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Abstract: In this paper, the definition of a Q-P quantale module and some
relative concepts were introduced. Based on which, some properties of the
Q-P quantale module, and the structure of the free Q-P quantale modules
generated by a set were obtained. It was proved that the category of Q-P
quantale modules is algebraic.

Key words: Q-P quantale quantale modules; Equalizer; Forgetful functor;
Algebraic category

Liang, S. (2013). Algebraic Properties of the Category of Q-P Quantale Modules. Progress
in Applied Mathematics, 6 (1), 54–63. Available from http://www.cscanada.net/index.
php/pam/article/view/j.pam.1925252820130601.409 DOI: 10.3968/j.pam.1925252820130
601.409

1. INTRODUCTION

Quantale was proposed by Mulvey in 1986 for studying the foundations of quantum
logic and for studying non-commutation C*-algebras. The term quantale was coined
as a combination of “quantum logic” and “locale” by Mulvey in [1]. The systematic
introduction of quantale theory came from the book [2], which written by Rosenthal
in 1990.
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Since quantale theory provides a powerful tool in studying noncommutative
structures, it has a wide applications, especially in studying noncommutative C*-
algebra theory [3], the ideal theory of commutative ring [4], linear logic [5] and so
on. So, the quantale theory has aroused great interests of many scholar and experts,
a great deal of new ideas and applications of quantale have been proposed in twenty
years [6–18].

Since the ideal of quantale module was proposed by Abramsky and Vickers [19],
the quantale module has attracted many scholars eyes. With the development of the
quantale theory, the theory of quantale module was studied deeply in [20–25]. In
this paper, some properties of the category of Q-P quantale modules was discussed,
especially that the category of Q-P quantale modules is algebraic was proved.

2. PRELIMINARIES

Definition 2.1 [2] A quantale is a complete lattice Q with an associative binary
operation “&” satisfying:

a&(
∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a),

for all a, bi ∈ Q, where I is a set, 0 and 1 denote the smallest element and the
greatest element of Q respectively.

Definition 2.2 A nonzero element a in a quantale Q is said to be a nonzero
divisor if for all nonzero element b ∈ Q such that a&b 6= 0, b&a 6= 0. Q is nonzero
divisor if every a ∈ Q is a nonzero divisor.

Definition 2.3 Let Q,P be a quantale, a Q-P quantale module over Q,P
(briefly, a Q-P-module) is a complete lattice M , together with a mapping T :
Q×M × P −→M satisfies the following conditions:

(1) T (
∨
i∈I

ai,m,
∨
j∈J

bj) =
∨
i∈I

∨
j∈J

T (ai,m, bj);

(2) T (a, (
∨

k∈K
mk), b) =

∨
k∈K

T (a,mk, b);

(3) T (a&b,m, c&d) = T (a, T (b,m, c), d) for all ai, a, b ∈ Q, bj , c, d ∈ P , mk,m ∈
M . We shall denote the Q-P quantale module M over Q,P by (M, T ).

If Q is unital quantale with unit e, we define T (e,m, e) = m for all m ∈M .

Example 2.4 (1) Let Q = P = {0, a, b, c, 1} be a set, M = {0, d, e, 1} is a
complete lattice. The order relations of Q and M are given by the following figure
1 and 2, we give a binary operator “&” on Q satisfying the diagram 1.

@
@

�
�

�
�

@
@
◦ ◦

◦

◦

◦

1

0

a cb

Figure 1

& 0 a b c 1

0 0 0 0 0 0

a 0 b c a 1

b 0 c a b 1

c 0 a b c 1

1 0 1 1 1 1

Diagram 1

@
@

�
�

�
�

@
@
◦ ◦

◦

◦

1

0

d e

Figure 2

We can prove that Q is a quantale.
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Now, define a mapping T : Q×M ×Q −→M such that T (x,m, y) = m for all
x, y ∈ Q, m ∈M . Then (M, T ) be a Q-P quantale module.

