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Abstract: In many data applications, in addition to determining whether
a given risk factor affects an outcome, researchers are often interested in
whether the factor has an increasing or decreasing effect. For instance, a
clinical trial may test which dose provides the minimum effect; a toxicology
study may wish to determine the effect of increasing exposure to a harm-
ful contaminant on human health; and an economist may wish to determine
an individual’s optimal preferences subject to a budget constraint. In such
situations, constrained statistical inference is typically used for analysis, as
estimation and hypothesis testing incorporate the parameter orderings, or
restrictions, in the methodology. Such methods unite statistical theory with
elements of projective geometry and optimization algorithms. In many differ-
ent models, authors have demonstrated constrained techniques lead to more
efficient estimates and improved power over unconstrained methods, albeit at
the expense of additional computation. In this paper, we review significant
advancements made in the field of constrained inference, ranging from ear-
ly work on isotonic regression for several normal means to recent advances
of constraints in Bayesian techniques and mixed models. To illustrate the
methods, a new analysis of an environmental study on the health effects in a
population of newborns is provided.

Key words: Constrained inference; Convex cone; Cord blood; Gradient
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1. INTRODUCTION

As with many problems in statistical analysis, a parameter space is defined from
quantities of interest, and subsequent analysis aims to conduct hypothesis testing
to make comparisons. Relationships between parameters often arise naturally from
the context of the experiment or observational study. For instance, in clinical trials,
a researcher may desire a method to only declare a lower dose to be efficacious if a
higher dose is first found to be efficacious; the severity of an infection may decrease
over time and such a relationship may differ for two treatment groups; estimation
in mixed model analysis must ensure the covariance matrix is positive definite; or a
National hockey league owner may be interested in determining if the selection of
a player of high rank in the Entry Draft will lead to improved team performance
(Peng et al. [1], Molenberghs & Verbeke [2], Dawson & Magee [3]).

Such constraints on statistical parameters have important implications for esti-
mation and hypothesis testing. These procedures have been studied under various
names in the literature—one-sided testing, isotonic regression, restricted analysis,
etc. The choice of a constrained method, while computationally and theoretically
more intensive, usually leads to a more efficient method than models which ignore
the constraints. The seminal texts by Barlow et al. [4], Robertson, Wright and Dyk-
stra [5] and Silvapulle and Sen [6] highlight the many achievements in constrained
inference over the past sixty years. In this paper, we review some important con-
tributions and highlight recent work.

To motivate the methods, we consider data from an environmental study which
analyzed levels of perfluoroalkyl acids (PFAAs) in the cord blood of newborns born
in Ottawa, Canada (Arbuckle et al. [7]). Exposure to PFAAs originates from both
domestic and industrial products such as surfactants, fire retardants, stain-resistant
coatings, and insecticides. One particular PFAA is perfluorooctanoic acid (PFOA)
which has recently been confirmed to pass through the placenta. However, scientists
have noted levels of certain contaminants are thought to decrease as the number of
pregnancies (gravida) increases, and have virtually no effect after a certain number
of pregnancies. Thus, the effect of gravida on PFOA levels displays a natural
ordering, and constrained statistical inference is appropriate.

The early achievements of Brunk [8] considered maximum likelihood estimation,
while Bartholomew [9–12] developed a likelihood ratio test for equality of several
normal means against ordered alternatives. Kudo [13], Dykstra [14], El Barmi and
Dykstra [15,16], El Barmi and Johnson [17] and Dardanoni and Forcina [18] focused
on inferences under the normal or multinomial setting. Gourieroux et al. [19] and
Shapiro [20] considered estimation and testing under linear inequality restrictions
in Gaussian linear models. In the context of constrained inference for generalized
linear models, important papers by Piergosch [21], Silvapulle [22] and Fahrmeir and
Kligner [23] detailed the properties of a one-sided or linear inequality hypothesis
test of the regression parameters. The asymptotic null distribution for the ordered
hypothesis was found to be chi-bar-squared, which is a mixture of chi-squared dis-
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tributions. Recent extentions ro non-normal models are discussed in later sections.
Common notation used in constrained inference is presented in the following sec-
tion.
Constraints of Interest

