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1. INTRODUCTION AND PRELIMINARIES

Let σ be a mapping of the positive integers into itself. A continuous linear functional
ϕ on m, the space of real bounded sequences, is said to be an invariant mean or a
σ mean, if and only if,

1. φ(x) ≥ 0, when the sequence x = (xn) is such that xn ≥ 0 for all n,

2. φ(e) = 1,where e = (1, 1, 1....),

3. φ(xσ(n)) = φ(x) for all x ∈ m.
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The mappings φ are assumed to be one-to-one and such that σm(n) 6= n for all
positive integers n and m, where σm(n) denotes the mth iterate of the mapping σ
at n. Thus φ extends the limit functional on c, the space of convergent sequences,
in the sense that φ(x) = limx for all x ∈ c. In case σ is translation mappings
σ(n) = n+ 1, the σ mean is often called a Banach limit and Vσ, the set of bounded
sequences all of whose invariant means are equal, is the set of almost convergent
sequences.

If x = (xn), set Tx = (Txn) = (xσ(n)). It can be shown that

Vσ = {x = (xn) : lim
m
tmn(x) = Le uniformly in n,L = σ − limx}

where,

tmn(x) =
xn + Txn + ...+ Tmxn

m+ 1
.

The concept of statistical convergence for sequences of real numbers was intro-
duced Fast [1], Salat [2] and others. Let K ⊆ N and Kn = {k ≤ n : k ∈ K}.
Then the natural density of K is defined by δ(K) = limn n

−1|Kn| if the limit exists,
where |Kn| denotes the cardinality of Kn.

A sequence x = (xk) real numbers is said to be statistically convergent to L if
for each ε > 0,

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0

By a lacunary sequence we mean an increasing integer sequence θ = (kr) will be
denoted by such that k0 = 0 and hr = kr − kr−1 →∞ as r →∞.

Throughout this paper the intervals determined by θ will be denoted by Ir =
(kr−kr−1]. Freedman, Sember and Raphael [3] defined the space Nθ in the following
way. For any lacunary sequence θ = (kr),

Nθ =

{
x = (xk) : for some L, lim

r

1

hr

∑
k∈Ir

|xk − L| = 0

}

In [4], lacunary statistically convergent sequence is defined as follows:
Let θ be a lacunary sequence; the number sequence (xk) is lacunary statistically

convergent to L provided that for every ε > 0,

lim
r

1

hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

A set E of positive integers said to have uniform invariant density of zero if and
only if the number of elements of E which lie in the set {σ(m), σ2(m), ..., σn(m)} is
o(n) as n→∞, uniformly in m.

By using uniform invariant density, following definitions were given in [5] and [6].
A complex number sequence x = (xk) is said to be σ statistically convergent to

L if for every ε > 0,

lim
n

1

n
|{0 ≤ k ≤ n : |xσk(m) − L| ≥ ε}| = 0 uniformly in m = 1, 2 . . .

In this case we write Sσ − limx = L or xk → L(Sσ).
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Let be θ = (kr) be a lacunary sequence; the number sequence x = (xk) is Sσθ
convergent to L provided that for every ε > 0,

lim
r

1

hr
|{k ∈ Ir : |xσk(m) − L| ≥ ε}| = 0 uniformly in m = 1, 2 . . .

In this case we write Sσθ − limx = L or xk → L(Sσθ).
Let (X, ρ) be a metric space. For any point x ∈ X and non-empty subset A of

X we define the distance from x to A by

d(x,A) = inf
a∈A

ρ(x,A).

Let (X, ρ) be a metric space. For any non-empty closed subsets A, Ak ⊆ X, we
say that the sequence {Ak} is Wijsman convergent to A if

lim
k→∞

d(x,Ak) = d(x,A).

for each x ∈ X. In this case we write W − limAk = A [7].
The concepts of Wijsman statistical convergence and Wijsman strong Cesaro

summability were introduced by Nuray and Rhoades [8] as follows:
Let (X, ρ) be a metric space. For any non-empty closed subsets A, Ak ⊆ X, the

sequence {Ak} is said to be Wijsman strongly Cesaro summable to A if for each
x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak)− d(x,A)| = 0.

