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A Fast Convergent Error Bound for Gaussian
Interpolation

Lin-Tian Luh1,∗

Abstract: It’s well known that there is a so-called exponential-type error bound for Gaussian
interpolation which is the most powerful error bound hitherto. It’s of the form | f (x) − s(x)| ≤
c1(c2d)

c3
d ‖ f ‖h where f and s are the interpolated and interpolating functions respectively, c1, c2, c3

are positive constants, d is the fill distance which roughly speaking measures the spacing of the
data points, and ‖ f ‖h is the h-norm of f where h is the Gaussian function. The error bound is
suitable for x ∈ Rn, n ≥ 1, and gets small rapidly as d → 0. The drawback is that the crucial
constants c2 and c3 get worse rapidly as n increases in the sense c2 → ∞ and c3 → 0 as n → ∞.
In this paper we raise an error bound of the form

| f (x) − s(x)| ≤ c′1(c′2d)
c′3
d
√

d‖ f ‖h,
where c′2 and c′3 are independent of the dimension n. Moreover, c′2 << c2, c3 << c′3, and c′1 is only
slightly different from c1. What’s important is that all constants c′1, c

′
2 and c′3 can be computed

without slight difficulty.

Key Words: Radial basis function; Interpolation; Error bound; Gaussian

1. INTRODUCTION

First, let h be a continuous radial function on Rn which is conditionally positive definite of order m. Given
data points (x j, f j), j = 1, . . . ,N, where X = {x1, . . . , xN} is a subset of points in Rn and the f j are real or
complex numbers, the so-called h spline interpolant of these data points is the function s defined by

s(x) = p(x) +

N∑

j=1

c jh(x − x j), (1)

where p(x) is a polynomial in Pn
m−1 and c j are chosen so that

N∑

j=1

c jq(x j) = 0 (2)

for all polynomials q in Pn
m−1 and

p(xi) +

N∑

j=1

c jh(xi − x j) = fi, i = 1, . . . ,N. (3)
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Here Pn
m−1 denotes the class of those polynomials of Rn of degree ≤ m − 1.

A famous property is that the system of equations (2) and (3) has a unique solution whenever X is a
determining set for Pn

m−1 and h is strictly conditionally positive definite. More details can be seen in [8].
Therefore in our case the interpolant s(x) is well defined.

We clarify that X is said to be a determining set for Pn
m−1 if X does not lie on the zero set of any nontrivial

polynomial in Pn
m−1.

In this paper the function h is defined by

h(x) := e−β|x|
2
, β > 0. (4)

This is the so-called Gaussian function.

In [10] Madych and Nelson raise the famous exponential-type error bound for the scattered data inter-
polation of Gaussian function, as mentioned in the abstract. The computation of the constants c1, c2 and c3
can be found in [? ]. This error bound is very powerful. However, too many data points may lead to a large
condition number when solving the linear system (2) and (3). There will be a significant improvement of
the ill-conditioning if a better error bound can be obtained so that a satisfactory error estimate is reached
before too many data points are involved. This is what we are pursuing in this paper.

1.1 Polynomials and Simplices

In this paper we will use Pn
l to denote the space of polynomials of degree l in n variables. It’s well known

that it has dimension dimPn
l =

(
n + l

n

)
. We will denote dimPn

l by N in this section. Let E ⊆ Rn be compact.

The interpolation theory tells us that if x1, . . . , xN ∈ E and do not lie on the zero set of any nontrivial q ∈ Pn
l ,

there exists Lagrange polynomials li, i = 1, . . . ,N, of degree l defined by li(x j) = δi j, 1 ≤ i, j ≤ N, such that
for any f ∈ C(E), (Πl f )(x) :=

∑N
i=1 f (xi)li(x) is its interpolating polynomial. It’s easily seen that Πl(p) = p

for all p ∈ Pn
l and hence the mapping Πl : C(E)→ Pn

l is a projection. Let

‖Πl‖ := max
x∈E

N∑

i=1

|li(x)|.

A famous property says that for any p ∈ Pn
l ,

‖p‖∞ ≤ ‖Πl‖ max
1≤i≤N

|p(xi)|
The compact set E discussed in this paper will be mainly an n-dimensional simplex Tn whose definition can
be found in [2].

