© cscanada ISSN 1925-251X  [Print]

Progress in Applied Mathematics ISSN 1925-2528 [Online]
Vol. 4, No. 2, 2012, pp. [44-57] www.cscanada.net
DOTI: 10.3968/j.pam.1925252820120402.1785 www.cscanada.org

Nonoscillation for System of Neutral Delay
Dynamic Equation on Time Scales

G.H. Liul" and L.CH. Liu®

[ College of Science, Hunan Institute of Engineering, China.

* Corresponding author.
Address: College of Science, Hunan Institute of Engineering, 88 East Fuxing
Road, Xiangtan, Hunan 411104, China; E-Mail: gh29202@163.com

Received: September 12, 2012/ Accepted: October 10, 2012/ Published: October
31, 2012

Abstract: In this paper, by fixed theorem, some sufficient conditions for
nonoscillation of the system of neutral delay dynamic equations on time scales
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1. INTRODUCTION

The theory of time scales, which has recently received a lot of attention, was intro-
duced by Stefan Hilger in his Ph.D. thesis in 1988 in order to unify continuous and
discrete analysis [1]. A time scale T is an arbitrary nonempty closed subset of the
reals, and the cases when this time scale is equal to the reals or to the integers rep-
resent the classical theories of differential and of difference equations. Many other
interesting time scales exist, and they give rise to many applications [9].

Z

Figure 1. Some Time Scales
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where T = hZ = {hk : k € Z,h > 0}, Pop = U [k(a+b),k(a+b) + al.

k=0
On any time scale T, we define the forward and backward jump operators by
o(t):=inf{s >t:s€T}, p():=sup{s<t:seT}.

A point ¢ € T, ¢ > inf T, is said to be left-dense if p(t) = ¢, right-dense if ¢ < sup T
and o(t) = t, left- scattered if p(t) < ¢ and right-scattered if o(t) > ¢. The graininess
function u for a time scale T is defined by p(t) := o(t) — t.

A function f: T — R is called rd-continuous function provided it is continuous
at right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. The set of rd-continuous functions f : T — R is denoted by C,q = C,.q(T) =
Cra(T,R).

Let f be a differentiable function on [a,b]. Then f is increasing, decreasing,
nondecreasing, and non-increasing on [a,b], if f2(t) > 0, f2(t) < 0, f2(t) >0,
and f2(t) <0 for all t € [a, b), respectively.

For a function f: T — R (the range R of f may be actually replaced by any
Banach space) the delta derivative is defined by

flo(t)) — f(B)

FA) = PR

if f is continuous at ¢ and t is right-scattered. We will make use of the following

product and quotient rules for the derivative of the product fg and the quotienti
g

(where gg° # 0) of two differentiable functions f and g
(f9)® = [2g+ 79" = f9° + [2¢°.
s - f29 - fo?
g 99°
For tg,b € T, and a differentiable function f, the Cauchy integral of f2 is defined
by
b
FROAL = f(b) — f(to)-
to

An integration by parts formula reads

b b
t F(t)g® ()AL = [f(t)g(t)]7, — t F2(6)g7 (AL,

and infinite integral is defined as

/0 F(HAL= lim ff()

0

In recent years, there has been much research activity concerning the oscillation
and nonoscillation of solutions of various equations on time scales.We refer the
reader to the papers [2-8] and the reference cited therein.

In this paper, we consider dynamic equations

((t) +pe(t = 7)) + Q(t)z(t — 7) =0, (1)
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and
(z(t) + Bx(t — 7))2 + Q(t)z(t — 7) = 0, (2)

Wheret € T, pe R, 0< 7, 0 € T, and Q(t) is rd-continued n x n matrix on
[to,00)NT. Let z(t) be the set of all rd-continuous and bounded n-dimension vector
functions on [tg,00) N T, and B is a n x n matrix, and ||B| # 0. Let ||B|| = b.

2. NONOSCILLATION THEOREMS

First we consider the case p is a constant.
Theorem 2.1 Suppose that f;o 1Q(s)||As < oo, where p # —1, and || @] is any
norm in T, then Eq.(1) has a nonoscillatory solution.

