.81873075307798 0.81873075306219 1.5783(-11) 2.2(-10)
0.3 0.74081822068171 0.74087822066743 1.4281(-11) 6.0(-10)
0.4 0.67032004603563 0.67032004602270 1.2925(-11) 1.0(-10)
0.5 0.60653065971263 0.60653065970093 1.1696(-11) 4.1(-10)
0.6 0.54881163609402 0.54881163608344 1.0580(-11) 7.0(-10)
0.7 0.49658530379140 0.49658530378183 9.5701(-11) 1.5(-10)
0.8 0.44932896411722 0.44932896410856 8.6612(-11) 7.0(-10)
0.9 0.40656965974050 0.40656965973276 7.8371(-11) 1.4(-10)
1.0 0.36787944117140 0.36787944116439 7.0927(-11) 8.0(-10)

Table 2
Table 2 for Problem 11

x Exact solution Computed solution
Error in

new method
Error in Areo

0.1 1.005012520857401 1.005012520875641 1.6554(-11) 2.6067(-11)
02 1.020201340026755 1.020201340070737 4.3981(-11) 8.4790(-11)
0.3 1.046027859908716 1.046027859987168 7.8451(-11) 1.8684(-10)
0.4 1.083287067674958 1.083287067801583 1.2662(-10) 3.5701(-10)
0.5 1.133148453066826 1.133148453263925 1.9709(-10) 6.1004(-10)
0.6 1.197217363131810 1.197217363423617 3.0180(-10) 1.6157(-09)
0.7 1.277621313204886 1.277621313662603 4.5771(-10) 1.6445(-09)
0.8 1.377129776433595 1.377127765025506 6.8954(-10) 2.6158(-09)
0.9 1.499302500056767 1.499502501090387 1.0336(-09) 4.1110(-09)
1.0 1.644872127070013 1.648721272243691 1.5435(-09) 1.5435(-09)
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4.2. Problem 11

y′ = xy, y(0) = 1, h = 0.1.

Exact solution: y(x) = e
1
2x

2

4.3. Problem 111

y′ = x− y, y(0) = 0, 0 ≤ x ≤ 1, h = 0.1.
Exact solution: y(x) = x+ e−x − 1.
This problem was solved by Areo et al. (2011).

Table 3
Table 3 for Problem 112

x Exact solution Computed solution
Error in

new method
Error in Areo

0.1 0.0048374180359576 0.0048374180151291 1.7443(-11) 0.000
02 0.0187307530779818 0.0187307530621957 1.5786(-11) 0.000
0.3 0.0408182206817178 0.0408182206673440 1.4283(-11) 6.0(-10)
0.4 0.0703200460356394 0.0703200460227154 1.2924(-11) 2.0(-10)
0.5 0.1065306597126334 0.1065306597009394 1.1694(-11) 7.0(-10)
0.6 0.1488116360940265 0.1488116360834448 1.0581(-11) 1.0(-10)
0.7 0.1965853037914095 0.1965853037818356 9.5739(-12) 8.0(-10)
0.8 0.2493289641172218 0.2493289641085604 8.6613(-12) 2.0(-10)
0.9 0.3065696597405995 0.3065696597327599 7.8396(-12) 9.0(-10)
1.0 0.3678794411714430 0.3678794411643524 7.0906(-12) 4.0(-10)

4.4. Discussion of the Result

In this paper, we have considered three numerical examples to test the efficiency of
our method. The three problems were solved by Areo et al. (2012). They proposed
a hybrid method of order seven and adopted classical Runge Kutta method to
provide the starting values. The new method gave better approximation because
the proposed method is self-starting and does not require starting values

4.5. Conclusion

In this paper, we have proposed an order seven continuous hybrid method for the
solution of first order initial value problems in ordinary differential equations. Our
method was found to be zero stable, consistent and converges. The numerical
examples show that our method gave better accuracy than the existing methods.
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