It will be convenient to adopt barycentric coordinates when discussing points in a simplex. Suppose
v1, . . . , vn+1 are the vertices of Tn. Then any x ∈ Tn can be written as a convex combination of the vertices:

x =

n+1∑

i=1

civi

where
∑n+1

i=1 ci = 1 and ci ≥ 0 for all i. The barycentric coordinate of x is then (c1, . . . , cn+1). Let’s define
“evenly spaced” points of degree l to be those points whose barycentric coordinates are of the form

(k1/l, k2/l, . . . , kn+1/l), ki nonnegative integers with
n+1∑

i=1

ki = l.
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Obviously the number of such points in Tn is exactly N = dimPn
l . Moreover, by [1], we know that evenly

spaced points form a determiming set for Pn
l .

The following lemma cited from [1] will be needed.

Lemma 1.1 For the above evenly spaced points

‖Πl‖ ≤
(

2l − 1
l

)
.

Moreover, as n→ ∞, ‖Πl‖ →
(

2l − 1
l

)
.

Now, we are going to prove a lemma which plays a crucial role in our construction of the error bound.

Lemma 1.2 Let Q ⊆ Rn be an n simplex in Rn and Y be the set of evenly spaced points of degree l in Q.
Then, for any point x in Q, there is a measure σ supported on Y such that

∫
p(y)dσ(y) = p(x)

for all p in Pn
l , and ∫

d|σ|(y) ≤
(

2l − 1
l

)
.

Proof . Let Y = {y1, . . . , yN} be the set of evenly spaced points of degree l in Q. Denote Pn
l by V . For any

x ∈ Q, let δx be the point-evaluation functional. Define T : V → T (V) ⊆ RN by T (v) = (δyi (v))yi∈Y . Then T
is injective. Define ψ̃ on T (V) by ψ̃(w) = δx(T−1w). By the Hahn-Banach theorem, ψ̃ has a norm-preserving
extension ψ̃ext to RN . By the Riesz representation theorem, each linear functional on RN can be represented
by the inner product with a fixed vector. Thus, there exists z ∈ RN with

ψ̃ext(w) =

N∑

j=1

z jw j

and ‖z‖(RN )∗ = ‖ψ̃ext‖. If we adopt the l∞-norm on RN , the dual norm will be the l1-norm.
Thus ‖z‖(RN ))∗ = ‖z‖1 = ‖ψ̃ext‖ = ‖ψ̃‖ = ‖δxT−1‖.

Now, for any p ∈ V , by setting w = T (p), we have

δx(p) = δx(T−1w) = ψ̃(w) = ψ̃ext(w) =

N∑

j=1

z jw j =

N∑

j=1

z jδy j (p).

This gives

p(x) =

N∑

j=1

z j p(y j) (5)

where |z1| + · · · + |zN | = ‖δxT−1‖.
Note that

‖δxT−1‖ = sup
w ∈ T (V)

w , 0

‖δxT−1(w)‖
‖w‖RN

3
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= sup
w ∈ T (V)

w , 0

|δx p|
‖T (p)‖RN

≤ sup
p ∈ V
p , 0

|p(x)|
max j=1,...,N |p(y j)|

≤ sup
p ∈ V
p , 0

‖Πl‖max j=1,...,N |p(y j)|
max j=1,...,N |p(y j)|

= ‖Πl‖

≤
(

2l − 1
l

)
.

Therefore |z1| + · · · + |zN | ≤
(

2l − 1
l

)
and our lemma follows immediately by (5). �

1.2 Radial Functions and Borel Measures

Before moving on to our main result, some background for interpolation is necessary. First, the space of
complex-valued functions on Rn that are compactly supported and infinitely differentiable is denoted byD.
The Fourier transform of a function φ inD is

φ̂(ξ) =

∫
e−i<x,ξ>φ(x)dx.

Then a crucial lemma introduced in [5] but modified by Madych and Nelson in [9] says that for any contin-
uous conditionally positive definite function h of order m, the Fourier transform of h uniquely determines a
positive Borel measure µ on Rn ∼ {0} and constants aγ, |γ| = 2m as follows: For all ψ ∈ D

∫
h(x)ψ(x)dx =

∫ ψ̂(ξ) − χ̂(ξ)
∑

|γ|<2m

Dγψ̂(0)
ξγ

γ!

 dµ(ξ)

+
∑

|γ|≤2m

Dγψ̂(0)
aγ
γ!
, (6)

where for every choice of complex numbers cα, |α| = m,
∑

|α|=m

∑

|β|=m

aα+βcαcβ ≥ 0.

Here χ is a function inD such that 1 − χ̂(ξ) has a zero of order 2m + 1 at ξ = 0; both of the integrals
∫

0<|ξ|<1
|ξ|2mdµ(ξ),

∫

|ξ|≥1
dµ(ξ)

are finite. The choice of χ affects the value of the coefficients aγ for |γ| < 2m.

