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Abstract
In this paper, the solution of the problem of transient heat conduction in a thin circular plate subjected to
two types of boundary conditions is obtained by employing the integral transform technique in the form of
infinite series. It is assumed that the plate is in the plane state of stress and initially the temperature of the
plate is kept at zero.

The first type of boundary condition is that in which the uppersurface is kept at arbitrary temperature,
lower surface is kept at zero temperature and circular edge is insulated. In the literature, the origin of
coordinates is taken to be the centre of the lower surface of the plate.

The second type of boundary condition is that in which a linear combination of temperature and its
normal derivatives is prescribed on the circular edge as well as on the plane surfaces of the plate.

The true results are given in the form of figure.
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1. INTRODUCTION

Roy Choudhuri[1] studied the normal deflection of a thin clamped circular plate due to ramp type heating
of a concentric circular region of the upper face. The lower face of the plate is kept at zero temperature,
while the circular edge is thermally insulated. A more general problem of determining the transient quasi-
static thermal deflection of a thin circular plate on upper surface of the plate is studied by Meshram and
Deshmukh[2]. The generality of the problem in[2] lies in the fact that the upper face is subjected to arbitrary
temperature distribution.

Meshram and Deshmukh[3] considered a thin circular plate of thicknessh occupying the spaceD : 0 ≤
r ≤ a,0 ≤ z ≤ h.Initially the temperature of the plate is kept at zero. The upper surface is kept at arbitrary
temperature, lower surface is kept at zero and the circular edge is insulated. Let the problem studied in[3]
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be named as Problem1.LetT (r, z, t) be the temperature of the plate at timet satisfying the equation

∂2T
∂r2
+

1
r
∂T
∂r
+
∂2T
∂z2
=

1
k
∂T
∂t

(1.1)

subject to the initial condition

[T (r, z, t)] t=0 = 0 (1.2)

and the boundary conditions

[T (r, z, t)]z=0 = 0 (1.3)

[T (r, z, t)]z=h = f (r, t) (1.4)

[

∂T
∂r

]

r=a

= 0 (1.5)

wherek is the thermal diffusivity of the material of the plate. The heat conduction problem in[2] is the same
as the above except that the origin is shifted to the centre ofthe middle plane of the plate.

Guided by a procedure outlined bÿOlcer[5] , the so called pseudo-steady temperature distribution func-
tion is introduced and an alternative solution is obtained in[3] for Problem 1. The alternative solution in[3] is
erroneous and hence different from those obtained by using integral transform methods. Also, since the er-
roneous alternative solutions are simpler, they are taken to be the solutions of problems under consideration.
The correct solutions obtained by using integral transformmethods are either used for comparison[3].

In the present paper we find the alternative solution correctly for Problem 1, and show that the so called
alternative solution is the same as the one obtained by usingintegral transform methods.

2. SOLUTION OF THE PROBLEM 1

For functionT (r, z, t) let T̂ (ξn, z, t) denote the finite Hankel transform with respect tor and letT̄ (r, λm, t)
denote the finite Fourier sine transform with respect to z then

ˆ̄T (ξn, λm, t) =

a
∫

0

rJ0(ξnr)dr

h
∫

0

T (r, z, t) sin(λmz)dz (2.1)

whereξn is the nthpositive root of the transcendental equation

J1(ξna) = 0 (2.2)

Taking the two transforms for the equation (1.1) and using conditions (1.3)-(1.5) we get

∂ ˆ̄T
∂t
+ µ2

mn
ˆ̄T = kλm(−1)m+1 f̂ (ξn, t) (2.3)

where

λm =
mπ
h

; µ2
mn = k

[

ξ2
n + λ

2
m

]

(2.4)
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Solving (2.3) subject to condition (1.2) gives

ˆ̄T (ξn, λm, t) = kλm(−1)m+1

t
∫

0

f̂ (ξn, t
′)e−µ

2
mn(t−t′)dt′ (2.5)

Now using the inversion formulae for the finite Hankel transform and the Fourier sine transforms, we get

T (r, z, t) =
4k
a2h

∞
∑

n=1

∞
∑

m=1

J0(ξnr)λm(−1)m+1 sin(λmz)Amn(t)

J2
0(ξna)

(2.6)

where

Amn(t) =

t
∫

0

f̂ (ξn, t
′)e−µ

2
mn(t−t′)dt′ (2.7)

By carrying out an integration by parts in (2.7) can show that

Amn(t) =
1
µ2

mn
[ f̂ (ξn, t) − f (ξn, 0)e−µ

2
mnt
−

t
∫

0

[
∂

∂t′
f (ξn, t

′)]e−µ
2
mn(t−t′)dt′] (2.8)

whereµmnis given by (2.4) andξnare the positive roots of the transcendental equation (2.2).