Proof. The proof of this theorem will be divided into five cases depending on the
five different ranges of the parameter p.

Case 1. 0<p< 1.

Choose a t; € T sufficiently large such that t; > to+7, where @ = max{r, o}, and

. 1—p(1+ M) — M
fi, lQ(s)[[As < ol W 2) L holds. Where 0 < M, < 1, My > My, M, +

M,y + M, 1- M,

2 Sp< 1+ My

Let x(t) be the set of all continuous and bounded vector functions on [t, co) NT.
Let A= {z € X : My < |Jz(t)|| < Ma,to < t}. Define a mapping F : A — X as
follows

My <2, and 1 —

(Fo)(t) = { E;;)z(?jle)’— pr(t—7)+ [ Q(s)a(s — 0)As, ;itlt;< . )
Clearly F, is rd-continuous. For every = € A and t 3 t1, using Eq.(3), we get
IEO] = 0= pe—pale =)+ [~ Qojals —a)as]

< =l + st = DI+ [ QesJals - o)ass]
< @epplete- I+ [ 1@t - )las
< 1-prpih i [ QWA
< 1—p+pM2+M21_p(l+M]\jQ) — M
= 2(1-p)— My < My

Further, in view of Eq.(3), we have

IFON = 10 ple~pate— )~ [ Qo)als - )]

=z (=Pl - IIPHJ(t—T)—/tOo Q(s)z(s — o)As||
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WV

1= p—pla(t )] —/too 1Q(s)a(s — 0))|As

> 1—p—pM —MZ/ 1Q(s) ]| As
t

1—p<1—|—M2)—M1
My

z l—p—pM;— M
= M.

Thus we proved that FFA C A.
Now, for all 1,29 € A, and t > 1, we have

[(Fz1)(t) = (Fa) ()|
=[l = Blz1(t = 7) — wa(t —7)] + /t Q(s)[r1(s — o) —wa(s — 0)]As||

<ll= Bl = 7)ot =l + 1 T Q)1 (s — 0) — wa(s — o)) As]
bl ol + ey = ol [ Qs As

<riller —aall (rn=b+ / 1Q(s)1As)

Clearly,

1—p(1+M2)—M1_ 1—p—M1

1.
M; My O

=p+ As<p+
q =P /t ||Q(S)” S P
SO

|(Fx1)(t) — (Fo2) (@) < q1flv1 — 22,

which proves that F' is a contraction mapping. Consequently, F' has the fixed point
x with Fo =z, ||z|| > 0, for all ¢ > ¢;, which is a nonoscillatory solution of Eq.(1).
Case 2. 1 < p < .
Choose a t; € T sufficiently large such that ¢t + 7 > tg + o, and

oo
p—1—pN1 — N
| laas < P
t1+71 2

1+ Ny 2
hold, wh N 1, N N d N; + N 2 < .
old, where 0 < N; <1, Ny > N; an 1+ Na < ’1_N1<p 2— Ny — No

Let X (t) be the set of all rd—continuous and bounded vector functions on ¢y <
teT Set A={xe X :N < |z@)| < Nz, to < tNT}. Define a mapping
F:A— X as follows

1 1 1
1—e——z(t+7)4+ - [T Q(s)x(s — 0)As, t >ty
( p) p( ) pft Q(s)z(s — o) 1
(Fz)(t1), to <t <ty

(Fz)(t) = (4)

Clearly Fz is Cy4 continuous. For every x € A and t > t;, using (4) we get

1 1 1
I(Fz)@)] = ||(1—];)6—];x(t+7)+];/t Q(s)x(s — o) As||
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Further

1 1 1 [
I(Fz)@OI = (1= =~)e- [];w(t +7) - };/t Q(s)z(s — o) Ad]|

p
1

WV

WV

-1 %Hx(t +o)l - % /too 1Q(s)2(s — )| As
1 Ny

Ny Ny [
1—7————/ 1Q(s)]1As
p p P Jt
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Thus we proved that FFA C A.
Now, for all z1,z2 € A, and t > t1, we have