(2) Let Q = P = {0, a, b, 1} be a complete lattice. The order relation on Q
satisfies the following Figure 3 and the binary operation of Q satisfies the diagram
2:

@
@

�
�

�
�

@
@
◦ ◦

◦

◦

1

0

a b

Figure 3

& 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

Diagram 2

It is easy to show that (Q,&) is a quantale. Let M = {0, a, 1} ⊆ Q, then M is a
complete lattice with the inheriting order on Q. Now, we define T : Q×M ×Q −→
M satisfies T (x,m, y) = x&m&y for all x, y ∈ Q, m ∈ M . Then (M, T ) is a Q-P
quantale module.

Definition 2.5 Let Q,P be a quantale, (M1, T1) and (M2, T2) are Q-P quantale
modules. A mapping f : M1 −→ M2 is said to be a Q − P quantale module
homomorphism if f satisfies the following conditions:

(1) f(
∨
i∈I

mi) =
∨
i∈I

f(mi);

(2) f(T1(a,m, b)) = T2(a, f(m), b) for all a ∈ Q,b ∈ P , mi,m ∈M .

Definition 2.6 Let (M,TM ) be a Q − P quantale module over Q,P , N be a
subset of M , N is said to be a submodule of M if N is closed under arbitrary join
and TM (a, n, b) ∈ N for all a ∈ Q,b ∈ P , n ∈ N.

Definition 2.7 [26] A concrete category (A, U) is called algebraic provided that
it satisfies the following conditions:

(1) A has coequalizers;

(2) U has a left adjoint;

(3) U preserves and reflects regular epimorphisms.

3. THE CATEGORY OF Q-P QUANTALE MODULES IS
ALGEBRAIC

Definition 3.1. Let Q,P be a quantale, QModP be the category whose objects
are the Q-P quantale modules of Q,P , and morphisms are the Q-P quantale module
homomorphisms, i.e.,

Ob(QModP)={ M : M is Q-P quantale modules},
Mor(QModP)={f : M−→ N is the Q-P quantale modules homorphism}.

Hence, the category QModP is a concrete category.

Definition 3.2. Let Q,P is a quantale, (M,TM ) is a Q-P quantale module,
R ⊆M ×M . The set R is said to be a congruence of Q-P quantale module on M
if R satisfies:

(1) R is an equivalence relation on M;

(2) If (mi, ni) ∈ R for all i ∈ I, then ( ∨
i∈I

mi, ∨
i∈I

ni) ∈ R;

56



Liang, S./Progress in Applied Mathematics, 6 (1), 2013

(3) If (m,n) ∈ R, then (TM (a,m, b), TM (a, n, b)) ∈ R for all a ∈ Q,b ∈ P .
We denote the set of all congruence on M by Con(QMP ), then Con(QMP ) is a

complete lattice with respect to the inclusion order.
Let Q,P be a quantale, M is a Q-P quantale module, R is a congrence of Q-P

quantale module on M , define the order relation on M/R such that [m] ≤ [n] if and
only if [m ∨ n] = [n] for all [m], [n] ∈M/R.

Theorem 3.3. Let Q,P be a quantale, M be a Q-P quantale module, R be a
congrence of double quantale module on M . Define TM/R : Q×M/R×P −→M/R
such that TM/R(a, [m], b) = [TM (a,m, b)] for all a ∈ Q,b ∈ P , [m] ∈ M/R, then
(M/R, TM/R) is a Q-P quantale module and π : m 7→ [m] : M −→ M/R is a Q-P
quantale module homomorphisms.