THE ALTERNATIVE SOLUTION

We introduce the so called pseudo-steady temperature distribution functionT0(r, z, t) in which t is regarded
as parameter andT0(r, z, t) is the temperature of the plate at timet. We now takeT0(r, z, t) to satisfy the
following equation

∂2T0

∂r2
+

1
r
∂T0

∂r
+
∂2T0

∂z2
= 0 (2.9)

subject to the boundary conditions

[T0(r, z, t)]z=0 = 0 (2.10)

[T0(r, z, t)]z=h = f (r, t) (2.11)

[

∂T0

∂r

]

r=a

= 0 (2.12)

Taking the finite Hankel transform and the finite Fourier transform of (2.9) and using (2.10)-(2.12) gives

µ2
mn

ˆ̄T0 = kλm f̂ (ξn, t)(−1)m+1 (2.13)

which using (2.3) may be written as

∂

∂t

[

ˆ̄T − ˆ̄T0

]

+ µ2
mn

[

ˆ̄T − ˆ̄T0

]

= −
∂

∂t
ˆ̄T0 (2.14)

Solving the above equation and using (1.2) we find

ˆ̄T (ξn,λm, t) − ˆ̄T0(ξn,λm, t) = − ˆ̄T0(ξn, λm, 0)e−µ
2
mnt
−

t
∫

0

e−µ
2
mn(t−t′) ∂

∂t′
ˆ̄T (ξn, λm, t

′)dt′ (2.15)
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Substitutingˆ̄T0 from (2.13) into (2.15) yields

ˆ̄T (ξn, λm, t) =
kλm(−1)m+1

µ2
mn





















f̂ (ξn, t)− f̂ (ξn, 0)e−µ
2
mnt
−

t
∫

0

e−µ
2
mn(t−t′) ∂

∂t′
f̂ (ξn, t

′)dt′





















(2.16)

which, in view of (2.8) , becomes

ˆ̄T (ξn, λm, t) = kλm(−1)m+1Amn(t) (2.17)

This equation is the same as the one given by (2.5) and (2.7).Therefore, inverting the two transforms we
obtainT (r, z, t) given by (2.6) and (2.8). A major difference between this solution and the one obtained in[3]

is the positive sign with the integrand in (2.8). This makes the alternative solution in[3] erroneous.

3. DISPLACEMENT AND STRESS FUNCTIONS

The displacement functionψ(r, z, t) is governed by equation

∂2ψ

∂r2
+

1
r
∂ψ

∂r
= (1+ ν)atT (3.1)

subject to the condition

ψ = 0 atr = a for all time t (3.2)

whereν and at are Poisson’s ratio and the coefficient of thermal expansion of the material of the plate
respectively .The stress functionsσrrandσθθ are given by

σrr = −2µ
1
r
∂ψ

∂r
; σθθ = −2µ

∂2ψ

∂r2
(3.3)

whereµ is Lame’ constant , while each of the stress functionsσrz, σzz andσθz are zero within the plate in
the plane state of stress. From (3.1) and (3.2) it follows that

σθθ = −2µ(1+ ν)atT − σrr (3.4)

Thusσθθ is linear combination of T andσrr.
When the temperatureT is of the form

T (r, z, t) =
∞
∑

n=1

En(z, t)Jo(ξnr) (3.5)

it may be shown that

ψ(r, z, t) = −(1+ ν)at

∞
∑

n=1

En(z, t)
ξ2

n

[

J0(ξnr) − J0(ξna)
]

(3.6)

Indeed, we substituteT from (3.5) into (3.1), carry out the integration and make useof the condition (3.2)
to arrive at (3.6). Substitutingψ from (3.6) into (3.3) yields

σrr(r, z, t) = −2µ(1+ ν)at

∞
∑

n=1

En(z, t)
[

(rξn)−1J1(ξnr)
]

(3.7)
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In the case of Problem 1, using (2.6) and (3.5) we see that

En(z, t) =
4k

a2hJ2
0(ξna)

∞
∑

m=1

λm(−1)m+1 sin(λmz)Amn(t) (3.8)

whereAmn(t) is given by (2.8) .Thenψ andσrrare given by (3.6)-(3.8).