[(Fa1)(t) = (Fza) (@)

1 1 1 [
||(1—5)6||7L H;x(t+7)||+||]3/t Q(s)z(s — o) As||

1 1 [°°
0= Dl =l a(t+7) = / Q(s)a(s — o)As|

1 1 1, [~
(1- ];)Ilell + Z;Ilff(t + 7l + 5” /t Q(s)z(s — o)||As

=l = B a1 (t = 7) — 22(t — 7)) + B~ /too Q(s)[z1(s — ) — za(s — 0)]As]|

<l =B aa(t = 1) — 22t = ]| + B /too Q(s)[r1(s — o) —wa(s — 0)]As||

<jllertt =) ot =l + 3 [ 1@ llea(s = )~ aals - ) s

1 1 o
<gllos =zl + g lles = 2] [ 1QGs)1As
b b ;
1 1 [~
il —aall =g+ [ QA
t

Clearly,

1 1 /% 1
q:,_,_,/ Q(s)|]|As < - + =
A A N PN
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SO

[(Fz1)(t) = (Fa2) ()| < gallzy — 22|,

which proves that F'is a contraction mapping. Consequently, F' has the fixed point
x with Fo =z, ||z|| > 0, for all ¢ > ¢, which is a nonoscillatory solution of Eq.(1).

Case 3. p=1.
Choose a t; € T sufficiently large such that ¢t + 7 > ¢y + o,

t+2i7 P _
S [ o Jawlas< ELEE
t D2

1+(2i—-1)1

where P be a nonzero constant vector and p; < ps are positive constants such that,
p1+ p2

5

Let X (¢) be the set of all rd—continuous and bounded vector functions on tg <
teT. Set A={z € X :p1 < ||lz()]| < p2,to < t}. Define a mapping F: A — X
as follows

p1 < |IP[l <

t+2i7
P+ Z f1+(2z 1y Q(s)z(s — 0)As,

(Fa) (1 ) to

(Fa)(t) =

~
-« V
Ang

N
N
g

Clearly Fx is rd—continuous. For every x € A and ¢t > t; ,we have

t+2iT

|(Fa)t \—HP+§:/ (5)a(s — o) As]

t1+(2i— 1)7'
t+2i1

<Py | (s)a(s — o)

t14(2i— 1)7’
t+2i1

<W%§N/ Q(s)(s — o) As|

i=0 t1+(2i—1)7
t+2iT

W+Z/ 1Q()llz(s — o) As

t1+(2i—1)7
t+2iT

WHmZ/ IQ@)as

1 (2i—1)T
< ||+ p =
D2

— 2P| -
< po.
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Further,
t+2i71
|(Fa)(t \—HP+§:/ (s)a(s — o) As]
t1+(2i— 1)7’
t+2iT
>1P1-1y | (5)a(s — o)
t14(2i— 1)7’
t+2i1
>WW§N/ Q(s)(s — o)As|
o Ju+@i-nr
t+2iT
> 1P| - Z/ 1Q(s) (s — o)||As
ti1+(2e—1)7
t+2iT
m|mz/ IQ@)as
t1+(2i—1)7
P _
> 1P| — po L=
=DP1-

Thus we proved that FFA C A.
Since A is a bounded, closed and convex subset of X, we prove that T is a
contraction mapping on A. Now, for all x1,2z9 € A, and t > t1, we have

t+247
|(Fz1)(t) — (Fa)(t)| = Z/HQ ) 8)[x1(s — o) — xa2(s — 0)]As||
t+2iT
< Z~/tl+ 2i—1)7 ||Q )[xl(s - U) - CUQ(S - J)]HAS
o0 t+2iT
s Z /tl+(2i1)‘r ”Q(S)H ”[xl(S N U) a x2(8 - 0')]||A5
t+2iT
N A
< |1 — a2 Z/ﬁ(m , le@ias
= g3z — z2||.

