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Abstract
In this paper, we apply the first integral method to geneedliZK-BBM equation and Drinefel'd-Sokolov-
Wilson system and one-dimensional modified EW-Burgers &gua

The first integral method is a powerful solution method fotaiiing exact solutions of some nonlinear
evolution equations. This method was first proposed by F8hun[solving Burgers—KdV equation which
is based on the ring theory of commutative algebra. This atktian be applied to nonintegrable equations
as well as to integrable ones.
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1. INTRODUCTION

Nonlinear evolution equations are widely used to descrirapgiex phenomena in various sciences such
as fluid physics, condensed matter, biophysics, plasmagsysnlinear optics, quantum field theory and
particle physics, etc. In recent decades, several powerdétihods have been proposed to construct exact
solutions for nonlinear evolution equations, such as taathod [1-3], extended tanh method [4,5], multiple
exp-function method [6], transformed rational functionthwmal [7] and so on.

In the pioneer work, Feng [8] introduced the first integratimoel for a reliable treatment of the nonlinear
PDEs. The useful firstintegral method is widely used by maich &s in [9-13] and by the reference therein.

Raslan [10] proposed the first integral method to solve tisbd¥i equation. Taghizadeh et al., [11]
solved nonlinear Schrodinger equation by using the fitsigral method. Tascan et al., [12] used the first
integral method to obtain the exact solutions of the modifiekharov—Kuznetsov equation and ZK-MEW
equation. Hosseini et al., [13] applied the first integratmod to obtain the exact solutions of KdV system
and Kaup—Boussinesq system and Wu—Zhang system.

The aim of this paper is to find exact soliton solutions of galieed ZK-BBM equation and Drinefel'd-
Sokolov-Wilson system and one-dimensional generalizeeBeMgers equation.by the first integral method.

The paper is arranged as follows. In Section 2, we describéyothe first integral method. In Sections
3 -5, we apply this method to generalized ZK-BBM equation Bnidefel'd-Sokolov-Wilson system and
one-dimensional modified EW-Burgers equation.
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2. FIRST INTEGRAL METHOD

Raslan summarized for using first integral method [10].
Step 1. Consider a general nonlinear PDE in the form

F (U, Uy, Uy, Ut, Uxy, Uyy, Uy, . ..) = 0, (2)
Using a wave variable whege= k(x + ly — At), we can rewrite Eq. (1) in the following nonlinear ODE
G(u, v, u”,u”,...) =0, (2)

where the prime denotes the derivation with respeét to
Step 2. Suppose that the solution of ODE (2) can be written as follows

u(x.y, t) = u@) = (). ®3)

Step 3. We introduce a new independent variable

_ RALG)
X@ =1, Y= % (4)
which leads a system of nonlinear ordinarsfeliential equations
11,4
20 - veo.
&
() ©
e = FX©.Y©).

Step 4. By the qualitative theory of ordinary filerential equations [14] , if we can find the integrals to
Eqg. (5) under the same conditions, then the general sokitmiq. (5) can be solved directly. However,
in general, it is really dficult for us to realize this even for one first integral, beeafss a given plane
autonomous system, there is no systematic theory that Bars teow to find its first integrals, nor is there
a logical way for telling us what these first integrals are. Wikkapply the Division Theorem to obtain one
first integral to Eq.(5) which reduces Eq.(2) to a first ordgegrable ordinary dierential equation. An
exact solution to Eq. (1) is then obtained by solving thisagun. Now, let us recall the Division Theorem:
Division Theorem. Suppose tha®(w, 2) andQ(w, 2) are polynomials irC[w, Z], andP(w, 2) is irreducible
in C[w, Z]. If Q(w, z)vanishes at all zero points &w, z), then there exists a polynomi@lw, z) in C[w, Z]
such that

Q(w, 2) = P(w, 2G(w, 2).

3. GENERALIZED ZK-BBM EQUATION

Consider the generalized ZK-BBM equation [15]
Ue + Uy + a(U3)x + b(Ux + Uyy)x = O, (6)

wherea, b are real constants.
By make the transformation

u(x.y,t) = f(£), &=k(x+ly-at), )
the generalized ZK-BBM equation becomes
(1- D) F'(€) +3af?(@) f'() + bk*(1> - ) f(¢) = 0. (8)
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Integrating (6) with respect ththen we have
(1-DfE) +af3 @) + (> - )f" () =R €)

whereR is integration constant.
Using (4) and (5), we get

X(@) = Y(&). (10)
. 1-1 R
Y(é) = bk(2(|2 _)/1) X(é) - bk2(|§— D (X(€)® + bk2(12 - 2)°

