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Abstract: The need to capture the heterogeneous and volatility nature
of both financial and economic time series theory and modeling their behav-
ior in practical work have stimulated interest in the empirical modeling of
variances which forms the basis for this study. In the study we augment-
ed GARCH models with smooth transition model by dropping the assump-
tion of autoregression of the model; necessary theoretical frame work was
derived and properties of the new model established and illustrated with
foreign exchange rate data from Federal Republic of Nigeria (Naira), Great
Britain (Pound), Botswana (Pula) and Japanese (Yen) against United States
of America (Dollar). The smooth transition GARCH model is better than
the classical GARCH model as there were reduction in the variances of the
augmented model; this claim is confirmed by the empirical illustration with
foreign exchange data. Within the group of smooth transition GARCH mod-
el, Logistic Smooth Transition is adjudged the best as it produced the least
variance.
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1. INTRODUCTION

Financial time series experts have discovered evidence of occasional sudden breaks
in many economic time series. For example, currency exchange rates often move
suddenly as governments devalue due to speculative pressure and deteriorating e-
conomic conditions. Commodity prices, such as oil, change in response to shocks
from exogenous geopolitical events or supply disruptions due to weather related
catastrophes like hurricane Katrina, and financial markets can shift abruptly in re-
sponse to financial crises [1]. Perhaps the best example of this is economic growth,
where the rate of growth of the economy alternates between periods of high growth
(economic expansion) and periods of declining or negative growth (recession). It
is an established fact that Generalized autoregressive model cannot capture non-
linearity in economic and financial series adequately; [2] utilized GARCH to model
stock market indices and concluded that the model fails to capture the statistical
structure of the market returns series for all the countries economies investigated.
[3] employed the Hinich portmanteau bicorrelation test to determine the adequa-
cy of GARCH model for eight Asian stock markets and equally concluded that
GARCH is not suitable. Due to the inadequacy of GARCH model there is need
to augment it with non-linear models, in this paper we combine GARCH model
with Smooth transition model, the various transition models used are Exponential
transition (ET), Exponential smooth transition (EST) and Logistic smooth transi-
tion (LST) models. The smooth transition is an extension of the regime switching
model that allows intermediate states or regimes. The idea of smooth transition
was proposed to allow a more gradual change for the parameter of transition. Thus,
the ST-GARCH allows enriching the class of GARCH models, through asymmetry,
or the leverage effect, that is the difference in the volatility response to positive and
negative return shocks [4]. This model emphasizes the nonlinearities in the condi-
tional volatility equation. Although a variety of models were already presented in
the literature in order to explore different forms of nonlinearity, Hagerud (1997) [5]
affirms that the ST-GARCH model presents new characteristics, very advantageous
for the modeling of the volatility. So also this model provides more flexibility in
the transition mechanism of the conditional volatility. Contrary to the traditional
threshold models, that allow only two volatility regimes (a low volatility regime and
a high volatility regime), the ST-GARCH model offers the possibility of intermedi-
ate regimes and allows the introduction of a smoother transition mechanism in the
GARCH specification [6]. In this paper, the Smooth Transition Generalized Au-
toregressive Conditional Heteroscedastic (ST-GARCH) model is considered, where
the possibility of intermediate regimes is modeled with the introduction of a smooth
transition mechanism in a Generalized Autoregressive Conditional Heteroscedastic
(GARCH) specification. The transition functions utilized are logistic (the Logistic
Smooth Transition GARCH (LST-GARCH) model) Exponential (the Exponential
Transition GARCH (ET-GARCH) and the Exponential Smooth Transition GARCH
(EST-GARCH) model). An important characteristic of the LST-GARCH model is
that it highlights the asymmetric effect of unanticipated shocks on the conditional
volatility. On the other side, the ET-GARCH and EST-GARCH model allow the
dynamics of the conditional variance to be independent of the sign of past news.
Indeed, this model allows us to highlight the size effect of the shocks, so that small
and big shocks have separate effects.

The major advantage of this model is that it challenges the assumption in the
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basic GARCH model that the model parameters are constant over time, by in-
troducing nonlinearities and regime changes for the conditional volatility. Other
advantages are that this model allows us to highlight a significant characteristic
of the financial series: the asymmetric effect in the conditional volatility following
surprise shocks.