This immediately implies that
[(Fz1)(t) = (F2) ()| < gsllzr — 22|

ST 1Pl -m
w<X [ jalas< SR

1+(2i—1)7

where

which proves that F' is a contraction mapping. Consequently, F' has the fixed point
x with Fox = 2 with |z|| > 0, for all £ > ¢;, which is a nonoscillatory solution of Eq.
(1) which completes the proof of Case 3.

Case 4. -1 <p<0.

Choose a t; € T sufficiently large such that t; > ¢ + max{7, o}, and

> 1+p(1+L2)—L1
| 1Qas < S
t1 2
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hold, where 0 < Ly < 1, Ly, Lo are positive constants such that

Li—-1 L L
1 < 1+ 2_1

2(1 L L 2, — <
(14p) <Li+ Ly <2, T, <P 5

Let X (t) be the set of all rd—continuous and bounded vector functions on ¢y <
teT. Set A={x € X : Ly <| ()| < La,tg < t}. Define a mapping F: A - X
as follows
(L+ple —pa(t —7)+ [ Qs)a(s — 0)As,

(Fz)(t1), to <

13

H.
-~ WV
-

/A

(Fz)(t) = {

t1.

Clearly Fx is rd—continuous. For every = € A and ¢ > t1, we have
[(Fz)@)] = (1 + p)e — p(t — ) + /too Q(s)x(s — o) As||
<[ +pell + llpz( — )l + || /too Q(s)x(s — o) As||
<) = plate =)l + [ 1Q)(s - o)As

o0
< 1+p—pL2+L2/ 1Q(s)]|As
t

14+p(1+Ly)— Ly
Ly

S1+p—pLly+ Lo

= 2(1 +p) —L1
< Lo.

Further
IF2)ON =110+ ple = ate =7~ [ QUsJals ~ o)l
>0+ p)ell = Ipate =) = [ Qls)als — o)ass]
> (4 p)lel = = patt =0l = | [ Qebals = )as]
> ()4 plate =)l - [ 1QUs)e(s - o)As
>t ptpta [ QW - o)as

> 1+p+pL2—L2/ 1Q(s) ]| As
t

1+p(1+L2) 7L1
Lo

z1+p+pls— Lo
= L.

Thus we proved that FFA C A.
Since A is a bounded, closed and convex subset of X, we prove that F' is a
contraction mapping on A.
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Now, for all x1,z2 € A, and t > t1, we have

[(Fz1)(t) — (Fa) (@)

= sl = 7) = aalt = ]+ [ QUlea(s = o) —als — )]

<l =ploa(t =)~ st =l + 1 [ @)lor (s~ 0) = aals — )]
<ll=ploa(t =)~ st =2l + [ 1QE oo - 0) — aa(s ~ )]s
<= pllos—aall + or —all [ Q(s)1As

<aller — 22l (ga=p+ / 1Q(s)]|As).

t
This immediately implies that

[(Fz1)(t) — (Fz2) ()] < qallzr — 22|
where

L+p(l+Lo)—Li 1+4+p—1L;

= 1.
L L,

- —p+/ 1Q(s)]|As < —p+
t

which proves that F'is a contraction mapping. Consequently, F' has the fixed point
x with Fz =z, ||z|| > 0, for all ¢ > t;, which is a nonoscillatory solution of Eq.(1)
which completes the proof of Case 4.

Case 5. —c0o <p< —1.
Choose a t; € T sufficiently large such that ¢t; + 7 > ¢y + o, and

o Ki—1-p-K
/IIQ(S)IIA5<p1 p-e

¢ ng
Wllele 0 < }i < l< < 1 l< li > 1 alld < p < .