Using the terminology of statistical hypothesis testing, Molenberghs and Ver-
beke [2] note the two tests

H0 : θ = 0 vs. H1 : θ > 0 and (1)

H0 : θ ≤ 0 vs. H1 : θ > 0 (2)

are distinct. In constrained inference, interest lies in (1) which does not permit any
negative values in the estimate. If such a negative value occurs, it is replaced by the
boundary value θ̂ = 0. Test statistics, null distributions and thus p-values differ
from standard unconstrained statistical techniques.

More generally, inequality constrained testing problems may be organized into
three hypotheses:

H0 : θ ∈M; H1 : θ ∈ C; H2 : θ 6∈ C (3)

where M is a linear space, C is a closed convex cone in the Euclidean space and
M∈ C. Many familiar statistical tests such as H0 : Aβ = 0 and H0 : µ1 = · · · = µk
are included in M. The definition (3) permits combinations of one- and two-sided
tests to be included under a general framework.

This paper is organized as follows: Section 2 describes estimation and hypothesis
testing methods for constrained inference with one-way normal models, multivariate
normal models as well as non-normal models. Section 3 describes an application of
constrained inference to the Ottawa cord blood study mentioned previously. Finally,
Section 4 provides suggestions for future research directions.

2. ESTIMATION ANDHYPOTHESIS TESTINGWITH CON-
STRAINTS

2.1. Univariate Normal Mean Models

Denote a set of increasing dose levels by 1, 2, . . ., k where 1 corresponds to the zero
or control dose level. A one-way Analysis of Variance (ANOVA) model considers
ni experimental units tested at the ith dose level, i = 1, . . ., k. Let observations
yij be mutually independent with yij ∼ N(µi, σ

2), i = 1, . . ., k and j = 1, . . ., ni.
Then ȳi ∼ N(µi, σ

2/ni), i = 1, . . . , k are the sample means of the dose groups and

let S2 =
∑k
i=1

∑ni

j=1(yij − ȳi)2/ν be an unbiased estimate of the common variance

σ2, with ν =
∑k
i=1 ni − k > 0. Then S2 is distributed as σ2χ2

ν/ν, independently
of ȳ1, . . . , ȳk. The parameter space for this problem is defined as Ω = {µ ∈ Rk :
µ1 ≤ µ2 ≤ · · · ≤ µk}, with σ2 as a nuisance parameter. The space Ω is known
as the simple order in the constrained literature, since it denotes a non-decreasing
tendency among group means.

The restricted maximum likelihood estimator of µ subject to Ω is denoted by
µ? = (µ?1, . . . , µ

?
k) and is defined as the isotonic regression of ȳ = (ȳ1, . . . , ȳk) under

Ω with sample sizes n1, . . ., nk. As the observations are assumed to be normally
distributed, the maximum likelihood estimate (MLE) is the solution to the following
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constrained weighted least squares problem:

min
µ∈Ω

k∑
i=1

ni(ȳi − µi)2. (4)

The MLE is readily calculated using the Pool-Adjacent-Violators Algorithm
(PAVA) (see Robertson, Wright and Dykstra [5]). The process is essentially a
successive averaging of ȳi’s until a sequence of non–decreasing values is obtained,
and the MLE is represented as

µ?j = max
i≤j

min
l≥j

A(i, l), j = 1, . . . , k where A(i, l) =

∑l
m=i nmym∑l
m=i nm

.

