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Abstract
We consider two parallel queues. There is one server tending to each queue and the capacity of each
queue is K. The network is fed by a single Poisson arrival stream of rate λ, and the two servers are
identical exponential servers working at rate µ. A new arrival is routed to the queue with the smaller
number of customers. If both have the same number of customers then the arrival is routed randomly, with
the probability of joining either queue being 1/2. If there are more than 2K customers in the system, further
arrivals are turned away and lost. We let ρ = λ/µ and take K → ∞, and consider the cases ρ < 2, ρ > 2 and
ρ − 2 = O(K−1). We shall obtain asymptotic approximations to the joint steady state distribution of finding
m customers in the first queue and n in the second. The asymptotic approximations are shown to be quite
accurate numerically. We shall identify precisely for what ranges of m and n can the finite capacity model
be approximated by the infinite capacity one. We will also show that the marginal distribution of finding n
customers in the second queue undergoes a transition when ρ = 4.
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INTRODUCTION

The shortest queue (SQ) problem is one of the classic models within queueing theory. In its simplest
form, there are two parallel queues with identical exponential servers and a single Poisson arrival stream.
An arrival is routed to the queue with the smaller number of customers, and goes to either queue with
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probability 1/2 if they have the same numbers of customers. We denote the arrival rate by λ, the mean
service time by 1/µ, and let N j denote the number of customers in the jth queue, for j = 1, 2.

There are many applications of this model, which include computer network communications, packet
switched data networks [1, 2], and airports with two runways [3]. The first complete solution of the sym-
metric, infinite capacity SQ model was apparently obtained in [4], via the use of generating functions and
complex variable arguments. Previously some asymptotic results were obtained in [5], and simple bounds
are discussed in [6]. A more explicit form of the steady state probability distributions, Pr[N1 = m,N2 = n],
was later obtained by Adan et. al. [7], by using a “compensation approach”. The solution is an infinite
mixture of geometric terms of the form a j

mb j
n, j > 0, with the particular mixture determined by satisfying

boundary conditions along m = n and n = 0 (or m = 0). This compensation approach also works for
the non-symmetric model, where the two servers work at different rates µ1 and µ2

[8]. Variants of the SQ
problem are discussed in [9–15], which include models characterized by the unfinished work rather than the
number of customers, and models with jockeying, where a customer may be switched from one queue to
the other.

A natural variant of the symmetric SQ problem is a finite capacity version, where N1 and N2 are re-
stricted to be at most K. If an arrival occurs with N1 = N2 = K, this customer is turned away and lost.
Note that a loss can occur only if both queues are at capacity, in view of the SQ routing policy. The finite
capacity model was used by Conolly [16] to model toll booths on the Italian autostrada network. The author
analyzes the difference equations satisfied by the joint steady state distribution of (N1,N2) using a spectral
expansion, but the spectral coefficients must be determined numerically.

Other recent work on SQ problems with finite capacity includes Tarabia [17, 18], who also allows for
jockeying and different service rates in the two queues. In [17] matrix–analytic methods are used to obtain
an explicit expression for Pr[N1 = m,N2 = n], but its evaluation involves computing a product of a possibly
large number of matrices. In [18] the transient solution of this model is analyzed numerically, using both
Runge-Kutta and randomization methods.

