Progress in Applied Mathematics Vol. 5, No. 2, 2013, pp. [1–5] **DOI:** 10.3968/j.pam.1925252820130502.643

The Subclasses of Characterization on ∏^{*}-Regular Semigroups

LUO Xiaoqiang^{[a],*}

^[a]Department of Mathematics, Sichuan University of Arts and Science, China.

* Corresponding author.

Address: Department of Mathematics, Sichuan University of Arts and Science, Dazhou, 635000, China; E-Mail: lxq1128@163.com

Received: January 2, 2013/ Accepted: February 26, 2013/ Published: April 30, 2013

Abstract: In the paper, we define the equivalence relations on Π^* -regulur semigroups, to show L^* , R^* , H^* , J^* -class contains an idempotent with some characterizations.

Key words: Π*-regular semigroup; Completely Π*-regular semigroup; Subclass; Idempotent

Luo, X. (2013). The Subclasses of Characterization on Π^* -Regular Semigroups. Progress in Applied Mathematics, 5(2), 1–5. Available from http://www.cscanada.net/index.php/pam/article/view/j.pam.1925252820130502.643 DOI: 10.3968/j.pam.1925252820130502.643

1. INTRODUCTION

An element d of a semigroup S is Π^* -regular, if S_1 and S_2 are non-empty regular semigroups, and S is all non-empty subset of $S_1 \times S_2$, for any $a \in S_1$, $b \in S_2$, $(a,b) = d \in S$, there exist $m \in Z^+$, $(x,y) \in S$, such that

$$(a,b)^m = (a,b)^m (x,y)(a,b)^m.$$

A semigroup S is Π^* -regular, if every element of S is Π^* -regular. A semigroup S is completely Π^* -regular, if S is Π^* -regular, for any $(a, b) \in S$ and element (a, b) is a regular, there exist $m \in Z^+$, $(x, y) \in S$, such that $(a, b)^m(x, y) = (x, y)(a, b)^m$ [1].

In this paper, we consider some special case of Π^* -regular semigroups and completely Π^* -regular semigroups.

Remark The marks we don't illustrate in this paper please see reference [2].

Now let S be a $\Pi^*\text{-regular semigroup.}$ Define the equivalence relations $L^*,\,R^*,\,H^*,\,J^*$ on S by

$$(a,b)L^*(x,y) \Leftrightarrow S(a,b)^m = S(x,y)^n$$
$$(a,b)R^*(x,y) \Leftrightarrow (a,b)^m S = (x,y)^n S$$
$$H^* \Leftrightarrow L^* \cap R^*$$
$$(a,b)J^*(x,y) \Leftrightarrow S(a,b)^m S = S(x,y)^n S$$

where m, n are the smallest positive integers such that $(a, b)^m$, $(x, y)^n$ are regular, i.e., $(a, b)^m$, $(x, y)^n \in S$. In what follows we will denote by $L^*_{(a,b)}(R^*_{(a,b)}, H^*_{(a,b)}, J^*_{(a,b)})$ the L^*- , R^*- , H^*- , J^*- class containing an element (a, b) of S. According to the hypothesis, we can easily draw the following lemma.

Lemma 1. Let S be a Π^* -regular semigroup. Then every $L^*(R^*)$ -class contains at least one idempotent.

Lemma 2. Let S be a Π^* -regular semigroup. Then each idempotent (e, e) of S is a right (left, two-sided) identity for regular elements from $L^*_{(e,e)}(R^*_{(e,e)}, J^*_{(e,e)})$.

Lemma 3. In a Π^* -regular semigroup S every H^* -class contains at most one idempotent.

Lemma 4. Let S be a Π^* -regular semigroup, $(a, b) \in S$ and p be the smallest positive integers such that $(a, b)^p \in S$. Then $(a, b)^p \in L^*_{(a,b)} \cap R^*_{(a,b)} = H^*_{(a,b)}$.

2. MAIN RESULTS

Let V be the set of all inverse elements of S [3], E is the set of all idempotent of S. Here we get a good result.