According to the first integral method, we suppose thé) 6hdY(¢), are the nontrivial solutions of (10)
also

QX Y) = D aX)Y =0,
i=0

is an irreducible polynomial in the complex dom&pX, Y], such that
Q(X(£). Y(8)) = Z a(X@)Y'©) =0, (11)
i=0

whereg;(X)(i = 0,1, ..., m),are polynomials oXandan(X) # 0. Eq. (11) is called the first integral to (10).
Due to the Division Theorem, there exists a polynog(ig) + h(X)Y,in the complex domai€[X, Y], such
that

dQ dQ dX dQdY _ O i

% - axa oy s 90 h(X)\O;a.(X)Y. (12)
In this example, we take two fiierent cases, assuming timat 1, andm = 2, in (11).
CaseA: Suppose thah = 1,by comparing with the cd&cients ofY'(i = 2, 1, 0)of both sides of (12), we
have

2:(X) = h(X)ay(X). (13)
20(X) = g(X)ar(X) + h(X)a(X). (14)
e ) & e R g0an). (15)

bk2(12- )" bk2(12 - 1) " bk2(12 — 1)
Sincea(X)(i = 0,1) are polynomials, then from (13) we deduce thgi) is constant an¢i(X) = 0. For

simplicity, takea; (X) = 1. Balancing the degrees gtX) andag(X),we conclude that deg(X)) = 1, only.
Suppose thag(X) = A X + Bo,then we findag(X).

1
ao(X) = Ao + BoX + §A1X2, (16)
whereAy is arbitrary integration constant. SubstitutimgX), a;(X) andg(X)in the last equationin (15) and
setting all the coicients of power& to be zero, then we obtain a system of nonlinear algebraiatems
and by solving it, we obtain

oo aL ZRTADEE-D) 2as s .
0 — Y, - - 2Albak2 5 - A%bkz ) ) ( )

whereA;, |andk are arbitrary constants.
Using the conditions (17) in (11), we obtain
2a+ Afbkz(l2 -1)
2A.bak?

YO = -2+ 18)
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Combining (18) with (10), we obtain the exact solution to &ipn (9) and then the exact solution to
generalized ZK-BBM equation can be written as

Ux Y1) =  ED g + E Dty +

bk2A2 k2A2 )t) + 60)]

Azbk2
where is an arbitrary constant. _

CaseB: Suppose thai = 2, by equating with the cd&cients ofY'(i = 3,2, 1, 0) of both sides of (12),
we have

az(X) = h(X)az(X), (19)
a1(X) = g(X)az(X) + h(X)as(X), (20)
aO(X) _ZaZ(X)[bk(zllaz X - bk2(|z A)X + ka(E,/D] (21)
+g(X)au(X) + h(X)ao(X)
(/l B 1) a 3 R

ay(X)[

BeZ— e~ gy - 9. (22)

Sinceg(X)(i = 0, 1) are polynomials, then from (19) we deduce tagiX), is constant anti(X) = 0. For
simplicity, takeay(X) = 1. Balancing the degreagX), a;(X) andag(X), we conclude that deg(X)) = 1,
only. Suppose tha(X) = A1 X + By, then we findag(X)anda; (X) as

a1(X) = Ao+ BoX + 24X, (23)
2R 1 2(1-2)
X) =d+ (BoAg — ————)X + =(B? A+ ——1)X?
1 s 1A 2a 4
+ zAlBOX + 2(7 + m)x , (24)

whered is arbitrary integration constant. SubstitutisgX), a;(X) andg(X), in the last equation in (22) and
setting all the coicients of power& to be zero, then we obtain a system of nonlinear algebraiatems
and by solving it with aid Maple, we obtain

8a+ A%bkz(l2 -1) 8a+ Afbkzl2
BO = O: AO = - s /l = s
2A.bak? Aibk2

(25)

(8a+ Aibkz(l2 - 1)y

R=0, = )

16k4a2b2A§
whereA;, | andk are arbitrary constants.
Using the conditions (25) in (12), we obtain

v X2 8a+ Aibkz(l2 -1) 26
@ =-3 X+ —ppaa (26)

Combining (26) with (10), we obtain the exact solution to &ipn (9) and then the exact solution to
generalized ZK-BBM equation can be written as

(l2 1) 1 (2-1)
u(x,y,t) = bk2A2 tanhfo\ bk2A2 + 3

ly— (1% + D) + &)l

Azbk2

where&, is an arbitrary constant.