The MLE of µ may then be partitioned into consecutive sequences of equal–
valued µ?j ’s such that

µ?1 = · · · = µ?i1 < µ?i1+1 = · · · = µ?i2 < · · · < µ?il−1+1 = · · · = µ?k. (5)

As is often the case in applications, a researcher may believe that the response
means are monotone increasing, a priori, thus likelihood ratio tests (LRTs) for
homogeneity of normal means with simple order restrictions are introduced. Under
the monotonicity assumption µ1 ≤ · · · ≤ µk, the LRT for ordered alternatives
considers the hypotheses:

H0 : µ1 = µ2 = · · · = µk; H1 : µ1 ≤ µ2 ≤ · · · ≤ µk; H2 : No restrictions on µi’s.
(6)

The LRT rejects H0 in favour of H1 −H0 for large values of the test statistic

S01 =

k∑
i=1

ni(µ
?
i − µ̄)2

k∑
i=1

ni(ȳi − µ?i )2/ν + S2

,

where µ̄ =
∑k
i=1 niȳi/

∑k
i=1 ni, the overall sample mean. When σ2 is known, the

test statistic is given by

χ̄2
01 =

k∑
i=1

ni(µ
?
i − µ̄)2

σ2
. (7)

As shown in [5], as ν → ∞, the distribution of S01 approaches that of χ̄2
01.

Similarly, test statistics for testing H1 against H2 −H1 are given by

S12 =

k∑
i=1

ni(ȳi − µ?i )2

S2
, and χ̄2

12 =

k∑
i=1

ni(ȳi − µ?i )2

σ2
. (8)

Alternatively, when σ2 is unknown, the LRT for testing H0 against H1−H0 and
H1 against H2 −H1 are, respectively

Ē2
01 =

χ̄2
12

χ̄2
01 + χ̄2

12 + νS2
and Ē2

12 =
χ̄2

12

χ̄2
12 + νS2

. (9)
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The null distributions of χ̄2
01, χ̄2

12, Ē2
01, and Ē2

12 are

P [χ̄2
01 ≥ s] =

k∑
j=1

Ps(j, k; n)P [χ2
j−1 ≥ s]

P [χ̄2
12 ≥ s] =

k∑
j=1

Ps(j, k; n)P [χ2
k−j ≥ s]

P [Ē01 ≥ s] =

k∑
j=1

Ps(j, k; n)P [B(j−1)/2,(N−j)/2 ≥ s]

P [Ē12 ≥ s] =

k∑
j=1

Ps(j, k; n)P [B(k−j)/2,(N−k)/2 ≥ s]

for any s > 0, where N =
∑k
i=1 ni, n = (n1, . . . , nk), Ps(j, k; n) is the level prob-

ability under H0 that µ? takes j distinct values, Ba,b is a Beta-distribution with
parameters a and b, and χ2

c is a chi–squared variable with c degrees of freedom. For
the case of equal weights, the level probabilities and the critical values are tabled
in [5]. The null distributions of χ̄2

01 and χ̄2
12 (and Ē2

01, and Ē2
12) are essentially

weighted averages of chi-squared (beta) distributions. Hence, χ̄2
01 and χ̄2

12 are de-
noted the chi-bar-square distributions, while Ē2

01 and Ē2
12 are denoted E-bar-square

distributions. Both distributions play a prominent role in constrained inference.
For the simply ordered case, i.e. with µ1 ≤ · · · ≤ µk, the level probabili-

ties are denoted Ps(l, k; n). When k = 2, the level probabilities are Ps(1, 2; n) =
Ps(2, 2; n) = 1

2 . In general, no closed form of level probabilities are available for
arbitrary sample sizes, however, if the sample sizes are equal, the level probabilities
are more readily obtained (see [5]).

Similar results are available for testing problems with other orderings. In those
cases, level probabilities are completely unknown unless k is very small even if
the weights are equal. Other analyses such as multiple comparisons under order
restrictions are also possible. More detail on constrained inference for the one-way
analysis of variance model is provided in the excellent review paper by Dobler [24].