Let X (t) be the set of all rd—continuous and bounded vector functions on tg <
teT Set A={xe X : K <|z)] < Kg,tp <t € T}. Define a mapping
F:A— X as follows

1 1 1 o |
(Fz)(t) = (1+ Z)e — ];x(t +7)+ Eft Q(s)z(s —o)As,  t>ty;
(Fz)(t1), to
52
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Clearly Fx is rd—continuous. For every z € A and t > t; € T, we have
1 1 1 [
I(Fz)O =1+ —)e——a(t+7)+ = [ Q(s)z(s — 0)As]|
p p P Ji
1 1 1 [
<A+ el +l=z@E+n)[+1= [ Qs)x(s — a)As]]
p p P Ji
<1 Dllell - Shate+ =2 [ Qs)ats - A
< = - = - = -0
p p P Ji

1 K K o0
< 1+f——2—f/ 1Q(s)]|As

p b t
1 K KopK;—1—-—p— K
glJr7772772]9 1 p 2
p D D Ko
1
=2(1+-) - K4
D
< K.

Further,

IF2) @) = 11+ %>e - [}Jx(t ) - % / " Qs)e(s — o)A
1 1 1 [
> 10+ )l = (e +7) / Q(s)a(s — o) As|
1 1 1 [°°
> 142+ e+ 7]+ E/t 1Q()2(5 — o) As
1 K5 1 [
>145 452 +];/t 1Q()llz(s — o)1 As

1 Ky, Ky [
>1+7+—2+—2/ 1Q(s)||As

p p P Jt

L Ky KopKi—1-p— Ky
p K>

Thus we proved that FFA C A.
Since A is a bounded, closed and convex subset of X, we prove that F is a
contraction mapping on A. Now, for all x1,z5 € A, and ¢t > t;, we have

[(Fz1)(t) = (F) (@)
1 1 [
:III;[Il(tJrT)*Iz(HT)]*Z;/t Q(s)[z1(s — o) — wa(s — o)]As||

SII%[m(tH) — oyt + 7)) - %n /too Q)1 (s — 0) — 2a(s — 0))As]

<= Slleate ) — a4 = 3 [ 1QElea(s = o)~ mals - ) As

<= 2lar =zl - L —wl [ Q6
— — |1 — T2 — —||T1 — T2 S S
Sop p t

1 o0
<gslln —aal] (g5 == + / 1Q(s) [ As).
t
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This immediately implies that

1 1

> 1+p—pK
=+ [ Qs as < PR o
P PJt

1.
pK>

Therefore,
[(F1)(t) = (Fa2) ()] < gslle1 — 22|,

which proves that F'is a contraction mapping. Consequently, F' has the fixed point
x with Fa = «, ||z|| > 0, for all ¢ > t1, which is a nonoscillatory solution of Eq. (1),
which completes the proof of Case 5. O

Now we consider B is a nonsingular constant matrix. Assume that |B|| =b
Theorem 2.2. Suppose that

[ 1aeas < o

t1

Then Eq.(2) has a nonoscillatory solution.

Proof. Case 1. b€ [0,1)
Choose a t; € T sufficiently large such that ¢; > ty + ¢, ¢ = max7,0, and

1—b(1+ M) — M
[ 1Q(s)1As < ( M;) " hold. where 0 < My < 1,0 < My, 1—b <

MMy <21 EM T2

1+ 2 < 2, - 9 So0< 1+ MQ.

Let X (t)be the set of all rd—continuous and bounded vector functions on ty <
teT Set A={x e X : M <|z@)| < Mty <t e T} Define a mapping

F:A— X as follows

(Fa)() _{ q—Bz(t—7)+ [ Q(s)x(s —0)As,  t>t;
(Fz)(t1), —

where ¢ is a vector such that ||g|| =1 —b.
Clearly Fx is C,.q4 continuous. For every x € A and t > t1, we get

I(Pa)o)] = la - Bate—m)+ [ T Qs)a(s — o)
<ol + 1Bt -l +1 [ T Qs)a(s — o)A
<=0 +olae- ) + | T lQ()2(s — 0)l|As

< 1—b+bM2+M2/ HQ(S)HAS
t

1—b(1+ M) — M,

<1—-b+bMy+ M
+ 2+ Mo M,
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Further,
P20 =l - (Bt~ )~ [ Qoja(s - )ad]
> ol - 1Ba(t— )~ [ Qo)als -~ )]
> 1= b= tat =)l - [ IQe)a(s - s

S b bM, - M, / 1Q(s)]|As
t

—b(1+ M) — M,

1
>1—-b—bMy— M
2 2 M,

=M.