10
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4. DRINEFEL'D-SOKOLOV-WILSON SYSTEM

Consider the Drinefel'd-Sokolov-Wilson system

U + pwy = 0,

27
Vi + QVxxx + FUVx + SUxV = O, (27)

wherep, g,r ands are non-zero constants.
Whenp =2, q=-1andr =s=3,the Eq. (27) become the nonlinear Drinfeld-Sokolov System

U+ (V)x =0,
Vi — Vyx + 3UVy + 3UyV = 0.

By considering the wave transformations
u(xy) =u(), v(xt)=v(E), &=x-ct (28)
we change Eg. (27) into a system of ODEs given by

—cu’ + pw =0, (a) (29)
v +qv” +ruv +suv=0. (b)
Integrating (29)4) with respect t&, then we have
—cu+ E'Ov2 ~Ry, (30)
whereR; is integration constant. Rewrite this equation as follows
ue) = P - = (31)
Inserting Eq. (31) into Eq. (29p] yields
qv” —(c+ r—Rl)\/ 2 )vz\/ 0. (32)
Integrating Eq. (32) once leads to
Qv - (c+ %)H (2—2 + %)v3 “R,, (33)

whereR; is an integration constant. Rewrite this second-ordemnanyiditerential equation as follows

, ,C IR sp R: _
V= (G 6qc + g =0 (34)
Using (5) and (6), we get _
X(€) = Y(&), (35)
(f)-( +—)X(§-‘)—(— F oYX +

6gc  3qc

Eq. (11) is called the first mtegral to Eq. (35). Suppose that 1,by comparing with the cd&cients of
Y'(i = 2,1,0)of both sides of (12), we have

a1(X) = h(X)ay(X), (36)

11
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20(X) = g(X)as(X) + h(X)a(X). (37)
000 + rqﬁcl)x - (G + X+ %1 - g(9ao(X). (38)

Sincea(X)(i = 0,1) are polynomials, then from (36) we deduce thgi) is constant an¢(X) = 0. For
simplicity, takea; (X) = 1. Balancing the degrees gtX) andag(X),we conclude that deg(X)) = 1, only.
Suppose thai(X) = A1 X + Bo,then we findag(X).

1
ao(X) = Ao + BoX + §A1X2, (39)
whereAy is arbitrary integration constant. SubstitutagX), a;(X) andg(X) in the last equation in (38) and
setting all the cofficients of powerX to be zero, then we obtain a system of nonlinear algebraiatems
and by solving it, we obtain

\=3pac(r + 29) 3% — Ag+/-3pac(r + 29
Bp=0 A= 3—qC’ Ry =- 3r > (40)
R, =0,
whereAy andc are arbitrary constants.
B —0 A - +/=3pac(r + 29) 3%+ Ag/-3pac(r + 29)
om0 ME T RTT ar ’ (41)
R, =0,
whereAy andc are arbitrary constants.
Using the conditions (40) in (11), we obtain
+/=3pac(r + 29)
YO =Y KO-t (42)

Combining (42) with (35), we obtain the exact solution to &tipn (34) and then the exact solution to
Drinefel’d-Sokolov-Wilson system can be written as

3c? Ao y/=3pqclr +29) Ao /_7(r3fqzcs) tarf( \/AO _32320 e (X — ct + &),

3rc c

V(X 1) = - J —2%0 - (if’qzcs) tan(\/ Aoy _323E(r t29 ot g).

Similarly, in the case of (41), from (11), we obtain

+/=3pac(r + 29)

6qc

u(x,t) =

Y() =-Ao+ X&), (43)

and then the exact solution of the Drinefel'd-Sokolov-Wiisystem can be written as

3¢° + Aoy/=3pac(r +25) Ao | 3pac tank( Ao y/-3pac(r + 29) (X ct + &)
(r + 29 6ac o

3rc c

~ 2”0 / 3pgc Ag /—3pac(r + 2s)
v(x,t) = — J _T - 29 tanh(\/ 6eC (X = ct + &)).

12

u(xt) =
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5. ONE-DIMENSIONAL MODIFIED EW-BURGERS EQUATION

Let us consider one-dimensional modified EW-Burgers eqodfi6]
Ut + aUUy — SUyy — (U = O, (44)

wherea, 6, u are real constants.
We use the wave transformation

u(x.t) = f(§), &=x-ct (45)
Substituting (45) into (44), we obtain ordinanyi@rential equation:
—ct'(¢) +af?(@) (&) - 61 (&) + uct” (&) = 0. (46)
Integrating Eq. (46) with respect 9 then we have
—cf () + gfs(.f) - 6f'(&) +pct”(@) =R, (47)
whereR is integration constant.
Using (4) and (5), we get _
X(€) = Y(&), (48)

