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Abstract: The paper would introduce a concept of the generator of the
function space. The generator is a more fundamental function than the ba-
sis, that the function space can be generated by the shifts and the linear
combination of the generator. Various related properties of the generator are
presented.
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1. INTRODUCTION

We will begin with a trivial question—what is applied mathematics? From the
references, there is no standard definition. Someone said: almost all research topics
are applied mathematics. If a research topic doesn’t use mathematics, then the topic
has not achieved a scientific level. Someone said: almost all of the mathematics
are applied mathematics. Most of the basic problems of mathematics came from
applications. On the other side, the results of the mathematics can be or will (in
future) be used in applications. We will not give a standard definition of applied
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mathematics here. However the phrase “applied mathematics” contains two parts—
the application and the mathematics. At least the interface of application and
mathematics belongs to applied mathematics. Therefor compared to the people who
doing application and those who doing pure mathematics, applied mathematicians
will pay more attention to the interface of application and mathematics, applied
mathematicians will focus on the interaction between application and mathematics.

The media for the interaction via the interface of application and mathematics
are data. Data are usually huge amount, however must be finite. Applied mathe-
maticians work at first on the data to find out or to represent the underlying func-
tions, this is called numerical approximation. Then applied mathematicians take
mathematical operator to the functions to get mathematical equations, usually to
get partial differential equations, this is called mathematical modeling or in a pure
mathematical language “differential operator approximation”. The result equations
are often interpreted as physical laws. The Kepler’s law was established in this way.
Finally properties of solutions of mathematical equations will be investigated and
used to interpret the physical phenomena.

More in details, if we have an unknown differential operator which is applied
on a series of function {fj(x)} and get a series of function {gj(x)}, we can discrete
the functions to be vectors (or points) — {fj(x) → {fj(xk)} = fj} and {gj(x) →
{gj(yk)} = gj} (because one can only sample the finite data {fj} and {gj} in the
application), so that the differential operator can be approximated by an algebraic
operator, which maps the points {fj} to the points {gj}. Therefor the approach
of differential operator approximation can be stated as a numerical approximation
problem too in a high dimensional space.

Since the differential operator approximation can be stated as a numerical ap-
proximation problem, in this paper we will focus on the numerical approximation,
which approximates the underlying function based on the sampling data {f(xk)}.
A more complicated problem is that we can only sample the data of the right hand
sides of a partial differential equation and the boundary conditions. For example,
we can sample the data {∆f(xk)}nk=1 in a domain and {f(xk)}n+mk=n+1 on the bound-
ary. More generally, we can sample the data {Lkf}, where {Lk} are (linear or non
linear) functionals, and want to find or approximate the underlying function f(x).

To approximate the function, we require a nested function space. e.g. · · · ⊂
Vn ⊂ Vn+1 ⊂ · · · . For example Vn = Pn, Vn = the spline on the knots {j/2n},
Vn = the wavelets on the knots {j/2n}, etc. The numerical approximation can be
formulated as that, to find the function fn(x) ∈ Vn based on the data {f(xj)}Nj=0 or

{Ljf}Nj=0, such that the norm of ‖fn(x)− f(x)‖ will be minimized. If the distance
or the norm is Euclidean, Hilbertian or Sobolev’s, then we require only to find the
projection of the function f(x) to Vn.

We begin with an example Vn = Pn, the polynomial of degree less than or equal
to n. The most common method is to find the function fn(x) ∈ Vn by least square,

that
∑N
k=0(fn(xk) − f(xk))2 is minimized, which is an approximation of the L2

norm of ‖fn(x)−f(x)‖. If n < N , it is the classical least square, however the result
can not represent the underlying function very well usually. If n ≥ N , then the
least square will turn to the interpolation. If n = N the interpolation is successful
and unique solvable. If n > N , the interpolation is successful too, but possesses no
uniqueness. In this case one can find a solution with a punisher of the L0 norm
of the coefficients of the function fn(x) to get a shortest representation, which is
very popular recently. Because to find the simplest shortest representation of the
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underlying function is the basic problem in applied mathematics. The least squares
are convergent to the underlying function f(x) as n and N tend to infinity, if all
the derivatives of the function f(x) are uniformly bounded.

Usually n is very large (too large!), especially for multi-variate problems. To
run this algorithm we require to solve a large scaled linear system of equations, or
even with a searching process of non linear programming. The knots or data points
{xj}Nj=0 are usually scattered. A lot of the cases in the application, the data are
even linear functionals. (e.g. by remote sensing, seismic, etc.). We would like to
mention the reader again that for engineer, both n and N , the large of the data
interacted through the interface of application and mathematics, are finite.