2. MAIN RESULT

Before showing our main result, we need some lemmas. First, recall the famous formula of Stirling.

4
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Stirling’s Formula: n! ∼ √2πn( n
e )n.

The approximation is very reliable even for small n. For example, when n = 10, the relative error is
only 0.83% . The larger n is, the better the approximation is. For further details, we refer the reader to [3]
and [4].

Lemma 2.1 Let ρ1 = 1
e and ρ2 = 3

1
6

e ∼ 1.2
e . Then

√
2πρk

1kk ≤ k! ≤
√

2πρk
2kk

for all positive integer k.

Proof. Note that
1
e
,

√
2

e2 ,

√
3

e3 ,

√
4

e4 ,

√
5

e5 , . . .

can be expressed by

1
e
,

2
1
4

e


2

,

3
1
6

e


3

,

4
1
8

e


4

,

5
1
10

e


5

, . . .

Now,

sup


1
e
,

2
1
4

e
,

3
1
6

e
,

4
1
8

e
,

5
1
10

e
, . . .

 =
3

1
6

e

implies that
√

k
ek ≤ ρk

2 for all k. Thus k! ∼ √2π
√

k
ek · kk ≤ √2πρk

2 · kk.

The remaining part
√

2πρk
1kk ≤ k! follows by observing that

√
2π

(
1
e

)k

kk ≤
√

2π(
1
e

)k ·
√

k · kk ∼ k!. �

Lemma 2.2 Let ρ =
√

3
e . Then k! ≤ √2πρkkk−1 for all k ≥ 1.

Proof. First,

k! ∼
√

2π(
1
e

)k ·
√

k · kk =
√

2π · k
3
2

ek · kk−1.

Note that
{

k
3
2

ek : k = 1, 2, 3, . . .
}

can be expressed by


1
e
,

2
3
4

e
,

3
1
2

e
,

4
3
8

e
, . . .

 .

Our lemma follows by noting that

sup


1
e
,

2
3
4

e
,

3
1
2

e
,

4
3
8

e
, . . .

 =

√
3

e
. �

Lemma 2.3 Let h(x) = e−β|x|
2
, β > 0, be the Gaussian function in Rn, and µ be the measure defined in (6).

For any positive even integer l,
∫

Rn
|ξ|ldµ(ξ) ≤ π n+1

2 · n · αn · 2 l+n+2
2 · ρ l+n−1

2 · β l
2 · (l + n − 1)

l+n−3
2 ·

(
2 +

1
e

)

5
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for odd n, and ∫

Rn
|ξ|ldµ(ξ) ≤ π n+1

2 · n · αn · 2 l+n+3
2 · ρ l+n−2

2 · β l
2 · (l + n − 2)

l+n−4
2

for even n, where ρ =
√

3
e and αn is the volume of the unit ball in Rn.

Proof.
∫

Rn
|ξ|ldµ(ξ)

=

(
π

β

) n
2
∫

Rn

|ξ|l

e
|ξ|2
4β

dξ

=

(
π

β

) n
2

· n · αn ·
∫ ∞

0

rl · rn−1

e
r2
4β

dr

=

(
π

β

) n
2

· n · αn · (2
√
β)l+n ·

∫ ∞

0

rl+n−1

er2 dr

=



π
n
2 · n · αn · 2n−1+l · β l

2 ·
(

l+n−2
2

) (
l+n−2

2 − 1
)
· · ·

(
1
2

) ∫ ∞
0

1√
vev dv

i f n is odd,
π

n
2 · n · αn · 2n−1+l · β l

2 ( l+n−2
2 )! i f n is even.

Let b = d l+n+2
2 e. Then b! ≤ √2πρb · bb−1. Then for odd n, b = l+n+1

2 . Thus

b! ≤
√

2πρ
l+n−1

2 ·
(

l + n − 1
2

) l+n−3
2

=
√

2π · 2 −l−n+3
2 · ρ l+n−1

2 · (l + n − 1)
l+n−3

2 ,

and ∫

Rn
|ξ|ldµ(ξ) ≤ π n+1

2 · n · αn ·
(
2 +

1
e

)
· 2 l+n+2

2 · β l
2 · ρ l+n−1

2 · (l + n − 1)
l+n−3

2 ,

by noting that
∫ ∞

0
1√
vev dv ≤ 2 + 1

e . For even n, b = l+n−2
2 . Thus

b! ≤
√

2πρ
l+n−2

2 ·
(

l + n − 2
2

) l+n−4
2

=
√

2π · 2 −l−n+4
2 · ρ l+n−2

2 · (l + n − 2)
l+n−4

2 ,

and ∫

Rn
|ξ|ldµ(ξ) ≤ π n+1

2 · n · αn · 2 l+n+3
2 · β l

2 · ρ l+n−2
2 · (l + n − 2)

l+n−4
2 . �

Our interpolation is based on a function space called native space, denoted by Ch,m. If