2.2. Multivariate Normal Mean Models

Standard statistical techniques such as linear regression analysis extend the results
of the one-way model and involve a response vector y, which is assumed to be
multivariate normal with mean vector θ and covariance matrix V . Constraints may
be placed on either θ or V . If we let C be a closed convex cone of Rp, it is well-known
that the constrained maximum likelihood estimate (MLE) of θ under C (denoted θ∗)
is the least squares projection of y, i.e. θ∗ = PV (y|C) = minθ∈C(y−θ)TV −1(y−θ).

In many cases, determination of θ∗ is performed using quadratic programming.
However, some algorithms have been proposed in the literature based on the least
square method. Kudo [13] proposed a general algorithm which under certain closed
convex cones may be considered a generalized PAVA algorithm. Dykstra [14]
proposed an iterative algorithm to obtain the projection onto a closed convex cone,
which is computationally faster. El Barmi and Dykstra [15] further considered an
algorithm for constrained estimation of multinomial parameters using the Fenchel
duality.

171



Constrained Statistical Inference: A Hybrid of Statistical Theory, Projective
Geometry and Applied Optimization Techniques

For hypothesis testing under constraints, consider the special case of (3) in which
H0 : θ ∈ M0 = {z ∈ Rp : z = 0} versus H1 −H0 where H1 : θ ∈ C. Then, with V
known, the likelihood ratio test (LRT) is given by

χ̄2
01(V , C) = yTV −1y −min

θ∈C
(y − θ)TV −1(y − θ) = ||P (y|C)||2V (10)

where the projection is taken with respect to the matrix V −1. When testing H1 :
θ ∈ C against H2 −H1, where H2 imposes no restriction on θ, the test statistic is

χ̄2
12(V , C) = min

θ∈C
(y − θ)TV −1(y − θ) = ||y − P (y|C)||2V . (11)

Hence, the chi-bar-square test statistics are expressed in terms of the distance
between the origin of y and its projection onto a closed convex cone. Then, with
V a p× p positive definite matrix, under H0 we have

pr{χ̄2
01(V , C) ≤ c} =

p∑
i=0

wi(p,V , C)pr(χ2
i ≤ c), (12)

pr{χ̄2
12(V , C) ≤ c} =

p∑
i=0

wp−i(p,V , C)pr(χ2
i ≤ c), (13)

where wi(p,V , C), i = 0, . . . , p are some nonnegative numbers and
∑p
i=0 wi(p,V , C) =

1. The right hand side of equation (12) is the chi-bar-square distribution, and is a
weighted mean of several tail probabilities of χ2 distributions. The set {wi(p,V , C)}
is known as the chi-bar-square weights or simply weights. Similar results may be
derived when the null space is replace by a linear space constrained in C, such as
Aθ = c, where A is a q × p matrix and c is a q × 1 vector.

Interestingly, a distinguishing factor of the χ̄2
12 test is that the null hypothesis

involves inequalities. Hence, the p-value depends on the underlying parameter θ,
which may be anywhere in the null parameter space. As an example, with C = {θ :
R1θ ≥ 0}, in order to obtain the critical value, c which assures size α, we must solve
supR1θ≥0 Pθ[χ̄2

12 > c] = α, where R1 is a q1 × p matrix. As explained in Silvapulle
and Sen [6], the supremum occurs at any θ0 with R1θ0 = 0, and hence θ = 0
is one such value. This particular null distribution is denoted the least favorable
distribution.

Furthermore, analogous to the level probabilities discussed previously, closed
form expressions for wi exist only when the number of parameters is small (i.e. p ≤
4) (Kudo [13], Shapiro [20]). If p ≥ 5, simulated weights may be used. Approaches
to simulate the chi-bar-square weights are provided in [6] (pp. 78-80).