The key feature of the function approximation is that we want to use less ba-
sic functions (basis) to represent or approximate the underlying target complicate
function. To solve such problems we require at first a basis in Vn. It is better
to have an orthonomal basis, otherwise we should find the dual basis to make the
projection. Our function fn(x) is a (or can be constructed by) linear combination of
basis. Again we go back to a trivial question — what is the basis? The basis is the
smallest set in Vn, which can be linear combined to represent all the functions in Vn.
A trivial question again — how many basis for 100-variate parabolic function space?
The answer is 3100, these lead to the the catastrophe of the space-dimension. The
parabolic function space is a very weak space, we can even not use it to represent
or approximate a function with more than two local maximums.

To solve the problem, we would adopt the result from Physics. The fundamental
problem in Physics is to answer: What is the substance? Substance is constructed
(linear combined) by Atoms or Elements.

e.g. Water = 2H + O, Salt = Na + Cl.

Basis in mathematics is somewhat like atoms or elements in Physics. However
the physicist know that the atoms or elements are constructed by more fundamental
particles! These lead to a question in mathematics that, whether in function space
there exists such more basic function than basis? The answer is YES for most of
known function spaces, especially for the function spaces, which can be used in
application. For example, the function xn in the space of polynomial of the degree
less than or equal to n. Any n + 1 pairwise distinct shifts {(x − xj)n} is a basis.
This means xn is a more fundamental function than basis, any basis and function
in polynomial space can be generated by xn via shifts and its linear combinations.

Definition 1.1. For a given function space, if there exists a function G(x), such
that the shifts and its linear combinations can generate the whole function space,
then G(x) is called the generator of the function space.

Remark 1.2. Generator is a more basic function than the basis of the function space,
which contains all the DNA of the function space. One requires only to take the
shifts (copy it self) and make liner combinations to generate whole function space.
This phenomenon appears often in Biology too. The Proteins, the Cells and the
Life copy it self and make combination to get the Cells, the Life and the Society
respectively.

In the following we will give some examples of generator in some common func-
tion spaces.

• xn, Polynomial.
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• sin(2x)− 2 sin(x), Trigonometric Polynomial.

• 2ex − e2x, Exponential Polynomial.

• |x|2k+1, Polynomial Splines.

• |x|2k ln(|x|), Thin-plate, Poly-harmonic Splines.

• |x|2k+1ex sin2 x, Tschebycheffian Splines.

• e−x2

, Gaussian.

•
√
c2 + x2, Multi Quadratics.

In the application, Engineers haven’t learned a lot of functions. Above are almost
all kinds of the functions, which have been learned by Engineers. This is perhaps
the reason, why the spline wavelets are mostly used in wavelets application.

2. FINITE DIMENSIONAL FUNCTION SPACE

More than n+ 1 shifts of xn are linearly dependent.

Theorem 2.1. (Necessary and Sufficient Condition) Function which can only gen-
erate a finite dimensional space must be a solution of linear ordinary (partial) dif-
ferential equation with constant coefficients.

For multivariate cases, the condition is necessary but not sufficient.

The following are some of the ordinary differential equation operators related to
such function spaces.

• Dnf(x) = 0, Polynomial of degree n− 1

• (D2 + c2I)f(x) = 0, Trigonometry polynomial

• (D2 − c2I)f(x) = 0, Exponential polynomial

• Dn(D4 − c4I)f(x) = 0, Algebra of above functions

• P (D)f(x) = 0, If P (λ) = 0 possesses roots λj , then {exp(λjx)} are basis,∑
exp(λjx) is a generator.

Remark 2.2. These contain almost all the function, which can be supplied to the
Engineers for application. Using rational form we can get more other function
spaces, e.g. tan(x) = {sin(x), cos(x)} the functions pair of above functions.

Theorem 2.3. For the solution space of P (D)G(x) = 0, if G(x) satisfies

G(k)(0) = δk,n−1,

we can prove: G(x) is a generator of the solution space and is called the standard
generator for the solutions space.
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Theorem 2.4. The function G(x) is the first coefficient of interpolatory polyno-
mial that the value at λj is eλjx, which can be represented in the form of divided
difference, therefore we get an explicit representation of the standard generator:

G(x) = [λ1, · · · , λn]eλx, (2.1)

if λj are the roots of the character function of P (λ) = 0.

The estimates of approximations order of polynomial approximation are based
on the Taylor’s expanses and the Roll’s Lemma, here we have the parallel results[7].