Theorem 1. Let (a, b) and (x, y) be element of a Π^* -regular semigroup S. Then

$$\begin{aligned} &(1)(a,b)L^*(x,y) \Leftrightarrow \exists (a,b)', \ (x,y)' \in V, \ (a,b)'(a,b)^m = (x,y)'(x,y)^n; \\ &(2)(a,b)R^*(x,y) \Leftrightarrow \exists (a,b)', \ (x,y)' \in V, \ (a,b)^m (a,b)' = (x,y)^n (x,y)'; \\ &(3)(a,b)H^*(x,y) \Leftrightarrow \exists (a,b)', \ (x,y)' \in V, \ (a,b)'(a,b)^m = (x,y)'(x,y)^n, \\ &(a,b)^m (a,b)' = (x,y)^n (x,y)'. \end{aligned}$$

Proof. Obviously we only need to prove (3). Let $(a, b), (x, y) \in H^*$ and $(a, b)', (x, y)' \in V$. Then

$$(e, e) = (a, b)'(a, b)^m \in L^*_{(a, b)} \cap E = L^*_{(x, y)} \cap E;$$

$$(f, f) = (a, b)^m (a, b)' \in R^*_{(a, b)} \cap E = R^*_{(x, y)} \cap E;$$

So

$$(x, y)^n = (x, y)^n (e, e) = (f, f)(x, y)^n$$

$$(f, f) = (x, y)^n (u, v), \ (e, e) = (s, t)(x, y)^n ((u, v), (s, t) \in S).$$

Assume that (x, y)' = (e, e)(u, v)(f, f) then $(x, y)' \in V$. We will find

$$\begin{aligned} &(x,y)^n(x,y)'(x,y)^n = (x,y)^n(e,e)(u,v)(f,f)(x,y)^n \\ &= &(x,y)^n(u,v)(x,y)^n = (f,f)(x,y)^n = (x,y)^n; \\ &(x,y)'(x,y)^n(x,y) = (e,e)(u,v)(f,f)(x,y)^n(e,e)(u,v)(f,f) \\ &= &(e,e)(u,v)(x,y)^n(u,v)(f,f) = (e,e)(u,v)(f,f) = (x,y)', \end{aligned}$$

Now

$$(x,y)^{n}(x,y)' = (x,y)^{n}(e,e)(u,v)(f,f)$$

=(x,y)^{n}(u,v)(f,f) = (f,f) = (a,b)^{m}(a,b)';

$$(x,y)'(x,y)'' = (e,e)(u,v)(f,f)(x,y)'' = (s,t)(x,y)''(u,v)(f,f)(x,y)'' = (s,t)(f,f)(x,y)'' = (s,t)(x,y)'' = (e,e) = (a,b)'(a,b)'''.$$

Conversely, if $(a,b)'(a,b)^m = (x,y)'(x,y)^n$ and $(a,b)^m(a,b)' = (x,y)^n(x,y)'$ for some $(a,b)', (x,y)' \in V$, then

$$(a,b)^m = (a,b)^m (a,b)' (a,b)^m = (a,b)^m (x,y)' (x,y)^n = (x,y)^n (x,y)' (a,b)^m (x,y)^n = (x,y)^n (x,y)' (x,y)^n = (x,y)^n (a,b)' (a,b)^m = (a,b)^n (a,b)' (x,y)^n$$

hence

$$S(a,b)^m = S(x,y)^n, \ (a,b)^m S = (x,y)^n S$$

whence $(a, b)H^*(x, y)$.

Theorem 2. Let (e, e) be an idempotent of a Π^* -regular semigroup S. Then $G_{e,e} \subseteq H^*_{(e,e)}$, furthermore, if $(u, v) \in H^*_{(e,e)}$ and p is the smallest positive integer such that $(u, v)^p \in S$, then $(u, v)^q \in G_{(e,e)}$ for every $q \ge p$.

Proof. Let $(a, b) \in G_{(e,e)}$ and let (s, t) be an inverse element for (a, b) in $G_{(e,e)}$ [4]. Since (s, t)(a, b) = (e, e) = (a, b)(s, t), we obtain that $(s, t) \in V$, so by theorem 1 $(a, b) \in H^*_{(e,e)}$. Hence $G_{(e,e)} \subseteq H^*_{(e,e)}$.

Assume $(u, v) \in H^*_{(e,e)}$ and let p be the smallest positive integer such that $(u, v)^p \in S$. By theorem 1 (3) there exists $(u, v)' \in V$ such that $(u, v)'(u, v)^p = (e, e) = (u, v)^p (u, v)'$. So $(u, v)^p$ is completely regular, i.e., $(u, v)^p \in G_{(f,f)}$. It is easy to show that (e, e) = (f, f). Therefore $(u, v)^q \in G_{(e,e)}, q \ge p$.

By theorem 1 and theorem 2, we obtain the following case.

Proposition. S is a Π^* -regular semigroup if and only if S is completely regular semigroup and H^* -class contains an idempotent.

Lemma 5. Let S be a Π^* -regular semigroup. Then

(1) every J^* -class contains at least one idempotent;

(2) $G_{(e,e)} \subseteq H_{(e,e)} \subseteq J_{(e,e)}$ for every $e \in E$.