The remaining part of this paper is organized as follows: section 2-5 covers the
Specification of transition models with GARCH, estimation of the parameters of ST-
GARCH models, efficiency of ST-GARCH models with respect to GARCH model,
section 6, Empirical analysis, estimation of γ and c estimation of ET-GARCH, EST-
GARCH and LST-GARCH for all series section 7 Empirical comparisons of models
section 8 Conclusion.

2. EXPONENTIAL TRANSITION-GARCHMODEL (ET-G-
ARCH)

As earlier defined the ET model is of the form

GA (γ, c; yt−j) = exp
{
−γy2t−1

}
, γ > 0 (1)

The function GA is symmetric around zero, where it obtains the value one,
and GA (γ, c; yt−j) → 0 as

∣∣yt - j

∣∣ → ∞. In case of ET model, parameter vectors
do not contain intercept terms, i.e., Equation (1) indicates that the model can be
interpreted as a linear autoregressive model with stochastic time-varying coefficients
ϕ + θGA (γ, c; yt−j). When γ → 0 or γ → ∞, the model becomes linear. In the
latter case, GA (γ, c; yt−j) = 0, except when yt−j = 0. Prominent feature of this
model is that it can generate limit cycles by itself.

Let GA(γ, c; yt−j) = exp
{
−γy2t−j

}
, γ > 0

From the usual GARCH models we have

yt = σtεt (2)

where

σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j (3)

E
(
y2t−j

)
=

α0

1−
p∑
i=1

(αi + βj)

(4)

Square of (2) with delay parameter gives y2t−j = σ2
t−jε

2
t−j and therefore the

ET-GARCH model specification will be

GA = exp
(
−γ
(
σ2
t−jε

2
t−j
))

0 < γ < 1 (5)

Now, without loss of generality, we can derive the log ET-GARCH as

G∗A = logGA = −γy2t−j (6)

and y2t−j follows the conventional GARCH form with as delay parameter.
The mean of G•A could be derived from our earlier expressions in chapter four

as follows:
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By taking the expected value of Equation (5), we have E (G∗A) = −γE
(
y2t−j

)
and Equation (4), we have

E (G∗A) =
−γα0

1−
p∑
j=1

(αi + βj)

=
γα0

p∑
j=1

(αi + βj)− 1

(7)

Equation (7) gives the mean of log ET-GARCH model. The variance of log
ET-GARCH is derived as follows:

From Equation (3), we have V ar. (G∗A) = γ2V ar.
(
y2t−j

)
= γ2V ar.

(
σ2
t−jε

2
t−j
)
.

Since σ2
t−j and ε2t−j are independent and uncorrelated random variables, then

V ar. (G∗A) = γ2V ar.
(
σ2
t−j
)
V ar.

(
ε2t−j

)
= γ2V ar.

(
σ2
t−j
)
, since V ar.

(
ε2t−j

)
= 1.

If σ2
t−j are independent and identically distributed then we have

V ar. (G∗A) = γ2

{
2σ4

n− 1

}
(8)

where σ2 is the variance of variance equation for GARCH model fitted.

3. EXPONENTIAL SMOOTH TRANSITIONGARCHMOD-
EL (EST-GARCH)

The ET model may be generalized by allowing an intercept φ0 6= 0 or θ0 6= 0 or
both. The purpose of the generalization is to make the ET model location invariant.
Thus, the function gE becomes

gE (γ, c; yt) = 1− exp
{
−γ(yt − c)2

}
, γ � 0 (9)

Terasvirta (1994) called this model as Exponential smooth transition autoregres-
sive (ESTAR) model and discussed procedure for estimation of parameters. It has
the property that the minimum value of the transition function equals zero. It has
been successfully used to model macroeconomic series, such as strongly fluctuating
inflation series (Baharumshah and Liew, 2006).

Let gE = 1 − exp
{
−γ(yt − c)2

}
γ > 0, the Exponential smooth transition

GARCH model specification is gE = 1− exp
{
−γ(yt − c)2

}
, therefore,

GE = 1− gE = exp
{
−γ(yt − c)2

}
= exp

{
−γ(σtεt − c)2

}
(10)

Such that by taking the logarithm gives

G•E = logGE = −γ(σtεt − c)2 = −γσ2
t ε

2
t + 2γcσtεt + γc2 (11)

Equation (10) gives the log EST-GARCH model. The mean of G∗E is derived as
follows: taking the expectation of (10) gives

E (G•E) = −γE
(
σ2
t ε

2
t

)
+ 2γcE (σt)E (εt) + γc2 = −γE

(
y2t
)

+ γc2
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Using Equation (4) in the last expression we have