Theorem 2.5. (generalized least square) If we have a series of the ordinary differ-
ential operators Pn(D) = Pn−1(D)Qn(D), then we have a nested solutions spaces
Vn = Ker(Pn(D)), parallel least square and the interpolation can be made for these
function spaces too, if

max{|xj − xk|}min |Im(λj)| < 2π.

Theorem 2.6. (generalized Taylor’s expanses) For the solution space of P (D)G(x) =
0, if Gj(x) satisfies

G(k)(0) = δk,j ,

we have a generalized Taylor’s expanses that

f(x) ∼
∑

f (j)(x̄)Gj(x− x̄) +O(n+1)(x− x̄).

Theorem 2.7. (generalized Roll’s Lemma) If the character function P (λ) is a
polynomial of degree n, for given function f(x), there is a function f∗(x) in the
solution space that f(xj)− f∗(xj) = 0 possesses n+ 1 zero points {xj}, then there
exist a point ξ ∈ (min{xj},max{xj}) that

P (D)(f(ξ)− f∗(ξ)) = 0.

Theorem 2.8. The most parallel result for the polynomial space such as the Bern-
stein’s polynomial, Bernstein’s approximation can be generalized to such solutions
space too[7].

3. INFINITE DIMENSIONAL FUNCTION SPACE

The approximation capacity is limited, if the generator can only generate a finite
dimensional function space.

How can we construct a new generator based on the standard generator of the
solution space of the ordinary differential equations, such that it can generate an
infinite dimensional space and can approximate (represent) almost all the functions?

This time we would ask the Biologist!
In Biology an important concept is Bio-multiformity, which tells us the reason,

why a new species appear. This event will happen via gene mutation.
Based on the generator x we can construct a new function |x| with gene mutation

at zero, then Euclidian Hat

Λj(x) =
(|x− xj+1| − |x− xj |)

2(xj+1 − xj)
− (|x− xj | − |x− xj−1|)

2(xj − xj−1)
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and piecewise linear interpolation

f∗(x) =
∑

f(xj)Λj(x)

can be constructed, if we take |x| as a new generator. It is well known that any
continuous function can be approximated by piecewise linear interpolation!

Theorem 3.1. Any standard generator with gene mutation:

G(x) :=
1

2
sign(x)G(x) (3.1)

will generate an infinite dimensional space, which generates a Tschebycheffian s-
pline function space: the piecewise function of algebra of polynomial, trigonometric
polynomial and exponential polynomial and can approximate (represent) almost any
function[6].

Theorem 3.2. For Tschebycheffian spline generated by such generator, parallel
works such as the dual basis, the interpolation and the approximation, B-spline
form, Energy minimization, subdivisions algorithm, wavelets decomposition have
been done in [6].

For multivariate problems, the simplest generator is the radial function: Let
φ : R+ → R,Φ(x) = φ(‖x‖), then we get the radial basis space {Φ(x − xj)} [3,4].
[5] first constructed compact supported radial generator with only one piece of the
polynomial. [2] answers the open problem in [5] to get such compact radial basis
with minimal degree. We can construct the dual basis for given Hilbert, Sobolev
norm. We can design a new norm (Kriging norm [4], or native space) to form
a orthogonal basis to get the result that the interpolation minimizes the Kriging
norm or is a projection in the native space by using the concept of reproducing
kernel Hilbert space. [1] shows that, if an image space, whose elements can be
represented as {f(x) =

∫
h(x, t)F (t)dt}, then we have a generator (reproducing

kernel) φ(x− y) =
∫
h(x, t)h∗(y, t)dt that the image space can be generated by the

generator φ(x) via the shifts and the linear combinations in respect to the native
space norm or the Kriging norm.

Any shift invariant Hilbert space possesses a reproducing generator

φ(x− y) =
∑

bj(x)bj(y),

where {bj(x)} is any orthonormal basis, that f(x) =< f(·), φ(x − ·) > respect to
the native space norm or Kriging norm.

The key problem is to find a simple mathematical representation of the generator
for using in application. The most commonly used generators in application are
Gaussian e−x

2/σ2

, the spline, the poly-harmonic spline and the Tschebycheffian
spline (2.1, 3.1), the compactly supported radial generator [2,5] and the multi-
quadric function

√
c2 + x2, which was used first by Hardy for aircraft design in

Boing Co..

4. CONCLUSIONS

In this paper, we have shown a brief introduction of the generator of the function
space. Some more related works and the details in respect to the concept can be
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found in the references and the references therein. The open problem is that, in the
application, how can we find a proper generator, which can represent or approximate
the underlying function simply.
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