Proof. (1) We will prove that “ ≤ ”is a partial order on M/R, and TM/R is well
defined. In fact, for all [m], [n], [l] ∈M/R,

(i) It’s clearly that [m] ≤ [m];
(ii) Let [m] ≤ [n], [n] ≤ [m], then [m∨ n] = [n]and[n∨m] = [m], thus [m] = [n];
(iii) Let [m] ≤ [n], [n] ≤ [l], then [m ∨ n] = [n]and[n ∨ l] = [l], therefore

[m ∨ l] = [m ∨ (n ∨ l)] = [(m ∨ n) ∨ e] = [n ∨ l] = [l].
If [m1] = [m2], then (m1,m2) ∈ R, (TM (a,m, b), TM (a, n, b)) ∈ R for all a, b ∈ Q,

i.e., [TM (a,m, b)] = [TM (a, n, b)], thus TM/R is well defined.
(2) We will prove that (M/R,≤) is a complete lattice. Let {[mi] | i ∈ I} ⊆M/R,

we have
(i) Since [mi ∨ (

∨
i∈I

mi)] = [
∨
i∈I

mi] for all i ∈ I, then [mi] ≤ [
∨
i∈I

mi];

(ii) Let [m] ∈ M/R and [mi] ≤ [m] for all i ∈ I, then [mi ∨ m] = [m] for all
i ∈ I, hence, [(

∨
i∈I

mi) ∨m] = [
∨
i∈I

(mi ∨m)] = [m], i.e., [
∨
i∈I

mi] ≤ [m].

Thus
M/R∨
i∈I

[mi] = [
∨
i∈I

mi].

(3) For all {ai | i ∈ I} ⊆ Q, {bj | j ∈ J} ⊆ Q, {[ml] | l ∈ H} ⊆ M/R,
a, b ∈ Q,c, d ∈ P, [m] ∈M/R, we have that

(i) TM/R(
∨
i∈I

ai, [m],
∨
j∈J

bj) = [TM (
∨
i∈I

ai,m,
∨
j∈J

bj)] = [
∨
i∈I

∨
j∈J

TM (ai,m, bj)]

=
∨
i∈I

∨
j∈J

TM [ai,m, bj ] =
∨
i∈I

∨
j∈J

TM/R(ai, [m], bj);

(ii) TM/R(a, (
∨
j∈J

[mj ]), b) = TM/R(a, [
∨
j∈J

mj ], b) = [TM (a, (
∨
j∈J

mj), b)] = [
∨
j∈J

TM (a,mj , b)]

=
∨
j∈J

[TM (a,mj , b)] =
∨
j∈J

TM/R(a, [mj ], b);

(iii) TM/R(a&b, [m], c&d) = [TM (a&b,m, c&d)] = [TM (a, TM (b,m, c), d)]
= TM/R(a, [TM (b,m, c)], d) = TM/R(a, TM/R(b, [m], c), d).

Then (M/R, TM/R) is a Q-P quantale module.
(4) For all {[mi] | i ∈ I} ⊆M/R, a ∈ Q,b ∈ P, [m] ∈M/R,
π(
∨
i∈I

mi) = [
∨
i∈I

mi] =
∨
i∈I

[mi] =
∨
i∈I

π(mi);

π(TM (a,m, b)) = [TM (a,m, b)] = TM/R(a, [m], b) = TM/R(a, π(m), b).
So π : m 7→ [m] : M −→M/R is a Q-P quantale module homomorphisms.

Theorem 3.4. Let Q,P be a quantale, M a double quantale module, then
4 = {(x, x) | x ∈M} is a congrence of Q-P quantale module on M .

Theorem 3.5. Let Q,P be a quantale, M and N be Q-P quantale modules,
f : M −→ N a Q-P quantale module homphorism, R a Q-P quantale module
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congrence on N . Then f−1(R) = {(x, y) ∈ M ×M | (f(x), f(y)) ∈ R} is a Q-P
quantale module congrence on M .

Theorem 3.6. Let Q,P be a quantale, M and N are Q-P quantale modules,
f : M −→ N be a Q-P quantale module homphorism. Then f−1(4) = {(x, y) ∈
M ×M | f(x) = f(y)} be a Q-P quantale module congrence on M , where 4 =
{(a, a) | a ∈ N}.

Let Q,P be a quantale, M be a Q-P quantale module, R ⊆ M × M , since
Con(QMP ) is a complete lattice, there exists a smallest Q-P quantale congrence
containing R , which is the intersection all the Q-P quantale module congrence
containing R on M . We said that this congrence is generated by R.