Moreover, as V is often unknown in practice, we assume the covariance matrix
has the form V = σ2U , with U known and σ2 unknown. Suppose we consider the
linear model Y = Xθ +E where X is a known N × p matrix of rank p and θ is a
p× 1 vector of unknown parameters, with E ∼ N(0, σ2U).We then have

θ̂ = (XTU−1X)−1XTU−1Y , and Q(θ) = (Y −Xθ)TU−1(Y −Xθ),

where θ̂ represents the unconstrained estimator of θ. Similar to the results in the
previous section, if we define the hypotheses Ha : θ ∈ Ca and Hb : θ ∈ Cb with
Ca ⊂ Cb, then θa and θb are the values over which Q(θ) is minimized over Ca and
Cb respectively. Then, the E-bar-square statistic is

Ē2
ab = {Q(θa)−Q(θb)}/Q(θa). (14)
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Under the assumption of normality, θa and θb are the maximum likelihood
estimates of θ under Ha and Hb respectively. Furthermore it may be shown that
Ē2 is equivalent to the likelihood ratio test when the error vector E ∼ N(0, σ2U).

The null distributions of Ē2
01 and Ē2

12 are formed similarly to the corresponding
chi-bar square distributions. For H0 : θ ∈ M versus H1 − H0 where H1 : θ ∈ C,
and dim(M) = q, then the least favourable null value for Ē2

12 is θ = 0, as before.
The null distributions are

pr{Ē2
01 ≤ c} =

p∑
i=0

wi(p, (X
TU−1X)−1, C)pr[B{i/2, (N − q − i)/2} ≤ c]

pr{Ē2
12 ≤ c|θ = 0} =

p∑
i=0

wp−i(p, (X
TU−1X)−1, C)pr[B{i/2, (N − p)/2} ≤ c],

where B[a, b] is a beta distribution with parameters a and b.
Note that when V is completely unknown, Perlman [25] derived the exact likeli-

hood ratio test. Extensions to this test have been considered, and are summarized
in [6].

2.3. Recent Extensions to Constrained Inference

Development of constrained methods for non-normal models such as generalized
linear models (logistic and Poisson regression, proportional hazard models), time
series models, etc. have been undertaken by many authors (Piergosh [21], Silva-
pulle [22], and Fahrmeir & Kligner [23]) as mentioned previously. Under additional
regularity conditions and by implementing the inverse of the Fisher information ma-
trix, the null distributions of the LRTs for the hypotheses given in (3) also follow
a chi-bar-square distribution, albeit asymptotically for these models. Moreover, as
in the unconstrained case, constrained versions of the LRT, score and Wald tests
are also available and may be shown to be asymptotically equivalent [2,6]. Hall
and Praestgaard [26] introduced an order-restricted score test for homogeneity in
the generalized linear mixed model, which accounts for the positive semidefinite as-
sumption of the random effects covariance matrix. Park et al. [27], Pilla et al. [28]
and Rosen and Davidov [29] considered constrained estimation of parameters in a
longitudinal setup for which the chi-bar-square distributions also apply. Also, Far-
rell and Park [30] proposed a constrained likelihood ratio test for ordered group
effects with one binary and one continuous response, which was shown to follow a
chi-bar-square distribution asymptotically.

In the context of linear modeling, estimation of order-restricted model param-
eters with incomplete data has been studied previously (Kim & Taylor [31]; Shi,
Zheng & Guo [32]; Zheng, Shi & Guo [33]). For linear mixture models, Jamshid-
ian [34] used a somewhat different approach, and proposed a globally convergent
algorithm based on the gradient projection (GP) method which may be employed
as part of the Expectation -Maximization (EM) algorithm (Dempster et al., [35])
for estimation under incomplete data. However, no distributional results were pro-
vided. Nettleton [36] discusses various theoretical issues relating to the convergence
properties of the EM procedure under order-restrictions. The aforementioned pa-
pers also conducted simulation studies which demonstrated constrained techniques
tended to have smaller mean square error than unrestricted models which ignored
the constraints.
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With the recent advancement of mixed models and missing-data analysis, in-
terest lies in obtaining constrained estimates and test statistics in such situations.
However, unlike generalized linear models in which many models may be approxi-
mated by a quadratic function and multivariate normal techniques used; a gener-
alized linear mixed model (GLMM) setting is known to lose efficiency when such
approximations are performed. Hence, for constrained estimation of mixed mod-
els and for missing data problems, a different approach must be considered for
estimation, since constrained algorithms based on a least square method such as
Dykstra [14] may not be applied. Recent papers by Jamshidian [34] and Davis
et al. [37] have implemented modified versions of the gradient projection algorith-
m to find maximum likelihood estimates for non-normal models under inequality
constraints.