Here we consider the symmetric finite capacity model in the asymptotic limit K → ∞. Defining ρ = λ/µ
we shall consider the cases ρ < 2, ρ > 2 and ρ − 2 = O(K−1). Note that if ρ < 2 and K = ∞, we recover
the standard stable infinite capacity SQ model. We shall obtain serveral different asymptotic formulas for
the steady state distribution p(m, n) = Pr[N1 = m,N2 = n], valid in different portions of the state space
{(m, n) : 0 6 m, n 6 K}. In view of the symmetry of the problem we can restrict ourselves to the lattice
triangle {(m, n) : 0 6 n 6 m 6 K}. By introducing the scaled variables x = m/K and y = n/K, which
correspond to the fractions of the capacities that are filled, we shall obtain serveral different asymptotic
expansions over the triangle T = {(x, y) : 0 6 y 6 x 6 1}. We will also identify precisely when the finite
capacity model may be approximated by the infinite capacity model, which will turn out to be possible
only over a subtriangle of T . We will also see that in some cases the finite capacity SQ model may be
approximated by the solution of the longer queue model, which was analyzed by Flatto in [19]. This model
may be viewed as a “dual” of the SQ model, in that there are two identical parallel queues, each fed by
its own Poisson arrival stream, but there is only one server that tends to the longer of the two queues. In
most ranges of T we shall obtain simple analytical approximations to p(m, n),which we shall show to be
numerically accurate even for moderate values of the capacities K.

Our analysis is based on singular perturbation expansions of the basic difference equation(s) satisfied
by p(m, n), after introduction of the scaled variables (x, y) = K−1(m, n). The analysis does make some
assumptions about the forms of various expansions, and the asymptotic matching between expansions in
different portions of T .

While we do not attempt to survey all previous work on SQ models, some numerical approaches are
discussed in [20–22] while asymptotic approaches appear in [23–30]. The asymptotic analyses involve either
diffusion models/approximations (in one [23] or two [24, 25] dimensions), tail behavior [26, 27], or large de-
viations theory [28–30]. The tail behavior is often obtained by identifying the dominant singularity of a
generating function, but this assumes that a reasonably explicit expression can be obtained for this function.
Large deviations theory typically characterizes the decay rate of p(m, n) in terms of the solution of a vari-
ational problem. However, this theory seems to estimate only the growth rate, i.e., log[p(m, n)]. Here we
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shall obtain the full asymptotics of p(m, n), giving explicitly the leading term and indicating how to com-
pute correction terms. We have previously done similar analyses of SQ problems with an infinite number
of servers [31, 32] and many server loss models [33].

The paper is organized as follows. In section 1. we state the basic equations and summarize our asymp-
totic results. In section 2. we derive the expansions in two main subsets of the triangle T . In sections 3.–6.
we analyze various boundary and corner regions of T . Finally, in section 7. we compare asymptotic and
numerical results, to assess the quality of the approximations.

1. PROBLEM STATEMENT AND SUMMARY OF RESULTS

The capacity will be denoted by the positive integer K. We let N j(t) be the number of customers in the
jth queue at time t, for j = 1 and j = 2. We clearly have 0 6 N j(t) 6 K. The arrival rate will be denoted by λ
and both servers work at rate µ. We then set ρ = λ/µ and consider the steady state limit, where t → ∞. We
thus define

p(m, n)= lim
t→∞

Pr[N1(t)=m,N2(t)=n|N1(0)=m0,N2(0)=n0], (1.1)

which is independent of the initial numbers (m0, n0), and exists for all values of ρ. We have not been able
to solve for p(m, n) exactly, so we consider the large capacity limit, where K is large but finite.

The balance equations are

(ρ + 2)p(m, n) = ρp(m, n − 1) + p(m + 1, n) + p(m, n + 1); (1.2)

n + 1 6 m 6 K − 1, n > 0,

(ρ + 2)p(n + 1, n) =
ρ

2
p(n, n) + ρp(n + 1, n − 1) (1.3)

+ p(n + 2, n) + p(n + 1, n + 1),

0 < n,m = n + 1,m 6 K − 1,

(ρ + 2)p(n, n) = ρp(n, n − 1) + ρp(n − 1, n) (1.4)
+ p(n + 1, n) + p(n, n + 1)

= 2ρp(n, n − 1) + 2p(n + 1, n),

0 < n,m = n,m 6 K − 1.