Theorem 3.7. The category QModP has coequalizer.

M

f

g
N E′

h

E

π
h

-
-

-

?
�
�
�
���

Proof. Let Q,P be a quantale, (M,TM ) and (N,TN ) be Q-P quantale modules, f
and g be Q-P quantale module homomorphisms, Suppose R is the smallest con-
grence of the Q-P quantale modules on N , which contain {(f(x), g(x)) | x ∈ M}.
Let E = N/R, π : N −→ N/R is the canonical mapping, then (N/R, TN/R) is a
Q-P quantale module and π is a Q-P quantale module homomorphisms by theorem
3.3 . We will prove that (π,E) is the coequalier of f and g. In fact,

(1) π ◦ f = π ◦ g is clear

(2) Let (E′, TE′) be a Q-P quantale module, h : N −→ E′ be a Q-P quantale
module homomorphisms such that h ◦ f = h ◦ g. Let R1 = h−1(4), where 4 =
{(x, x) | x ∈ E′}. By theorem 3.5, we can see that R1 is a congrence of Q-P quantale
module on N . Since h(f(x)) = h(g(x)) for all x ∈ M , then (f(x), g(x)) ∈ R1.
Define h : N/R −→ E′such that h([n]) = h(n) for all [n] ∈ Q/R. Let n1, n2 ∈ N
and (n1, n2) ∈ R, then (n1, n2) ∈ R1, and we have that h(n1) = h(n2). Therefore h
is well defined.

For all {[ni] | i ∈ I} ⊆ N/R, a, b ∈ Q, [n] ∈ N/R, we have that

h(
∨
i∈I

[ni]) = h([
∨
i∈I

ni]) = h(
∨
i∈I

ni) =
∨
i∈I

h(ni) =
∨
i∈I

h([ni]);

h(TN/R(a, [n], b)) = h([T (a, n, b)]) = h(T (a, n, b)) = TE′(a, h(n), b) = TE′(a, h([n]), b).

Thus, h is a Q-P quantale module, and h is the unique homomorphism satisfy
h ◦ π = h. Therefore (π,E) is the coequalizer of f and g.

From now until the end of Section 3, we suppose Q be a unital quantale with unit
e. Let X be a nonempty set, we consider the complete lattice (QX ,

∨X
), where QX

is the set of all the function from X to Q and (
∨X

i∈I
fi)(x) =

∨
i∈I

fi(x) for all x ∈ X.

Theorem 3.8. Let X be a nonempty set, and Q is idempotent and unital
quantale with unit e, define TX : Q × QX × Q −→ QX such that TX(a, f, b)(x) =
a&f(x)&b, for all a, b ∈ Q, f ∈ QX , x ∈ X. Then (QX , TX) is the free double
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quantale module generated by X, equipped with the map ϕ : x ∈ X 7−→ ϕx ∈ QX ,

where ϕx is defined by ϕx(y) =

{
0, y 6= x,
e , y = x.

for all y ∈ X.

Proof. It’s easy to prove that (QX , TX) is a double quantale module. Let (M,TM )
be any double quantale module and g : X −→ M be an arbitrary map. First ob-
serve that for all f ∈ QX , Q be a unital quantale with unit e, hence f = TX(e, f, e)
by definition 2.2. So every elments of QX could denote by TX(c, f, d) for some
c, d ∈ Q, f ∈ QX . Define map hg : QX −→ M such that hg(TX(c, f, d)) =∨
x∈X

TM (c, TM (f(x), g(x), f(x)), d), for all TX(c, f, d) ∈ QX , c, d ∈ Q.

For all x′ ∈ Z, (hg◦ϕ)(x′) = hg(ϕx′) =
∨

x∈X
TM (ϕx′(x), g(x), ϕx′(x)) = TM (e, g(x), e) =

f(x), hence hg ◦ ϕ = f . This implies that the following diagram commute.

X QXϕ

hg

M

g

-

?

@
@
@
@R

We will prove that hg is a Q-P quantale module homomorphism.