Let (X, ρ) be a metric space. For any non-empty closed subsets A, Ak ⊆ X, the
sequence {Ak} is said to be Wijsman statistically convergent to A if for ε > 0 and
each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε}| = 0.

In this case we write st− limW Ak = A or Ak → A(WS).

2. MAIN RESULT

In this section, we will generalize some convergence definitions known for number
sequences to the sequences of sets.

Definition 1. Let (X, ρ) be metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman invariant convergent to A, for
each x ∈ X,

lim
n→∞

1

n

n∑
k=1

d(x,Aσk(m)) = d(x,A)

uniformly in m.

In this case we write Ak → A(WVσ) and the set of all Wijsman invariant con-
vergent sequences of sets will be denoted WVσ.
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Definition 2. Let (X, ρ) be metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman strongly invariant convergent
to A, for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Aσk(m))− d(x,A)| = 0

uniformly in m.

In this case we write Ak → A([WVσ]) and the set of all Wijsman strongly
invariant convergent sequences of sets will be denoted [WVσ].

Definition 3. Let (X, ρ) be metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman lacunary invariant convergent
to A, for each x ∈ X,

lim
r→∞

1

hr

∑
k∈Ir

d(x,Aσk(m)) = d(x,A).

uniformly in m.

In this case we write Ak → A(WNσθ) and the set of all Wijsman lacunary
invariant convergent sequences of sets will be denoted WNσθ.

Definition 4. Let (X, ρ) be metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman strongly lacunary invariant
convergent to A, for each x ∈ X,

lim
r→∞

1

hr

∑
k∈Ir

|d(x,Aσk(m))− d(x,A)| = 0.

uniformly in m.

In this case we write Ak → A([WNσθ]) and the set of all Wijsman strongly
lacunary invariant convergent sequences of sets will be denoted [WNσθ].

Definition 5. Let (X, ρ) be metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman invariant statistically conver-
gent to A,for each ε > 0 and for each x ∈ X,

lim
n→∞

1

n
|{0 ≤ k ≤ n : |d(x,Aσk(m))− d(x,A)| ≥ ε}| = 0

uniformly in m.

In this case we write Ak → A(WSσ) and and the set of all Wijsman invariant
statistically convergent sequences of sets will be denoted WSσ.

Definition 6. Let (X, ρ) be metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman lacunary invariant statistically
convergent to A, for each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr
|{k ∈ Ir : |d(x,Aσk(m))− d(x,A)| ≥ ε}| = 0

uniformly in m.
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In this case we write Ak → A(WSσθ) and and the set of all Wijsman lacunary
invariant statistically convergent sequences of sets will be denoted WSσθ.

Now we prove some relations between [WNσθ] convergence and WSσθ conver-
gence and show that these are equivalent for bounded sequences of sets. We also
study relation between WSσ convergence and WSσθ convergence.

Theorem 1. θ = (kr) be lacunary sequence and let (X, ρ) be a metric space then
for any non empty closed subsets A, Ak ⊆ X

i . Ak → A([WNσθ]) implies Ak → A(WSσθ).

ii . {Ak} ∈ L∞ and Ak → A(WSσθ) implies xk → A([WNσθ]).

iii . WSσθ ∩ L∞ = [WNσθ].
where L∞ denotes the set of bounded sequences of sets.

Proof. (i). If ε > 0 and Ak → A([WNσθ]), we can write,∑
k∈Ir |d(x,Aσk(m))− d(x,A)| ≥

∑
k∈Ir

|d(x,A
σk(m)

)−d(x,A)|≥ε
|d(x,Aσk(m))− d(x,A)|

≥ ε.
∣∣{k ∈ Ir : |d(x,Aσk(m))− d(x,A)| ≥ ε}

∣∣
which yields result.