Thus we proved that FFA C A.

Since A is a bounded, closed and convex subset of X we have to prove that F' is
a contraction mapping on A in order to apply the contraction principle. Now, for
all 1,20 € At > t1, we have

[(Fz1)(t) = (Fa) (@)

||~ Blas(t— 1) walt= ] + [ Q)lar(s — o) — aals — o)ls|
<ll= Bl =) st =Dl +1 [ Qs = 0) —als - )]
bl ] + i = ol [ QL) As

<nlley—aall (e =b+ [ 1QIAY),

Clearly,

1—b(1+ M)~ M, _1-b— M

< 1.
My Mo

oo
n=bs [ IQe)As <+
t
This immediately implies that

[(Fa1)(t) = (Fao) ()] < rilley — aal],

which proves that F' is a contraction mapping. Consequently, F' has the fixed point
x with Fz =z, ||z|| > 0, for all ¢ > ¢1, which is a nonoscillatory solution of Eq. (2)
which completes the proof of Case 1.

Case 2. 1 <b< 0.

Choose a t; € T sufficiently large such that ¢; > to + @, and

> b—l—le—NQ
| aeas < =2
t1+4+7 2
14+ Ny 2
hold, where 0 < Ny < 1, Ny > Ny and N; + Ny < 2, <bg

1—N; T 2Ny — Ny
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Let X (t) be the set as in Case 1. Set A={x € X : Ny < ||lz(¢)|| < Na, to <t €
T}. Define a mapping F': A — X as follows

r—B 'zt —7)+ B! [ Q(s)x(s — o) As, t >t
(Fx)m:{ (t=7)+ B [ Qs)a(s - )
(Fz)(t), to<t<t

where r is a vector such that ||r|| =1 — 7

Clearly Fx is rd continuous. For every x € A and t > t;, we get

(PO = I = B0 =)+ 57 [ Q(s)als - o)l
<l + 1Bl — )]+ 187 [ Q)ats —o)as|
<=+ lale= D+ 31 [ Qelets - olas

1 N N:
<13+ 024 52 [Paeas
t

» Ty T
1 Ny Nyb—1—bNy—No
<1-; 42402
bty T N,
1
—o(1-y N
( b) 1

Further

|(Fz) @) = lIr — [B~ a(t —7) /Q z(s — o) As|

1
> (1 - 5) el = |B rz(t — 1) / Q(s)(s — o) As|
>1- 5 - glelt =) /HQ (s — o) As
1 Ny 1
zl=—g—7 7 —
>1-5 - 52 [ 1QG)ets - o)las
1 Ny N, oo
>1-—>-— = _ V2 A
- lewas
b b b N,
:N2~

Thus we proved that FFA C A.

Since A is a bounded, closed and convex subset of X. we have to prove that F’
is a contraction mapping on A in order to apply the contraction principle. Now, for
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all 1,20 € A,t > t1, we have
[(Fa)(0) ~ (Fa) ()]
=B ot =) —aalt =]+ B [ Q)5 = 0) —mals — ))As]
<= B o) = aale =l + B [ Qs = 0) = aals - )]sl
<Glar=n) = aat= Dl + 3 [ 1O ller(s - )~ aals - ) as

1 1 e
<Gllos =l + g lles =l [ Q) 1As
t

1 1 [
<ol —aall =g+ [ 1Q)A9).
t
Clearly,
1 1 [ 1 b—1—-bN; — Ny b—1—-bN;
— 4 As< = = 1.
v b+b/t IQGs)As < 5 + - <

This immediately implies that

[(Fz1)(t) — (Fa2) ()| < raoflwr — 22,

which proves that F' is a contraction mapping. Consequently, F' has the fixed point
x with Fo = z,||z|| > 0, for all ¢ > t;, which is a nonoscillatory solution of Eq.(2)
which completes the proof of Case 2. O
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