For all {fi}i∈I , a, b ∈ Q, f ∈ QX , we have

(i)hg(
∨
i∈I

fi) = hg(TX(e,
∨
i∈I

fi, e)

=
∨
x∈X

TM (e, TM (
∨
i∈I

fi, g(x),
∨
i∈I

fi), e)

=
∨
x∈X

TM (
∨
i∈I

fi, g(x),
∨
i∈I

fi)

=
∨
i∈I

∨
x∈X

TM (fi, g(x), fi)

=
∨
i∈I

hg(fi);

(ii)hg(TX(a, f, b)) =
∨
x∈X

TM (a, TM (f(x), g(x), f(x)), b)

= TM (a,
∨
x∈X

TM (f(x), g(x), f(x)), b)

= TM (a, hg(f), b).

Therefore, hg is a Q-P quantale module homomorphism.

Next, we will prove that hg is an unique Q-P quantale module homomorphism
satisfying the above conditions.

Now, let h′g : QX −→ M be another unique Q-P quantale module homomor-
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phism such that h′g ◦ ϕ = g. For all TX(c, f, d) ∈ QX , we have

hg(TX(c, f, d)) =
∨
x∈X

TM (c, TM (f(x), g(x), f(x)), d)

=
∨
x∈X

TM (c, TM (f(x), (h′g ◦ ϕ)(x), f(x)), d)

= TM (c, h′g(
∨
x∈X

TX(f(x), ϕx, f(x))), d)

= TM (c, h′g(f), d) (
∨
x∈X

TX(f(x), ϕx, f(x)) = f)

= h′g(TX(c, f, d)).

Therefore, (QX , TX) is the free Q-P quantale module generated by X, equipped
with the map ϕ.

Definition 3.9. Let X be a nonempty set, Q,P is unital quantale , (QX , TX)
is called free Q-P quantale module generated by X.

Theorem 3.10. The forgetfull functor U : QModP −→ Set have a left adjoint.

Proof. Let X and Y be nonempty sets, (QX , TX) and (QY , TY ) be the free Q-p
quantale module generated by X and Y respectively.

Corresponding map f : X −→ Y defines M(f) : QX −→ QY such that
M(f)(g)(y) =

∨
{g(x) | f(x) = y, x ∈ X}, for all g in QX , y ∈ Y . Obiviously,

M(f) is well defined.
We check M(f) is a Q-p quantale module homomorphism.
For all gi, g ∈ QX , a ∈ Q, b ∈ P, y ∈ Y we have

(i)M(f)(
∨
i∈I

gi) =
∨
{
∨
i∈I

gi(x) | f(x) = y, x ∈ X}

=
∨
i∈I

(
∨
{gi(x) | f(x) = y, x ∈ X})

=
∨
i∈I

M(f)(gi)(y).

Thus M(f) preserves arbitrary joins.

(ii)M(f)(TX(a, g, b))(y) =
∨
{TX(a, g, b)(x) | f(x) = y, x ∈ X}

=
∨
{a&g(x)&b | f(x) = y, x ∈ X}

= a&(
∨
{g(x) | f(x) = y, x ∈ X})&b

= a&(M(f)(g)(y))&b

= TY (a,M(f)(g), b)(y).

Thus M(f)(TX(a, g, b))(y) = TY (a,M(f)(g), b)(y). It is readily verified that
M(f) is a Q-P quantale module homomorphism.

Next, we will check that M : Set −→ QModP is a functor.
Let f : X −→ Y , g : Y −→ Z, idX is the identity function on X. For all h ∈ QX ,
x ∈ X, z ∈ Z, we have
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(i) M(idX)(h)(x) =
∨
{h(x) | idX(x) = x} = h(x) = idQX (h)(x), it shows that

M preserves identity function.