In (1.4) we used the symmetry p(m, n) = p(n,m), which allows us to consider the problem for m > n only.
When n = 0, the balance equation becomes

(ρ + 1)p(m, 0) = p(m + 1, 0) + p(m, 1), 2 6 m 6 K − 1. (1.5)

We also have the two corner conditions

(ρ + 1)p(1, 0) =
ρ

2
p(0, 0) + p(2, 0) + p(1, 1), (1.6)
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and

ρp(0, 0) = p(1, 0) + p(0, 1).

When m = K we have

(ρ + 2)p(K, n) = ρp(K, n − 1) + p(K, n + 1), 1 6 n 6 K − 2, (1.7)

and

(ρ + 1)p(K, 0) = p(K, 1). (1.8)

Finally, at the “corner ” (K,K), the balance equations are

2p(K,K) = ρp(K,K − 1) + ρp(K − 1,K) (1.9)
= 2ρp(K,K − 1),

(ρ + 2)p(K,K − 1) =
ρ

2
p(K − 1,K − 1) (1.10)

+ ρp(K,K − 2) + p(K,K).

The normalization requirement is

K∑

m=0

K∑

n=0

p(m, n) =

K∑

n=0

p(n, n) + 2
K∑

m=1

m−1∑

n=0

p(m, n) = 1. (1.11)

In Figure 1 we sketch the transitions for (N1(t),N2(t)), which may be viewed as a state-dependent
continuous time random walk on the lattice square {0, 1, 2, . . . ,K} × {0, 1, 2, . . . ,K}. Alternately we can
restrict to m > n and view it as a random walk on a triangle, with a reflection law along the diagonal m = n
arising from the m↔ n symmetry. Then the transitions are indicated in Figure 2.

We introduce the scaled variables (x, y) with

x =
m
K

= εm, y =
n
K

= εn, (1.12)

where
ε ≡ 1

K
→ 0+. (1.13)

Because m, n 6 K and we restrict to m > n, we must analyze the problem in the triangular domain T
T = {(x, y) : 0 6 y 6 x 6 1}. (1.14)

The probability distribution will be concentrated near (x, y) = (0, 0) if ρ < 2. If ρ > 2, it will be concentrated
near (1, 1), and if ρ ≈ 2, it will be spread out along the line segment x = y, 0 < x < 1. In terms of the scaled
variables (x, y) we let

p(m, n) = P(x, y) (1.15)

and note that p and P depend also on ε = 1/K and ρ.
Below we summarize our main asymptotic results. First, we find that the form of P(x, y) is different in

two main parts of the triangle T . We thus divide the interior T0 of T into the two partsD and R with

T0 = D∪ R ∪ L1, (1.16)

where
D = {(x, y) : max{0,Y(x)} < y < x < 1}, (1.17)
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A Sketch of the Transition Rates for the Random Walk
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Figure 2
A Sketch of the Transition Rates for the Reflected Random Walk

R = {(x, y) : 0 < y < max{0,Y(x)}, x < 1}, (1.18)
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and Y(x) is the line

Y(x) =

(
1 +

4
ρ

+
16
ρ2

)
x − 4

ρ
− 16
ρ2 , (1.19)

which lies inside the domain T for

X0(ρ) < x < 1, X0(ρ) =
16 + 4ρ

16 + 4ρ + ρ2 . (1.20)

Then L1 is the curve separatingD and R, hence

L1 = {(x, y) : y = Y(x), y > 0, x < 1}.
We sketch the domains D and R in Figure 3. Note that along the separating curve we have X0(ρ) < x < 1,
and since Y(X0(ρ)) = 0, the curve hits the boundary of T at the two points (X0(ρ), 0) and (1, 1).