E (G∗E) =
γα0

p∑
j=1

(αi + βj)− 1

+ γc2 = γ

 α0

p∑
j=1

(αi + βj)− 1

+ c2

 (12)

Equation (5) gives the mean of the log EST-GARCH. The variance of log EST-
GARCH defined in Equation (10) is

V ar(G∗E) = γ2V ar(σ2
t ) + 4γ2c2V ar (σt)

= γ2
[

2σ4

n− 1

]
+ 4γ2c2

[ √
2σ2

√
n− 1

]

= 2γ2σ2

[
σ2

n− 1
+

2c2
√

2√
n− 1

]

= 2γ2σ2

[
σ2 + 2c2

√
n− 1

√
2

n− 1

]
(13)

4. LOGISTIC SMOOTH TRANSITIONGARCHMODEL (LST-
GARCH)

This model is defined by Equation (14), where the transition function is the logistic
function

gL (γ, c; yt−j) =

{
1 + exp

{
−γ

k

Π
i=1

(yt−j − c)
}−1

, γ � 0 (14)

Let gL =
1

1 + exp

{
−γ

k

Π
i=1

(σtεt − c)
}, by taking inverse and logarithm with

simple algebraic manipulations gives

1

gL
− 1 = exp

{
−γ

k

Π
i=1

(σtεt − c)
}

= log

[
exp

{
−γ

k

Π
i=1

(σtεt − c)
}]

Since yt = σtεt, then
G∗L = exp {−γ (yt − c)} (15)

From Equation (15), we could derive the mean of transformed LT-GARCH model
as

E (G∗L) = −γ
k∏
t=1

(yt − c)

= −γ [(E(y1 − c) (E(y2 − c) ... (E(yk − c)]
= −γ [(E (y1)− c) (E (y2)− c) ... (E (yk)− c)]
= −γck since E (yt) = 0 ∀i
= −γc2 where k = 2.

(16)
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G∗L =
1

gL
− 1( a transformed LTGM)

The variance of G∗L is derived as follows:

V ar (G∗L) = γ2V ar

{
k∏
t=1

(yt − c)

}

= γ2V ar

k∏
t=1

(yt − c)

= γ2
k∏
t=1

V ar (yt)

= γ2
k∏
t=1

V ar (σtεt) = γ2kV ar (σt)

= kγ2σ2

√
2

n− 1

= 2γ2σ2

√
2

n− 1
since k = 2

(17)

Table 1
Summarized Theoretical Derivation Tables of the Means and Variances
of All the Models Used in This Paper with GARCH Models

Statistic
/Model

GM ET-GARCH EST-GARCH LST-GARCH

Mean σtεt = γα0
p∑

j=1
(αi+βj)−1

= γ

 α0
p∑

j=1
(αi+βj)−1

+ c2

 −γc2

Variance α0

1−
p∑

i=1
(αi+βj)

γ2
{

2σ4

n−1

}
= 2γ2σ2

[
σ2+2c2

√
n−1
√
2

n−1

]
= 2γ2σ2

√
2

n−1

5. EFFICIENCY OF ST-GARCH MODELS WITH RESPEC-
T TO GARCH MODEL

To compare the efficiency of the ST-GARCH with GARCH, we relate the variances
of ST-GARCH to that of classical GARCH we have

(i).
V ar

(
yt(ET−GARCH)

)
V ar

(
yt(GM)

) =
2γ2σ4 (1−

∑
(αi + βi))

α0 (n− 1)

if 2γ2σ4 (1−
∑

(αi + βi)) < α0(n − 1), then ET-GARCH is more efficient than
GARCH.

(ii).
V ar

(
yt(EST−GARCH)

)
V ar

(
yt(GM)

) =

2γ2σ2
(
σ2 + 2c2

√
n− 1

√
2
)

1−
p∑
i=1

(αi + βi)

α0 (n− 1)
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So if 2γ2σ2
(
σ2 + 2c2

√
n− 1

√
2
)

1−
p∑
i=1

(αi + βi) < α0(n−1), then EST-GARCH

is more efficient than GARCH.

(iii).
V ar

(
yt(LST−GARCH)

)
V ar

(
yt(GM)

) =

2γ2σ2
√

2 (n− 1)

(
1−

p∑
i=1

(αi + βi)

)
(n− 1)α0

So if 2γ2σ2
√

2 (n− 1)

(
1−

p∑
i=1

(αi + βi)

)
< α0(n − 1), then LST-GARCH is

more efficient than GARCH.
The mathematical expression in all equations derived (i-iii) for the models are

trivial and could be best appreciated by using an empirical approach, but if α0(n−1)
is greater than the quantities in the numerator then the GARCH model is less
efficient.