. 0 a 1 R
Y(¢) = /I:Y(f) - a:(x(f))3 + ;X(.f) + s

Eq. (11) is called the first integral to Eq. (48). In this exdepve take two dierent cases, assuming that
m=1,andm= 2, in (11). _

CaseA: Suppose thah = 1,by comparing with the cd&cients ofY'(i = 2, 1, 0)of both sides of (12), we
have

a1(X) = h(X)as(X), (49)
a0(X) = (- ﬂ% + g00)a(X) + h(X)ao(X). (50)
X)X+ %x v ﬂﬁc) - g(9ao(X). (51)

Sincea(X)(i = 0,1) are polynomials, then from (49) we deduce thgi) is constant an¢i(X) = 0. For
simplicity, takea; (X) = 1. Balancing the degrees gX) andag(X),we conclude that deg(X)) = 1, only.
Suppose thag(X) = A X + Bo,then we findag(X).

a0(X) = Ao+ (Bo— )X + ZAC, (52)
uc 2

whereAy is arbitrary integration constant. SubstitutagX), a;(X) andg(X) in the last equation in (51) and
setting all the coicients of power& to be zero, then we obtain a system of nonlinear algebraiatems
and by solving it, we obtain

B (52,uA‘1‘ + 2a%) B 6A§ oo 2 a
T 2auAL Y a 3%

(53)
_ §(6%uA] + 2a2)

3a2/,tA1

whereA; and is an arbitrary constant.

13



A. Asaraai; S. Khaleghizadeh; A. Samiei Pagh#Pebgress in Applied Mathematics Vol.3 No.2, 2012

Using the conditions (53) in (11), we obtain

~ (0°uAt + 2a%) A2

YO = %eA T

X@ - 2xe). (54)

Combining (54) with (48), we obtain the exact solution to &tipn (47) and then the exact solution to
one-dimensional modified EW-Burgers equation can be wardte

5AL (362A? + 8ay) J(362A? + 8a2u) 22

u(x,t) = ~oa i, tan( o (x+ 3A§y

t + £0)).

CaseB: Suppose than = 2, by equating with the caBcients ofYi(i = 3,2, 1, 0) of both sides of (12),
we have
a2(X) = h(X)az(X), (55)

ai(X) = (- i—i +9(X))az(X) + h(X)a(X), (56)

Ao(X) = ~22a(Q[-5 X + %x + N—Ff:] v (—/% + g00)a(X)

+ h(X)ao(X). (57)

X5 X %x v E;] - g(9a0(X). (58)

Sincea(X)(i = 0,1) are polynomials, then from (55) we deduce tagX), is constant anti(X) = 0. For
simplicity, takeay(X) = 1. Balancing the degreagX), a;(X) andag(X), we conclude that deg(X)) = 1,
only. Suppose tha(X) = A1 X + By, then we findag(X) anday(X) as

1
a1(X) = Ag + BoX + §A1X2, (59)
sA 2R 1 5 25
X) = d+ (BoAg — — — ——)X + (=(Bg — —)(Bg — —
ao(X) + (BoAo i /,tc) +(2( 0 yC)( 0 ,uC)
1 1., 1 56A1. 3 A a .,
+(2A0A1 #)X +(2A1|30 61 )X+ ( g " G#C)X, (60)

whered is arbitrary integration constant. SubstitutiagX), a;(X) andg(X), in the last equation in (58) and
setting all the cofficients of powerX to be zero, then we obtain a system of nonlinear algebraiatems
and by solving it with aid Maple, we obtain

SA? Al5%u + 3222
B O p o Womes2) 8 a
2a 8a2uA; 3uA2
(61)
§(AT6%u + 32a%) (Al6%u + 32a8%)?
2422, 256a4p2A§ ’
whereA; and is an arbitrary constant.
Using the conditions (61) in (11), we obtain
AlS2u + 3282 + 26 A3auX (&) + 4a%uAZX?
Y(&) = - O M Lau é) MR (f) 62)

16a2uA;

14
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Combining (62) with (48), we obtain the exact solution to &tipn (47) and then the exact solution to
one-dimensional modified EW-Burgers equation can be wirdte

u(x,t) = —

t (x+

AL \/ (362Au2 + 1282u) an(\/ (362Au2 + 1282u) 8a
4a dauh 16au 3AZ

6. CONCLUSION

In this paper, the first integral method is applied succdlgsfor solving generalized ZK-BBM equation
and Drinefel'd-Sokolov-Wilson system and one-dimensionadified EW-Burgers equation. The results
show that this method idiécient in finding the exact solutions of nonlineaffdrential equations.
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