Lemma 6. Let S be a Π^* -regular semigroup. Then (for some $(e, e), (f, f) \in E$)

$$J^*_{(e,e)} = J^*_{(f,f)}, (e,e)(f,f) = (f,f)(e,e) = (f,f) \Rightarrow (e,e) = (f,f)$$

Proof. It follows from that S(e, e)S = S(f, f)S that

$$(e,e) = (u,v)(f,f)(s,t) \quad ((u,v), \ (s,t) \in S).$$

Suppose that

$$(a,b) = (e,e)(u,v)(e,e),$$

then

$$\begin{aligned} (a,b) &= (e,e)(u,v)(e,e) \\ &= (e,e)(u,v)(e,e)(f,f)(s,t)(e,e)(u,v)(e,e) \\ &= (a,b)(f,f)(s,t)(a,b). \end{aligned}$$

By the hypothesis that there exists $(a, b)' \in S$, such that

$$(a,b) = (a,b)(a,b)'(a,b), \ (a,b)'(a,b) = (a,b)(a,b)'.$$

Now we assume (x, y) = (e, e)(s, t)(e, e), then

$$\begin{aligned} (a,b)(f,f)(x,y) &= (e,e)(u,v)(e,e)(f,f)(e,e)(s,t)(e,e) \\ &= (e,e)(u,v)(f,f)(s,t)(e,e) = (e,e) \end{aligned}$$

Therefore,

$$(e, e) = (a, b)(f, f)(x, y) = (a, b)(a, b)'(a, b)(f, f)(x, y)$$

= $(a, b)(a, b)'(e, e) = (a, b)'(a, b)(e, e) = (a, b)'(a, b).$

Hence,

$$\begin{aligned} (e,e) &= (a,b)'(a,b) = (a,b)'(e,e)(a,b) \\ &= (a,b)'(a,b)(f,f)(x,y)(a,b) = (e,e)(f,f)(x,y)(a,b)(f,f)(x,y)(a,b). \end{aligned}$$

Thus

$$(e,e) = (f,f)(e,e)$$

and whence

$$(e,e) = (f,f)$$

Lemma 7. Let S be a Π^* -regular semigroup. Then for some $(u, v) \in S$, $(e, e) \in E$,

$$J_{(e,e)}^{*} = J_{(e,e)(u,v)(e,e)}^{*} \Rightarrow (e,e)(u,v)(e,e) \in G_{(e,e)}.$$

Proof. This is obvious. Here we don't prove it.

Theorem 3. Let S be a Π^* -regular semigroup. Then (for some (a, b), $(x, y) \in S$),

$$J^*_{(a,b)(x,y)} = J^*_{(x,y)(a,b)}$$

Proof. Let p and q be the smallest positive integers such that

 $((a,b)(x,y))^p$, $((x,y)(a,b))^q \in S$.

Then

$$((a,b)(x,y))^{p} \in G_{(e,e)} \subseteq J_{(e,e)}^{*},$$
$$((x,y)(a,b))^{q} \in G_{(f,f)} \subseteq J_{(f,f)}^{*}.$$

Whence by [5] we obtain

$$((a,b)(x,y))^{p+m} \in G_{(e,e)} \subseteq J_{(e,e)},$$
$$((x,y)(a,b))^{q+n} \in G_{(f,f)} \subseteq J^*_{(f,f)}.$$

For every $p, q \ge 0$, so

$$((a,b)(x,y))^m J^*((a,b)(x,y))^{p+m},((x,y)(a,b))^n J^*((x,y)(a,b))^{q+n}.$$

And for $k = \max(m, n)$, we have

$$S((a,b)(x,y))^m S = S((a,b)(x,y))^{k+1}S,$$

=S(a,b)((x,y)(a,b))^k(x,y)S \le S((x,y)(a,b))^k S \le S((x,y)(a,b))^n S.

Similarly,

$$S((x,y)(a,b))^n S \subseteq S((a,b)(x,y))^m S$$

Thus,

$$S((a,b)(x,y))^m S = S((x,y)(a,b))^n S$$

That is

$$J^*_{(a,b)(x,y)} = J^*_{(x,y)(a,b)}$$

REFERENCES

- Luo, X. (2012). Π*-regular semigroups. Bulletin of Mathematical Science & Applications, 1(1), 63-70.
- [2] Petrich, M., & Reilly, N. R. (1999). Completely regular semigroups. New York: John Wiley & Sons, Inc. Press.
- [3] Howie, J. M. (1976). An introduction to semigroup theory. New York: Academic Press.
- [4] Luo, X. (2010). Another characterition of congruences on completely simple semigroups. Journal of Sichuan University of Arts and Science, 20(2), 20-22.
- [5] Luo, X. (2012). Another property of congruence-free regular semigroups. South Asian Journal of Mathematics, 2(3), 238-241.