Prime Pairs of Even Numbers

SONG Kaifu ${ }^{[\mathrm{a}, \text {, }}$
${ }^{[a]}$ East Lake High School, Yichang, 443100, Hubei, China.
* Corresponding author.
Address: East Lake High School, Yichang, 443100, Hubei, China; E-Mail: skf08@ sina.com

Received: January 30, 2013/ Accepted: April 3, 2013/ Published: April 30, 2013

Abstract

In this paper, the correspondence model of even numbers is established, and we solve the problem by using the correspondence model of Prime pair.

Key words: Correspondence; Correspondence model; Prime pairs

1. AXIS CORRESPONDENCE OF THE FORM OF EVEN NUMBER

In natural number, exclude the number that can be divided by $2,3,5$, even number corresponds to the sum of the two remaining number, shown in Table 1 next page.

2. CORRESPONDENCE MODEL

Correspondence (I): Figure 1 is a B_{1} shaft in reverse order correspondence, if the number of upper and lower two vertical correspondence, these correspondence to only represent an even number. For example, $992=31+961=61+931=91+901=$ $\ldots=961+31$.

Figure 1
A B_{1} Shaft in Reverse Order Correspondence

Correspondence (II): If a subsections correspondence to a subsections of whole six numbers in each of section to correspondence to only 11 even number of the same as range. Before and after combine the correspondence, correspondence for the number of is seven even number the number the correspondence.

For example, section I and section IVSection II and section III, correspondence to only $872,902,932,962,992,1022,1052,1082,1112,1142,1172$; Section I and section III, Section II and section II, correspondence to only 662, 692, 722, 752, $782,812,842,872,902,932,962$; Section I and section V, section II and section IV, section III and section III, correspondence to only 1082, 1112, 1142, 1172, 1202, 1232, 1262, 1292, 1322, 1352, 1382.

If section I and section IV have correspondence only in $872,902,932,962,992$, 1022 , 1052 , then the $1082,1112,1142,1172$ pair should use $872,902,932,962$ (section I and section III correspondence) to compensate; If section I and section IV have correspondence only in $992,1022,1052,1082,1112,1142,1172$, then the $872,902,932,962$ should use $1082,1112,1142,1172$ (section I and section V correspondence) to compensate.

Table 1
The Axis Correspondence Form of Even Number
$C_{M} \approx\left[\frac{1}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right]$

Note: Table " O_{i} ", " B_{i} ", " A_{i} " denote the number divided by 3 and get remainders as $0,1,2$ (i is units digit on digital). E_{1} : Category; E_{2} : Biaxial correspondence; E_{3} : A number of axes correspondence; E_{4} : A single correspondence (3 or 5 the numbers together another number indicates correspondence to the even number); E_{5} : As the quantity Prime pairs.

Correspondence (III): u_{i} is the number of primes on the i th section, denoted by Correspondence (II), the number of Prime pair $\frac{1}{2} \sum_{i=1}^{n} u_{i} u_{n-i+1}$ correspondence to u_{i} and u_{n-i+1} is only 7 even numbers' correspondence number.

The probabilities of prime numbers in n subsections $1 \sim 6$ are equal, that is, the probabilities of the corresponding Prime pairs are equal. Thereupon, in the single axis correspondence, the prime pairs of even number are $C_{M} \approx\left[\frac{1}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right]$ ($[x]$ is the largest integer not greater than x).

For example, on B_{1} axis, $u_{1}=5, u_{2}=2, u_{3}=6, u_{4}=2, u_{5}=3, u_{6}=5$.

$$
\begin{aligned}
& \quad C_{M} \approx \frac{1}{14} \sum_{i=1}^{6} u_{i} u_{n-i+1}=[(5 \times 5+2 \times 3+6 \times 2+2 \times 6+3 \times 2+5 \times 5)]=6 . \\
& \quad C_{1292}=5, C_{1322}=6, C_{1352}=6, C_{1382}=7, C_{1412}=6, C_{1442}=7, C_{1472}= \\
& 6 ; C_{1412}=6, C_{1442}=7, C_{1472}=6 . C_{1502}=6, C_{1532}=5, C_{1562}=8, C_{1592}=6 . \\
& \text { Such a subsections correspondence to subsections of the overall (that adds two } \\
& \text { numbers) even prime pairs correspondence model is called the correspondence model } \\
& \text { of even numbers. }
\end{aligned}
$$

3. PRIME PAIRS OF EVEN NUMBER

3.1. Axis by the even number of M the form know, the maximum number single correspondence represents is at most 1 , there is no need to discuss it; By the correspondence model, single-axis correspondence $C_{M} \approx\left[\frac{1}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right]$; Biaxial correspondence $C_{M} \approx\left[\frac{2}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right]$. Prime pair numbers of " B_{i} ", " A_{i} " are less than those of " O_{i} ", so the calculation formula for Prime pairs of even number is:

$$
C_{M} \approx\left[\frac{1}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right]+\left[\frac{2}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right] \approx\left[\frac{3}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right]
$$

3.2. From an overall point of view, $u_{1}, u_{2}, \ldots, u_{n / 2}$ are not less than $u_{n / 2+1}, \ldots$, $u_{n} . \pi(M)=\frac{M}{\ln M}$ represents the prime numbers in M range, $n=\frac{M}{210}$. Because $\frac{\pi(M)-\pi\left(\frac{1}{2} M\right)}{8}>\frac{\pi(M)}{32}$,

$$
\begin{aligned}
C_{M} & \approx\left[\frac{3}{14} \sum_{i=1}^{n} u_{i} u_{n-i+1}\right] \geq\left[\frac{3}{7} \sum_{i=n / 2+1}^{n} u_{i}^{2}\right] \geq\left[\frac{6}{7 n}\left(\sum_{i=n / 2+1}^{n} u_{i}\right)^{2}\right] \\
& =\left[\frac{180}{M} \cdot\left(\frac{\pi(M)-\pi(M / 2)}{8}\right)^{2}\right] \geq\left[\frac{180}{M} \cdot\left(\frac{M)}{32 \ln M}\right)^{2}\right]=\left[\frac{45 M}{2^{8}(\ln M)^{2}}\right] .
\end{aligned}
$$

$$
\lim _{M \rightarrow \infty} C_{M}=\lim _{M \rightarrow \infty} \frac{45 M}{2^{8}(\ln M)^{2}}=\lim _{M \rightarrow \infty} \frac{45 M}{2^{9}(\ln M)}=\lim _{M \rightarrow \infty} \frac{45 M}{2^{9}}=\infty .
$$

For even numbers greater than 2, each has prime pair in a smaller range; From an overall perspective, the larger the even number is, the more the quantity of even
numbers' Prime pairs when scope is larger. Thus any even number greater than 2 can be represented as the sum of two primes.

REFERENCES

[1] Hua, Loo-Keng. (1979). An introduction to number theory (In Chinese). Beijing: Science Press.
[2] Song, K. (2007). Elementary number theory (In Chinese). Beijing: China Drama Press.