:y=Y(x)1L

0 0

0

0

4C3L 4L

2L

3C2C

1C

RD

 1 -

1

y

x

Figure 3
A Sketch of the Main RegionsD and R, as well as the Boundary and Corner Regions L j and C j

In regionD we obtain the following

P(x, y) ∼ C exp
[
KΦ(x, y)

]
, x > y, (1.21)

where

Φ(x, y) = x log
(

ρ2

2(ρ + 4)

)
+ y log

(
ρ + 4

2

)
. (1.22)

The constant C = C(ρ, ε) has the following asymptotic forms:

ρ < 2: C ∼ (4 − ρ2)(4 − ρ)
ρ(4 + ρ)

, (1.23)

ρ − 2 = αε = O(ε) : C ∼ 2
3

αε

(eα − 1)
, (1.24)

ρ > 2: C ∼
(

2
ρ

)2K (ρ2 − 4)
(ρ + 4)

4
ρ2 . (1.25)
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By using m = Kx, n = Ky, another form of (1.21) is

p(m, n) ∼ C
(

ρ2

2(ρ + 4)

)m(
ρ + 4

2

)n

, (1.26)

so that the distribution is approximately of product form. The expansion (1.21) applies only for x > y
(m > n) and cannot be used to compute the diagonal probabilities p(n, n). To obtain the asymptotic form of
p(n, n), we can use (1.26) in (1.4) to get

p(n, n) = P(y, y) ∼ C
ρ

ρ + 2

(
ρ

2

)2n
, m = n. (1.27)

Next we consider region R, where we obtain the approximation

P(x, y) ∼ k̃(ε)L̃(x, y) exp[KΨ(x, y)], (1.28)

where

k̃(ε) =

√
ε√

2π

(
ρ

2

)2K ρ2(ρ + 4)
4(ρ + 2)

C, (1.29)

Ψ(x, y) =

[
log(ρ + 2 − ρ

u
− u)

]
(
ρ

u
+ u − ρ − 2)τ (1.30)

+ (log u)(
ρ

u
− u)τ,

L̃(x, y) =
L̃0(u)√

τ
, (1.31)

L̃0(u) =
(u − 1)(2u − ρ − 2)√

(ρ + 2)u − u2 − ρ
√

(ρ + 2)u2 − 4ρu + ρ2 + 2ρ(2u − ρ − 4)
, (1.32)

and (u, τ) are related to (x, y) via the mapping

x = (
ρ

u
+ u − ρ − 2)τ + 1,

y = (
ρ

u
− u)τ + 1.

(1.33)

When τ = 0 we have (x, y) = (1, 1) so that all the curves in (1.33) are straight lines that emanate from
the upper corner of the domain T . Note that these curves fill T as u varies over the range

umin 6 u 6 umax, (1.34)

where

umin =
ρ + 4

2
, umax =

ρ + 2 +
√
ρ2 + 4

2
. (1.35)

The curve in (1.33) with u = umin is the same as L1 in (1.19). When u increases to umax (1.33) corresponds
to x = 1. For u ∈ (umin, umax) and

0 < τ <
u

u2 − ρ , (1.36)

the curves in (1.33) fill the domain R. When τ = u/(u2−ρ) we have y = 0 and then (1.28) ceases to be valid,
as discussed below. We can also invert explicitly the transformation in (1.33), and write (u, τ) in terms of
(x, y) as

u =
(1 − y)(ρ + 2) +

√
(ρ + 2)2(1 − y)2 + 4ρ(y − x)(2 − x − y)

2(2 − x − y)
, (1.37)
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τ =
(1 − x)(ρ + 2) +

√
(ρ + 2)2(1 − y)2 + 4ρ(y − x)(2 − x − y)

ρ2 + 4
. (1.38)

Then we have the explicit expression

Ψ(x, y) = (x − 1) log(1 − x)

+ (y − 1) log


(1 − y)(ρ + 2) +

√
(ρ + 2)2(1 − y)2 + 4ρ(y − x)(2 − x − y)

2(2 − x − y)



+ (1 − x) log


(1 − x)(ρ + 2) +

√
(ρ + 2)2(1 − y)2 + 4ρ(y − x)(2 − x − y)

ρ2 + 4

 (1.39)

and L̃ may be rewritten as

L̃(x, y) =

√
τ

1 − x
(u − 1)(2u − 2 − ρ)

u(2u − 4 − ρ)
(1.40)

× [(ρ + 2)2(1 − y)2 + 4ρ(y − x)(2 − x − y)]
−1/4

.