The gradient projection algorithm is known in the optimization literature as an
active set method for solving equations under linear inequality constraints. As stat-
ed by Luenberger [38], if it were known a priori which constraints were active (hold
with equality) at the solution to the optimization problem, the solution would be
a local maximum point of the problem defined by ignoring the inactive constraints
and treating all active constraints as equality constraints. Hence, with respect to
local or relative solutions, the problem could be regarded as having equality con-
straints only. This observation suggests that the majority of theory applicable to the
optimization problem may be derived by considering the equality constraints alone.
Such estimates then satisfy the Kuhn-Tucker [39] first-order necessary conditions
for optimality.

With M = {β : Aθ = c} and C = {θ : Aθ ≤ c}, likelihood ratio test statistics
may be calculated using constrained estimates under H0 and H1, denoted θ0 and θ∗

respectively. The unconstrained test rejects H0 in favor of H2−H0 for large values
of the test statistic T02 = 2[l(θ̂|y) − l(θ0|y)], where l(θ|y) is the logarithm of the
marginal likelihood. It is well-known that under H0 the statistic T02 asymptotically
follows a chi-square distribution with q degrees of freedom, assuming A is a q × p
matrix. However, if the parameter space is restricted by H1, we test H0 against
H1 −H0 using the statistic T01 = 2[l(θ∗|y)− l(θ0|y)]. Further, we first confirm H1

by a goodness-of-fit test which rejects H1 for large values of T12 = 2[l(θ̂|y)−l(θ∗|y)].
Davis et al. [37] showed that additional theoretical rigour is needed to prove that

the asymptotic null distributions of the likelihood ratio test statistics T01 and T12

for GLMMs with cluster correlated data are:

lim
k→∞

Pθ0 [T01 > x] =

q∑
i=0

wi(q, AV (θ0)AT )P [χ2
i > x], (15)

and

lim
k→∞

Pθ0 [T12 > x] =

q∑
i=0

wq−i(q, AV (θ0)AT )P [χ2
i > x], (16)

for any x ≥ 0. Here q is the rank of A, k is the number of clusters, θ0 = (βT0 ,γ
T
0 )T

is a value of θ under H0, γ0 represents the variance components, and V (θ0) =
limk→∞ k[I(β0,β0) − I(β0,γ0)I−1(γ0,γ0)I(γ0,β0)]−1, where I(., .) = E[Io(., .)]
with Io(., .) being the observed information matrix. The chi-bar-square weight-
s, wi(q,D), represent the probability that the least squares projection of a q-
dimensional multivariate normal observation from N(0, D) onto the positive or-
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thant cone has exactly i positive component values. As in the multivariate normal
case, simulation algorithms may be used to find wi(q,D).

3. APPLICATION: OTTAWA CORD BLOOD STUDY
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Figure 1
Histograms and Boxplot of PFOA Levels in Ottawa Cord
Blood Study

We revisit the environmental study mentioned in the Introduction, which considered
levels of PFOA in the umbilical cord blood of newborn babies. A total of 126
mothers participated in the study, of which 100 of the cord serums were of sufficient
volume for analysis. Details of the study are provided in Arbuckle et al. [7]. We
extend the results of the previous analysis by incorporating constrained statistical
techniques. Table 1 provides descriptive statistics of PFOA levels (ng/mL) by
gravida for the cord blood samples. As is typical in environmental studies, the
lognormal distribution is used to account for skewness (Figure 1). If Y is a lognormal
random variable, then the natural logarithm of Y is a normal random variable.
Table 1 and the boxplot in Figure 1 note the decreasing relationship between gravida
and PFOA levels.