Dm =

{
φ ∈ D :

∫
xαφ(x)dx = 0 f or all |α| < m

}

, then Ch,m is the class of those continuous functions f which satisfy

∣∣∣∣∣
∫

f (x)φ(x)dx
∣∣∣∣∣ ≤ c( f )

{∫
h(x − y)φ(x)φ(y)dxdy

} 1
2

(7)

for some constant c( f ) and all φ in Dm. If f ∈ Ch,m, let ‖ f ‖h denotes the smallest constant c( f ) for which
(7) is true. It can be shown that ‖ f ‖h is a semi-norm and Ch,m is a semi-Hilbert space; in the case m = 0 it
is a norm and a Hilbert space respectively. In this paper both the interpolating and interpolated functions
belong to the native space.

6
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The function space Ch,m was introduced by Madych and Nelson in [8] and [9]. Later Luh made a
lucid characterization in [6] and [7]. Although there is an equivalent expression for Ch,m which is easier to
understand, we still adopt Madych and Nelson’s definition to show the author’s respect for them. The main
result of this paper is the following theorem.

Theorem 2.4 Let h(x) := e−β|x|
2

be the Gaussian function in Rn. For any positive number b0, there are
positive constants δ0, c1, c2, and c3 independent of n, for which the following is true: If f ∈ Ch,m , the native
space induced by h, and s is the h spline that interpolates f on a subset X of Rn, then

| f (x) − s(x)| ≤ c1
√
δ(c2δ)

c3
δ · ‖ f ‖h (8)

for all x in a subset Ω of Rn, and 0 < δ ≤ δ0, where Ω satisfies the property that for any x in Ω and any
number b0

2 ≤ r ≤ b0, there is an n simplex Q with diameter diamQ = r, x ∈ Q ⊆ Ω, such that for any integer
l with b0

δ
≤ l ≤ 2b0

δ
, there is on Q an evenly spaced set of centers from X of degree l−1.(In fact, the set X can

be chosen to consist of these evenly spaced centers in Q only.) Here ‖ f ‖h is the h-norm of f in the native

space. The numbers δ0, c1, c2, and c3 are given by δ0 := min
{
b0,

1
ρ4

3·33·27·b3
0

}
where ρ3 = 12

1
4 · √eβ ;



c1 :=


∆′′ · 1√

16π
· 1√

b0
f or odd n,

∆′′ · 1√
16π
· 1√

b0
f or even n,

c2 := ρ4
3 · 33 · 27 · b3

0 ,

c3 := b0
4 ,

where ∆′′ is defined by

∆′′ :=



√
2 + 1

e · π
n−1

4 · (nαn)
1
2 · 2 n

4 · ρ n−1
4 f or odd n,

π
n−1

4 · (nαn)
1
2 · 2 n+1

4 · ρ n−2
4 f or even n, with ρ =

√
3

e as in Lemma2.3

,where the number αn denotes the volume of the unit ball in Rn.

In particular, if the point x in Ω is fixed, the only requirement for Ω is the existence of an n simplex Q,
with diamQ = r, x ∈ Q ⊆ Ω, satisfying the afore-mentioned property of evenly spaced centers.

Proof. For any b0 > 0, let δ0 := min
{
b0,

1
ρ4

3·33·27·b3
0

}
where ρ3 = 12

1
4 · √eβ. For any 0 < δ ≤ δ0, there exists

an integer l such that 1 ≤ δ
b0

l ≤ 2 since 0 < δ
b0
≤ 1. Such l satisfies b0

δ
≤ l ≤ 2b0

δ
and b0

2 ≤ δ
2 l ≤ b0.