From (1.39) we see that Ψx has a logarithmic singularity as x ↑ 1, while from (1.40) it follows that L̃ blows
up like (1 − x)−1/2 as x ↑ 1, and is also singular when u→ umin, since 2umin − 4 − ρ = 0.

The expansions in (1.21) and (1.28) are valid in the interior T0 of T , excluding the curve L1. After
analyzing the singularities of these expansions, we found that different expansions must be constructed in
various boundary and corner regions, which we summarize below.

The boundary regions are

L1 : y − Y(x) = O(
√
ε), 0 < y < 1, (1.41)

L2 : 1 − x = O(ε) (K − m = O(1)), 0 < y < 1, (1.42)

L3 : y = O(ε) (n = O(1)), 0 < x < X0(ρ) =
16 + 4ρ

16 + 4ρ + ρ2 , (1.43)

L4 : y = O(ε) (n = O(1)), X0(ρ) < x < 1. (1.44)

The corner regions correspond to the scalings

C1 : 1 − x = O(ε), 1 − y = O(ε) (K − m = O(1), K − n = O(1)), (1.45)
C2 : x = O(ε), y = O(ε) (m = O(1), n = O(1)), (1.46)
C3 : 1 − x = O(ε), y = O(ε) (K − m = O(1), n = O(1)), (1.47)

C4 : x − X0(ρ) = O(
√
ε), y = O(ε) (n = O(1)). (1.48)

Note that L2 and L3 ∪ L4 correspond to boundaries of the triangle T ; C1, C2 and C3 are the three corners
of T ; and C4 is where the transition layer L1 hits y = 0.

In the transition layer L1 we define

η =
y − Y(x)√

ε
=
√

K[y − Y(x)] = O(1). (1.49)

Then the approximation to p(m, n) has the form

p(m, n)∼AmBnP̄(x, η), (1.50)

where

A =
ρ2

2(ρ + 4)
, B =

ρ + 4
2

, (1.51)
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P̄(x, η) =
C

2
√

aπ

∫ η/
√

1−x

−∞
exp(− u2

4a
) du, (1.52)

a =
(ρ + 4)(ρ3 + 6ρ2 + 8ρ + 32)

ρ4 . (1.53)

In the boundary layer L2 we use the variables l = K − m and y = nε, with 0 < y < 1, and obtain

p(m, n) ∼
√

2π
ε

k̃(ε)

√
ρ2 + 4 + ρ + 2

2ρ2

ε−l

l!
(1.54)

× exp(
F(y)
ε

) [D(y)]l,

where

F(y) =(y − 1) log


ρ + 2 +

√
ρ2 + 4

2

 , (1.55)

D(y) =
1 − y√
ρ2 + 4

. (1.56)

Note also that exp[F(y)/ε] = [umax]n−K .
In the boundary layer L3 we use the original variables (m, n) and obtain

p(m, n) ∼ CAmBn
[
1 +

2(4 − ρ)
(2 + ρ)(4 + ρ)

(
4ρ

(ρ + 4)2

)n]
(1.57)

= CAm
[(
ρ + 4

2

)n

+
2(4 − ρ)

(2 + ρ)(4 + ρ)

(
2ρ
ρ + 4

)n]
,

but this applies only for εm < X0(ρ). For n � 1 the second geometric term in (1.57) becomes negligible
and (1.57) reduces to (1.26). Note also that when ρ = 4 the second geometric term is absent.