Figure 1

Variation of
⌣

T = T (r, z, t)/α1 given by Eqns. (3.5), (4.6) and (4.4) with r for t= 0.1, 0.2,0.4,0.6,0.8,1.0. The
values of other parameters area =1, h=0.5, z= 0.3, k= 0.86. andt0 > 1

Figure 2
Variation of ψ̂ = −ψ(r, z, t)

/

β1 given by equations (3.6), (4.6) and (4.4) witht for r = 0.1, 0.2, 0.4, 0.6,0.8.
The values of other parameters are the same as in Fig.1

Figure 3
Variation of⌣σrr = −σrr(r, z, t)/γ1 given by Eqns.(3.7),(4.6)and (4.4) with z for t= 0.1,0.2,0.3,0.4,0.6,0.8,1.0.The
values of other parameters area =1, h= 1 , r= 0.0 , k= 0.86. andt0 > 1
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4. SPECIAL CASE OF PROBLEM 1

Let f (r, t) in equation (1.4) be give by

f (r, t) = (ra −
1
2

r2) [t − (t − t0)H(t − t0)] (4.1)

whereH(x) is the Heaviside function. For brevity of discussion we restrict our attention to the case when
0 ≤ t < t0 .Then we have

f̂ (ξn,t) = −aant
/

ξ3
n (4.2)

an =

xn
∫

0

J0(y)dy; xn = aξn (4.3)

Set

α1 =
4πk
a2h2

; β1 = −(1+ ν)atα1; γ1 = 2µβ1 (4.4)

From (2.7) and (4.2) we get

Amn(t) = −
aan

ξ3
nµ

2
mn

[

t + (e−µ
2
mnt
− 1)
/

µ2
mn

]

(4.5)

which together with (3.8) and (4.4) yields

En(z, t) = −
aα1an

ξ3
n J2

0(ξna)

∞
∑

m=1

m(−1)m+1 sin(λmz)
µ2

mn
×

[

t + (e−µ
2
mnt
− 1)
/

µ2
mn

]

(4.6)

Thus the temperatureT (r, z, t) is then given by (3.5) and (4.6) .Also from(3.5)-(3.7) and (4.4) we
note that the expression forψ(r, z, t)/β1can be obtained fromT (r, z, t)/α1simply by replacingJ0(ξnr)by
[

J0(ξnr) − J0(ξna)
]

/

ξ2
n . Similarly the expression forσrr(r, z, t)/γ1 can be obtained fromT (r, z, t)/α1 simply

by replacingJ0(ξnr) by
[

(rξn)−1J1(rξn)
]

.
The variation ofT (r, z, t)/α1with ris shown in Fig.1 fort = 0.1, 0.2, 0.4, 0.6,0.8, 1.0 by takinga =

1, h = 0.5, z = 0.3, k = 0.86 andt0 > 1.The variation ofψ(r, z, t)/β1 with t is shown in Fig.2 forr =
0.1, 0.2, 0.4, 0.6,0.8 by takinga = 1, h = 0.5, z = 0.3, k = 0.86 andt0 > 1. Finally, the variation of
σrr(r, z, t)/γ1 with z is shown in Fig. 3 fort = 0.1, 0.2, 0.3, 0.4, 0.6,0.8, 1.0 by takinga = 1, h = 1, r = 0.0,
k = 0.86 andt0 > 1. Forr = 0 the expression [(rξn)−1J1(rξn)] is indeterminate and so the limit formula

lim
x→0

[

x−1J1(x)
]

=
1
2

(4.7)

is employed.
As T (r, z, t) is given by (2.6) and (2.7). A more suitable form ofT (r, z, t)is given by (3.5), (3.8) and (2.8).
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