For any x ∈ Ω, let Q be an n simplex containing x such that Q ⊆ Ω and has diameter diamQ = δl
2 . Then

Theorem4.2 of [9] implies that

| f (x) − s(x)| ≤ cl‖ f ‖h
∫

Rn
|y − x|ld|σ|(y) (9)

whenever l > 0, where σ is any measure supported on X such that
∫

Rn
p(y)dσ(y) = p(x) (10)

for all polynomials p in Pn
l−1. Here

cl =

{∫

Rn

|ξ|2l

(l!)2 dµ(ξ)
} 1

2

whenever l > 0. Be careful. We temporarily use c1, c2, c3 to denote numbers which are totally different
from the c1, c2, c3 mentioned in the theorem.

7
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Let Y be the set of evenly spaced centers from X of degree l− 1 on Q. By Lemma1.2, there is a measure
σ supported on Y such that (10) is satisfied and

∫
d|σ|(y) ≤

(
2l − 3
l − 1

)

The crux of our error estimate is to bound

I = cl

∫

Rn
|y − x|ld|σ|(y).

Now Lemma2.3 applies. For odd n,

cl =
1
l!

{∫

Rn
|ξ|2ldµ(ξ)

}1/2

≤ 1
l!

{
π

n+1
2 · n · αn · 2 2l+n+2

2 · ρ 2l+n−1
2 · βl · (2l + n − 1)

2l+n−3
2 ·

(
2 +

1
e

)}1/2

≤ 1
l!

π
n+1

4 · (nαn)1/2 · 2 n+2
4 · ρ n−1

4 · (
√

2ρβ)l · (2l + n − 1)
2l+n−3

4 ·
√

2 +
1
e



≤
{
π

n+1
4 (nαn)1/2 · 2 n+2

4 · ρ n−1
4 (

√
2ρβ)l(2l + n − 1)

2l+n−3
4

(
2 +

1
e

)}
/
{√

2π · ρl
1 · ll

}

by Lemma2.1

= π
n−1

4 · (nαn)1/2 · 2 n
4 · ρ n−1

4 · ρl
3 ·

(
1
ll

)
(2l + n − 1)

2l+n−3
4 ·

(
2 +

1
e

)1/2

where ρ3 =

√
2ρβ
ρ1

= ∆′′ · ρl
3 ·

1
ll

(2l + n − 1)
2l+n−3

4 where ∆′′ =

√
2 +

1
e
· π n−1

4 (nαn)1/22n/4ρ
n−1

4 .

Note that the diameter of Q is δl
2 . This gives for l ≥ n − 3

I ≤ ∆′′ρl
3l−l(2l + n − 1)

2l+n−3
4 (diamQ)l

(
2l − 3
l − 1

)

≤ ∆′′ρl
3l−l(3l)

3l
4 (
δ

2
l)l

(
2l − 3
l − 1

)
i f l ≥ n − 3

= ∆′′ρl
3(33/4)l(

δ

2
l3/4)l

(
2l − 3
l − 1

)
i f l ≥ n − 3

= ∆′′(ρ333/4 δ

2
l3/4)l

(
2l − 3
l − 1

)

≤ ∆′′
ρ333/4 · 1

2
· δ

(
2b0

δ

)3/4


l
1√
π

1√
l − 1

4l · 1
4

by S tirling′s f ormula and

b0

δ
≤ l ≤ 2b0

δ

= ∆′′
{
ρ333/4 · 2(2b0)3/4δ1/4

}l 1√
16π

1√
l − 1

≤ ∆′′
{
ρ333/4 · 2 · 23/4 · b3/4

0 · δ1/4
} b0

δ 1√
16π
· 1√

l − 1

8
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where ρ3 · 33/4 · 2 · 23/4 · b3/4
0 · δ1/4 ≤ 1 i f f δ1/4 ≤ 1

ρ333/4 · 27/4 · b3/4
0

, which

is guaranteed by δ ≤ δ0 := min

b0,
1

ρ4
3 · 33 · 27 · b3

0



≤ ∆′′
{
ρ4

3 · 33 · 27 · b3
0 · δ

} b0
4δ 1√

16π
· 1√

l − 1

≤ ∆′′ · 1√
16π
· {Gδ} g

δ · 1√
l − 1

where G = ρ4
33327b3

0 and g =
b0

4

∼ ∆′′√
16π
{Gδ} g

δ
1√

l
(i f l >> 0)

≤ ∆′′√
16π

√
1
b0

√
δ {Gδ} g

δ since
b0

δ
≤ l ≤ 2b0

δ
i f l ≥ n − 3

For even n, if l ≥ n − 4,

I = cl

∫

Rn
|y − x|ld|σ|(y)

≤ ∆′′ρl
3 · l−l(2l + n − 2)