In the boundary layer L4 we use the variables x and n and obtain, for X0(ρ) < x < 1,

p(m, n) ∼ k̃(ε)L̃(x, 0)eKΨ(x,0)

×
[
enΨy(x,0) +

ρe−Ψy(x,0) − 1
1 − e−Ψy(x,0) ρ

ne−nΨy(x,0)
]
,

(1.58)

where Ψ(x, 0) and Ψy(x, 0) can be computed from (1.39), with

Ψy(x, 0) = log


ρ + 2 +

√
ρ2 + 4 + 4ρ(1 − x)2

2(2 − x)

 . (1.59)

Next we give results for the four corner regions. The “corner” C4 is where the expansions in (1.57) and
(1.58) meet. Here we use the variables (ξ, n) where ξ = [x − X0(ρ)]/

√
ε and obtain

p(m, n) ∼ CAmBn
[

1√
2π

∫ ∞

ξ′
e−v2/2 dv

]

×
[
1 +

2(4 − ρ)
8 + 6ρ + ρ2

(
4ρ

(ρ + 4)2

)n] (1.60)

where

ξ′ =
(ρ2 + 4ρ + 16)3/2

√
ρ3 + 6ρ2 + 8ρ + 32

1

ρ
√

2(ρ + 4)
ξ. (1.61)

9



Charles Knessl; Haishen Yao/Progress in Applied Mathematics Vol.2 No.1 2011

As ξ (hence ξ′ )→ −∞ (1.60) reduces to (1.57), while as ξ → +∞ it can be shown that (1.60) asymptotically
matches to (1.58), as x ↓ X0(ρ).

The corner C3 corresponds to m = K − O(1) and n = O(1), so that the first queue is at or near capacity
while there are only a few customers in the second queue. Now we have

p(m, n) ∼ k̃(ε)
√

2πK

√
ρ2 + 4 + ρ + 2

2ρ2

Kl

l!

(
1

ρ2 + 4

)l/2

×

ρ + 2 +

√
ρ2 + 4

2


n−K

×
1 +

(
1 +

ρ2

2
− ρ

2

√
ρ2 + 4

)
(4ρ)n

(ρ + 2 +
√
ρ2 + 4)

2n

 ,

(1.62)

where l = K − m and K = 1/ε. It can be shown using Stirling’s formula that (1.62) as l → ∞ agrees with
(1.58) as x ↑ 1. Also, for l = O(1) and n→ ∞ (1.62) agrees with (1.54) as y ↓ 0.

For the corner layer C2, where m, n = O(1), p(m, n) can be approximated by the exact solution to the
infinite capacity SQ problem, which was obtained in [4] and later in a simpler form in [5]. We write this
solution as an infinite mixture of exponentials as

p(m, n) ∼ C

a0
mb0

n +

∞∑

j=1

c ja j
mb j

n

 , m > n, (1.63)

where C is given by (1.23)–(1.25) for the three cases of ρ, a0 = A and b0 = B are as in (1.51), and

a2N = a2N+1, a2N+1b2N+1 = a2N+2b2N+2, N > 0,

b2N =
ρ + 2

2
+

√
ρ2 + 4

2
−

√
ρ2 + 4/

1 +

√
ρ2 + 4 + 2√
ρ2 + 4 − 2


ρ + 2 +

√
ρ2 + 4

ρ + 2 −
√
ρ2 + 4


N ,

b2N−1 =
ρ + 2

2
−

√
ρ2 + 4

2
+

√
ρ2 + 4/

1 +

√
ρ2 + 4 + 2√
ρ2 + 4 − 2


ρ + 2 +

√
ρ2 + 4

ρ + 2 −
√
ρ2 + 4


N . (1.64)