Table 1
Descriptive Statistics for PFOA (ng/mL) by Gravida for
Ottawa Cord Blood Study

Gra-
vida

n
Arith-
metic
mean

SD Min Max Q1 Median Q3
Geome-

tric
mean

95%CI for
geometric

mean

One 23 2.56 1.08 0.78 4.50 1.61 2.40 3.10 2.31 (1.90, 2.82)
Two 33 1.70 0.92 0.44 4.46 0.93 1.59 2.15 1.47 (1.22, 1.78)
Three 18 1.43 0.93 0.36 4.08 0.77 1.12 1.86 1.19 (0.90, 1.59)
Four or

26 1.47 1.13 0.30 5.22 0.62 1.10 2.18 1.13 (0.85, 1.51)
more
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The statistical model is

ln yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi

where xi1, xi2, xi3 are indicator variables representing gravida of one, two and
three, respectively; xi4 had a value of 1 if the delivery is Vaginal or 0 if by Cesarean
section; xi5 has a value of 1 if the birth weight is less than 2500g and 0 otherwise;
and assume εi ∼ N(0, σ2). Values of the unconstrained parameter estimates are
provided in Table 2. The statistical package R was used for computation.

In order to test for a decreasing gravida effect and no difference in the effect
of the third and subsequent pregnancy, we define the parameter spaces M0 =
{β : β1 = β2 = β3 = 0} under H0 and C1 = {β : β1 ≥ β2 ≥ β3 = 0} under
H1. The unconstrained parameter space under H2 is C2 = {β : β ∈ Rp}. Since
the unconstrained estimates do not satisfy either constrained parameter space, the
gradient projection algorithm is used to fit maximum likelihood estimates under
M0 and C1, as listed in Table 2. A description of the algorithm is provided in the
Appendix.

To perform hypothesis tests, the unconstrained test statistic was found to be
Ē2

02 = 0.09246 with a p-value of 0.0002. The goodness-of-fit test of H1 versus
H2 − H1 had a test statistic Ē2

12 = 0.00001 with p-value = 0.983, thus the con-
strained hypothesis test is useful. The test of H0 versus H1 −H0 has test statistic
Ē2

01 = 0.09245 with p-value = 0.00004. Hence, gravida has a decreasing effect on
PFOA levels and the third and subsequent pregnancy has no significant effect. Thus
both constrained and unconstrained tests lead to a rejection of the null hypothesis,
however the additional information provided by the constrained test leads to a more
efficient and lower p-value, as well as a more precise interpretation.

The aforementioned p-values were obtained using E-bar-square distributions
with associated weights of (0.32730, 0.49522, 0.17748)T , which were obtained by
simulation. Note that to avoid redundancy, the weight vector has been reduced by
one dimension in this case, since there is an equality constraint in C1.

Table 2
Constrained and Unconstrained ML Estimates for Ottawa
Cord Blood Study

Parameter

Unconstrained Constrained
C2 Standard M0 C1

{β : β ∈ Rp} errora
{β : β1 = β2

= β3 = 0}b
{β : β1 ≥ β2

≥ β3 = 0}b

β0 0.121 0.121 0.254 0.119
β1 0.485 0.181 0.000 0.486
β2 0.160 0.160 0.000 0.162
β3 -0.003 0.186 0.000 0.000
β4 0.444 0.152 0.595 0.444
β5 0.469 0.344 0.501 0.470
σ2 0.320 0.046 0.354 0.321
awhere the standard error refers to the unconstrained value.
bestimates obtained using the Gradient Projection algorithm.
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4. FUTURE DIRECTIONS

While constrained statistical inference requires additional computational and the-
oretical rigour, the improvements in efficiency and additional testing power are
well-established. Nevertheless, many unsolved problems remain. Contrary to un-
constrained models, hypothesis testing under the chi-bar-square or E-bar-square
distribution is the preferred method of inference as confidence intervals are difficult
to obtain in constrained environments. The distribution of the constrained esti-
mator θ̃ is dependent upon the proximity of the unconstrained estimator to the
boundary of the constraint, and has been derived for linear models under simple
orderings, as per Hwang and Peddada [40]. Additional theoretical advances would
be needed to obtain confidence intervals for more complicated models in constrained
settings.