(ii)(M(g) ◦M(f))(h)(z) =
∨
{M(f)(h)(y) | g(y) = z, y ∈ Y }

=
∨
{
∨
{h(x) | f(x) = y, x ∈ X} | g(y) = z, y ∈ Y }

=
∨
{h(x) | f(x) = y, g(y) = z, x ∈ X, y ∈ Y }

=
∨
{h(x) | g(f(x)) = z, x ∈ X}

= M(g ◦ f)(h)(z),

then M preserves composition.
Finally, we will prove that M is the left adjoint of U .
By theorem 3.8, we have (QX , TX) is the free Q-P quantale module generated

by X, equipped with the map ϕ, therefore, M is the left adjoint of U .

Theorem 3.11. The forgetful functor U : QModP −→ Set preserves and
reflects regular epimorphisms.

Proof. It is easy to be verified that the forgetful functor U preserves regular epi-
morphisms. We will check the forgetful functor U reflects regular epimorphisms.

At first, every regular epimorphisms is a surjective homomorphism in QModP

by Theorem 3.7.
Next, we prove that every surjective homomorphism is a regular epimorphisms

in QModP.
Let h : M1 −→M2 be a surjective Q-P quantale module homomorphism. Since

the surjective morphism is an regular epimorphism in Set. Then h is a regular
epimorphism in Set, there exists a set X and maps f, g such that (h,M2) is a
coequalizer of f and g.

Let (QX , TX) be a Q-P quantale module generated by X. Since Q be a unital
quantale with unit e, hence s = TX(e, s, e) for all s ∈ QX .

Define map hf , hg : QX −→M such that

hf (TX(a, s, b)) =
∨
x∈X

TM1(a, TM1(s(x), f(x), s(x)), b).

hg(TX(a, s, b)) =
∨
x∈X

TM1
(a, TM1

(s(x), g(x), s(x)), b),

for all TX(a, s, b) ∈ QX , s ∈ QX , a, b ∈ Q.
We know that hf and hg are Q-P quantale module homomorphisms by theorem

3.8.
Since hf is a Q-P quantale module homomorphism, and h ◦ f = h ◦ g, then

h ◦ hf = h ◦ hg. Suppose there is a Q-P quantale module homomorphism h′ :
M1 −→M2 with h′ ◦ hf = h′ ◦ hg, then we have h′ ◦ f = h′ ◦ g.

Because (h,M2) is the coequalizer of f and g, there is a unique Q-P quantale
module homomorphism h : M2 −→M3 such that h′ = h◦h. Since h is a surjective of
Q-P quantale module homomorphism, then there exists x′, y′ ∈ M1 and {x′i}i∈I ⊆
M1 such that h(x1) = x, h(y1) = y, h(x′i) = xi.
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We check that h be a Q-P quantale module homomorphism in the following.

(i) h(
∨
i∈I

xi) = h(
∨
i∈I

h(x′i)) = hh(
∨
i∈I

x′i) = h′(
∨
i∈I

x′i) =
∨
i∈I

h(x′i) =
∨
i∈I

hh(x′i) =∨
i∈I

h(xi),

(ii) For any a ∈ Q, b ∈ P, m ∈ M2, since h is a surjective of double quantale
module homomorphism, there exists m′ in M such that h(m′) = m.

So we have T3(a, h(m), b) = T3(a, h(h(m′)), b) = T3(a, h′(m′), b) = h′(T1(a,m′, b))
= hh(T1(a,m′, b)) = h(T2(a, h(m′), b) = h(T2(a,m, b)).

Hence, (h,M2) is an coequalizer of hf and hg in QModP, so h is a regular epi-
morphism in QModP. Therefore, the regular epimorphisms are precisely surjective
homomorphisms in QModP. Since the forgetfull functor U : QModP −→ Set
reflects surjective homomorphisms, hence U : QModP −→ Set reflects regular
epimorphisms.

X

f

g
M1 M3

h′

M2

h
h

-
-

-

?
�
�
�
���

QX

hf

hg

M1 M3
h′

M2

h
h

-
-

-

?
�
�
�
���

The combination of theorem 3.7, theorem 3.10 and theorem 3.11, we can obtain
the main result of this paper.

Theorem 3.12. The category QModP is algebraic.
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