(ii). Suppose that Ak → A(WSσθ) and {Ak} ∈ L∞, say |d(x,Aσk(m)) −
d(x,A)| ≤M for all k and m. Given ε > 0, we get

1

hr

∑
k∈Ir

|d(x,Aσk(m))− d(x,A)|

=
1

hr

∑
k∈Ir

|d(x,A
σk(m)

)−d(x,A)|≥ε

|d(x,Aσk(m))− d(x,A)|

+
1

hr

∑
k∈Ir

|d(x,A
σk(m)

)−d(x,A)|<ε

|d(x,Aσk(m))− d(x,A)|

≤ M

hr

∣∣{k ∈ Ir : |d(x,Aσk(m))− d(x,A)| ≥ ε}
∣∣+ ε

from which result follows.
(iii). This is an immediate consequence of (i) and (ii).
This completes proof of theorem.

We now give a lemma which will be used in the proof of Theorem 2.

Lemma 1. Let (X, ρ) be a metric space and A, Ak be closed subsets of X. Suppose
for given ε1 > 0 and every ε > 0, there exists n0 and m0 such that;

1

n
|{0 ≤ k ≤ n− 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε} < ε1

for all n ≥ n0 and m ≥ m0 , then Ak ∈WSσ.
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Proof. Let ε1 > 0 be given. For every ε > 0, choose n′0, m0 such that,

1

n
|{0 ≤ k ≤ n− 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε} < ε1

2
(2.1)

for all n ≥ n0, m ≥ m0. It is enough to prove that there exist n′′0 , such that for
n ≥ n0, 0 ≤ m ≤ m0,

1

n
|{0 ≤ k ≤ n− 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε} < ε1 (2.2)

Since takingn0 = max(n′0, n
′′
0), (2.2) will hold for n ≥ n0 and for all m, which

gives result. Once m0 has been chosen, 0 ≤ m ≤ m0, m0 is fixed. So put

K = |{0 ≤ k ≤ m0 − 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}|

Now taking 0 ≤ m ≤ m0 and n ≥ m0, by (2.1) we have

1

n
|{0 ≤ k ≤ n− 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}

≤ 1

n
|{0 ≤ k ≤ m0 − 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}

+
1

n
|{m0 ≤ k ≤ n− 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}

≤ K

n
+

1

n
|{m0 ≤ k ≤ n− 1 : |d(x,Aσk(m0))− d(x,A)| ≥ ε}

≤ K

n
+
ε1
2
,

and taking n sufficiently large we can write

≤ K

n
+
ε1
2

which gives (2.2) and hence the result follows.

Theorem 2. Let (X, ρ) be a metric space, then;

WSσθ = WSσ

for every lacunary sequence θ.

Proof. Let {Ak} ∈WSσθ. Then from Definition 5, for given ε1 > 0, there exists r0
and set A such that

1

hr
|{0 ≤ k ≤ hr − 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}| ≤ ε1

for r ≥ r0 and m = kr−1 + 1 + u, u ≥ 0.
Let n ≥ hr, write n = ihr + t where 0 ≤ t ≤ hr, i is an integer. Since n ≥ hr,

i ≥ 1. Now

1

n
|{0 ≤ k ≤ n− 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}|

≤ 1

n
|{0 ≤ k ≤ (i+ 1)hr − 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}|
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=
1

n

i∑
j=0

|{jhr ≤ k ≤ (j + 1)hr − 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}|

≤ 1

n
< (i+ 1)hrε1 ≤ 2ihr

ε1
n

(i ≥ 1)

for
hr
n
≤ 1 and since

ihr
n
≤ 1,

1

n
|{0 ≤ k ≤ n− 1 : |d(x,Aσk(m))− d(x,A)| ≥ ε}| ≤ 2ε1.

Then by Lemma 1, WSσθ ⊂WSσ. It is easy to see that WSσ ⊂WSσθ.
This completes the proof of the theorem.

By using the same techniques as in Theorem 2, we can prove the following
theorem.

Theorem 3. [WNσθ]⇔ [WVσ] for every lacunary sequence θ.
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