6. EMPIRICAL RESULTS/DATAANALYSISWITH EXCH-
ANGE RATE DATA

This section examines the empirical results obtained for Smooth transition models
with GARCH (ST-GARCH) for four sets of exchange rates data namely British
(Pounds), Japanese (Yen), Nigerian (Naira) and Batswana (Pula) against Amer-
ican (Dollar). Here the Parameters of Exponential transition GARCH models
(ET-GARCH), Exponential smooth transition GARCH (EST-GARCH) and Lo-
gistic transition GARCH (LST-GARCH) models were obtained using the derived
equations for all the series.

The following values of variances were obtained for classical GARCH models:

Table 2
The GARCH Model Fitted for All Series

Series Coefficient (S.E) Model variance
α0 α1 β1

Naira
3.85802

(0.34152)
1.16179

(0.52198)
-0.99980
(0.00016)

4949.20411

Pound
0.00017

(0.00005)
0.97219

(0.23370)
-0.00024
(0.02657)

0.65816

Pula
0.047613
(0.10084)

1.90362
(0.30959)

-0.91061
(0.01367)

2.14441

Yen
0.67948

(0.26140)
1.00818

(0.26247)
-0.03111
(0.12408)

5461.26025

6.1. Estimation of γ and c

Starting values needed for the nonlinear optimization algorithm can be obtained
using two dimensional grid search over γ and c, and select those that give smallest
estimator for the residual variance. The two dimensional grid give three possible
values as tabulated below:
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Table 3
Values of Grid of c

Series I II III

Naira 0.35• 155.76 30
Pound 0.48• 2.42 30
Pula 0.74• 7.97 30
Yen 0.74• 7.97 30

Table 4
Values of Grid of γ

Series I II III

Naira 0.50• 10.00 30
Pound 0.50• 10.00 30
Pula 0.50• 10.00 30
Yen 0.50• 10.00 30

In the tables 3 and 4 above, all the asterisk values are selected because they have
minimum values and are subsequently used in equations (8), (13) and (18).

We can now illustrate the empirical implication of these theories as follows:

6.2. Variances of Transition GARCH Models (ST- GARCH) with Clas-
sical GARCH Model

Using equations (8), (13) and (18) the variances of all the series for Smooth transi-
tion GARCH models (ET-GARCH, EST-GARCH and LT-GARCH) with classical
GARCH model are computed and shown/displayed in Table 5.

Table 5 shows the variances of GARCH model and those of ST-GARCH models
(ET-GARCH, EST-GARCH and LST-GARCH). The superiority of Logistic Smooth
transition model within the group of smooth transition was asserted here as this
model gave us the minimum variances for all the series under study, this is followed
by EST-GARCH and ET-GARCH in that order as seen in Table 5 below:

Table 5
Variances of ST-GARCH Models with Classical GARCH Model

Series G.M ET-GARCH EST-GARCH LST-GARCH

Naira 4949.2041 1292.9 1290.014 5.3965
Pound 0.6582 0.0066 0.0002 0.0006
Pula 2.1444 0.0840 0.0242 0.0740
Yen 5461.2603 1831.9096 1817.151 6.4046
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6.3. Efficiencies of all Smooth Transition GARCH Models (ST- GARCH)
with GARCH Model

Efficiencies of all transition models were compared as shown in Table 6, where
Logistic Smooth transition model was adjudged the model that produced the most
efficient values among the models under study for all series; this is followed by
EST-GARCH.

Table 6
The Efficiencies of all Smooth Transition Models with GARCH Model

Series ET-GARCH EST-GARCH LST-GARCH

Naira 0.2613 0.2607 0.0011
Pound 0.0090 0.003 0.0009
Pula 0.0390 0.0113 0.0035
Yen 0.3355 0.3327 0.0012

7. CONCLUSION

The variances of all ST-GARCH models with GARCH as displayed in Table 5
shows that all ST-GARCH outperformed the classical GARCH model, however,
the LST-GARCH performed best, followed by the performances of LST-GARCH
and ET-GARCH in that order. The implication is that the use of LSTCGARCH
produces the best result; however EST-GARCH and ET-GARCH may be utilized
in some occasions. But LST-GARCH produces optimal result.
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