While much research in constrained inference has focused on frequentist ap-
proaches, Dunson and Neelon [41] considered Bayesian constrained methods for
GLMs, highlighting the usefulness of Bayesian constrained procedures. With con-
tinual advances in computational methods, Bayesian constrained techniques are a
timely and useful area of future research. The authors noted that sampling from
the constrained posterior distribution is obtained by transforming draws from the
unconstrained posterior density. As a result, existing Gibbs sampling algorithm-
s for posterior computation of generalized linear models apply directly. Bayesian
inferences for umbrella orderings were discussed in Hans and Dunson [42].

Other constraints such as shape or stochastic orders may also be considered,
as discussed by Silvapulle and Sen [6], Peddada et al. [43] Bornkamp et al. [44]
and Lee et al. [45]. Alvo [46] considers nonparametric tests for umbrella orderings,
for which the dosage mean values increase and then decrease after a certain peak.
Other approaches to maximum likelihood which require fewer assumptions, are also
relevant in constrained settings, and could be extended to nonparametric methods
for other parameter orderings.

Another area of future work would be to consider constraints on variance-
covariance parameters. Calvin and Dykstra [47] developed a restricted maximum
likelihood (REML) estimation scheme for covariance matrices, with both balanced
and unbalanced data. Such an extension would be particularly useful in mixed
models, for which tests for increasing or decreasing trends in variance components
could be developed. Further, for missing data models, Nettleton [36] outlined a
theorem for constrained estimators which extends the EM algorithm under con-
straints. These developments would prove particularly useful, since even in the
unconstrained case, the EM algorithm is known to converge slowly compared to
other maximization techniques.
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APPENDIX – GRADIENT PROJECTION ALGORITHM
FOR INEQUALITY CONSTRAINTS

Consider inequality constraints of the form Aθ ≤ c, where A is a q × p matrix
of full rank (q ≤ p), thus the constrained parameter space is Ω = {θ : Aθ ≤ c}.
Jamshidian [34] and Davis et al. [37] propose a gradient projection algorithm to
find a solution to maximize the log-likelihood function l(θ|y) subject to

aT

i θ = ci i ∈ I1,
aT

i θ ≤ ci i ∈ I2,

where the likelihood is assumed to be sufficiently smooth. The algorithm begins
with an initial working set of active constraints, denoted W. This set includes
indexes of the constraints in I1, if any, and may include indexes from I2. Let A be
an m×p matrix whose rows consist of aT

i for all i ∈ W and let c be the corresponding
vector of ci’s. We further define V as a positive-definite matrix under the current
estimate of θ (e.g. variance-covariance matrix).

Beginning with an initial point θr that satisfies Aθr = c, the algorithm proceeds
as follows:

1. Compute d = P s̃(θr) where P = I − V AT

(AV A
T

)−1A.

2. If d = 0, compute the Lagrange multipliers λ = (AV A
T

)−1As̃(θr).

a) If λi ≥ 0 for all i ∈ W ∩ I2, stop. The current point satisfies the Kuhn-
Tucker necessary conditions.

b) If there is at least one λi < 0 for i ∈ W ∩ I2, determine the index
corresponding to the smallest such λi and delete the index from W.
Modify A and c by dropping a row from each accordingly and go to Step
1.

3. If d 6= 0, obtain α1 = maxα{α : θ + αd is feasible}. Then search for α2 =

maxα{l(θ + αd) : 0 ≤ α ≤ α1}. Set θ̃r = θr + α2d. Add indexes of new

coordinates, if any, of θ̃r that are newly on the boundary to the working set
W. Modify A and c by adding additional rows.

4. Replace θ by θ̃r and go to Step 1, continuing until convergence.
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