2l+n−4
4 (dimQ)l

(
2l − 3
l − 1

)

where ∆′′ = π
n−1

4 · (nαn)
1
2 · 2 n+1

4 · ρ n−2
4 and ρ3 =

√
2ρβ
ρ1

= ∆′′ρl
3 · l−l(2l + n − 2)

2l+n−4
4

(
δl
2

)l ( 2l − 3
l − 1

)

≤ ∆′′ρl
3 · (3l)

3l
4 · δl ·

(
1
2

)l ( 2l − 3
l − 1

)
since l ≥ n − 4

≤ ∆′′
(
ρ33

3
4 l

3
4

1
2
δ

)l 1√
π

1√
l − 1

4l−1 by S tirling′s f ormula

= ∆′′
1√
π
· 1

4

(
ρ33

3
4 · 1

2
· δl 3

4 4
)l 1√

l − 1

∼ ∆′′
1√
16π
· 1√

l
(ρ3 · 2 · 3 3

4 δl
3
4 )l (i f l >> 0)

≤ ∆′′
1√
16π
· 1√

l

ρ3 · 2 · 3 3
4 · δ ·

(
2b0

δ

) 3
4


l

since
b0

δ
≤ l ≤ 2b0

δ

= ∆′′
1√
16π
· 1√

l

{
ρ3 · 2 7

4 · 3 3
4 · b

3
4
0 · δ

1
4

}l

≤ ∆′′
1√
16π
· 1√

l

{
ρ3 · 2 7

4 · 3 3
4 · b

3
4
0 · δ

1
4

} b0
δ

where

ρ3 · 2 7
4 · 3 3

4 · b
3
4
0 · δ

1
4 ≤ 1 i f f δ ≤ 1

ρ4
3 · 27 · 33 · b3

0

, which is guaranteed by

δ ≤ δ0 := min


1

ρ4
3 · 27 · 33 · b3

0

, b0



≤ ∆′′
1√
16π
· 1√

l

{
ρ4

3 · 27 · 33 · b3
0 · δ

} b0
4δ

9



Lin-Tian Luh/Progress in Applied Mathematics Vol.1 No.2, 2011

= ∆′′
1√
16π
· 1√

l
{Gδ} g

δ where G = ρ4
3 · 27 · 33 · b3

0 and g =
b0

4

≤ ∆′′
1√
16π
· 1√

b0
·
√
δ {Gδ} g

δ since
b0

δ
≤ l ≤ 2b0

δ
.

Our error bound (8) then follows immediately by letting ρ3 =
√

eβ · 12
1
4 . �

In the proof of Theorem2.4 although we require that l ≥ n−3 for n odd and l ≥ n−4 for n even, besides
l >> 0, it usually causes no trouble because δ → 0 implies l → ∞ and usually δ is very small. In order to
make the theorem easier to understand, we don’t put these requirements into the theorem.

Remark. In theorem2.4 we avoid using the well-known term “fill distance” for scattered data approxi-
mation because in our approach the data points are not purely scattered. However the number δ is in spirit
equivalent to the fill distance in the sense that δ → 0 iff the fill distance d(Q,Y) → 0 where Y is the evenly
spaced centers from X of degree l − 1 on Q. Note that d(Q,Y)→ 0 iff l→ ∞, and l→ ∞ iff δ→ 0.

Furthermore, although the function space Ch,m is defined in a complicated way, there is a simple expres-
sion for it. This can be seen in Wendland’s book [11] where Madych and Nelson’s native space [8] and Wu
and Schaback’s native space [12] are unified in an elegant way.

3. COMPARISON

The exponential-type error bound for Gaussian interpolation raised by Madych and Nelson in [10] is of the
form

| f (x) − s(x)| ≤ a1(a2δ)
a3
δ ‖ f ‖h, as δ→ 0 (11)

where a1 is about the same as c1 of (8), a3 =
b0

8γn
and a2 = (33/4 ·e · √2ρβ · √n ·e2nγn )4 ·b3

0 ·γn where ρ =
√

3
e ,

b0 is the side length of a cube and γn is defined recursively by

γ1 = 2, γn = 2n(1 + γn−1) i f n > 1.

These can be seen in [10] and [? ]. Note that γn → ∞ rapidly as n→ ∞. The first few examples are

γ1 = 2, γ2 = 12, γ3 = 78, γ4 = 632 and γ5 = 6330.

This means that for high dimensions, a2 will become extremely large and a3 extremely small, making the
error bound meaningless.

Our new approach avoids this drawback. Although we require that the centers be evenly spaced in the
simplex, it causes no trouble at all both theoretically and practically.
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