From (1.64) we find that a1 = ρ2/[2(ρ + 4)], b1 = 2ρ/(ρ + 4) and, generally, b2Nb2N+1 = ρ (N > 0) and
b2N + b2N−1 = ρ + 2 (N > 1). Furthermore, the constants c j in (1.63) can be obtained recursively from

c2N+1

c2N
= −b2N+1 − 1

b2N − 1
,

c2N

c2N−1
= − b2N − 1

b2N−1 − 1
2 − b2N+1

2 − b2N−2
(1.65)

with c0 = 1. Finally, p(n, n) can be obtained by using (1.63) in (1.4).
When ρ < 2 we compute C from (1.23) and then (1.63) corresponds to the exact solution of the sym-

metric infinite capacity (K = ∞) SQ problem. However, when ρ > 2, C is given asymptotically by (1.25)
and then (1.63) is exponentially small for K → ∞, of the order (4/ρ2)K . When ρ− 2 = O(K−1) the constant
C, and hence (1.63), is of order O(K−1). Note also that if ρ > 2, the right side of (1.63) grows geometrically
for m = n → ∞, since a0b0 = ρ2/4. It is possible that the series in (1.63) truncates if ρ > 2, which occurs
for example ρ = 4, as then b0 = 4 so that b1 = 0 and c j = 0 for j > 1. For ρ > 2 and ρ ∼ 2, (1.63) represents
only a local approximation to p(m, n), that applies for m, n = O(1).

The final region is C1, where (x, y) is close to (1, 1). We use the variables (l, k) where

m = K − l, n = K − k (1.66)

and set p(m, n) ∼ Q(l, k). We also note that m > n corresponds to k > l. Then we define b(w) and f0(w) by

b(w) = (2 + ρ) w − ρ − w2, (1.67)

10
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f0(w) =
(w − 1)(2w − 2 − ρ)

w(2w − 4 − ρ)
(1.68)

and obtain the approximation in the form of contour integrals:

p(m, n) = p(K − l,K − k) ∼ Q(l, k) (1.69)

=
−C∗
2πi

∫

Γ(w0)
f0(w)[b(w)]−l−1wl−k dw, k > l > 0,

p(m,m)= p(K − l,K − l) ∼ Q(l, l) (1.70)

=
−2C∗ρ

(ρ + 2)2πi

∫

Γ(w0)

f0(w)
w

[1+
b(w)
ρ

][b(w)]−l−1 dw, l > 1,

p(K,K) ∼ Q(0, 0) =
C∗
ρ
. (1.71)

Here

C∗ =

√
2π
ε

k̃ =

(
ρ2

4

)K+1
ρ + 4
ρ + 2

C, (1.72)

in view of (1.29). In (1.69) and (1.70) the integration contour Γ(w0) is a small counterclockwise loop about
w = w0, where b(w0) = 0 with

w0 = w0(ρ) = 1 +
ρ

2
+

√
1 +

ρ2

4
. (1.73)

This completes the summary of the asymptotic results for p(m, n). We will give the derivations in section
3–7.

We can also interpret our asymptotic results in terms of the exact solutions to the symmetric SQ model
([4], [5]) and the longer queue problem studied by Flatto in [19]. Let us denote the exact SQ solution by
pS Q(m, n; λ, µ), where K = ∞ and ρ = λ/µ < 2. The longer queue model in [19] has two parallel queues
fed by independent Poisson arrival streams of rate λ′, and there is a single server that works at rate µ′ and
tends only to the longer of the two queues. We denote the solution in [19] by pLQ(m, n; λ′, µ′) and note that
the stability condition is 2λ′ < µ′. Our asymptotic results show that the present finite capacity SQ problem,
calling its distribution p(m, n; λ, µ; K), can be approximated by

p(m, n; λ, µ; K) ≈ pS Q(m, n; λ, µ), (1.74)

for K−1(m, n) lying in region D, if ρ < 2. This approximation applies also along x = y < 1, in the corner
layer C2, and in boundary layer L3. It becomes invalid in region R and in the boundary and corner regions
that border it. Furthermore, (1.74) applies inD for ρ > 2 and ρ ∼ 2, up to the multiplicative constant C (or
k̃ or C∗). Thus even if ρ > 2 the relative probabilities p(m ± 1, n ± 1)/p(m, n) can be inferred from (1.74).

When ρ > 2 (ρ′ = λ′/µ′ < 1/2) we have the approximation

p(m, n; λ, µ; K) ≈ pLQ(K − m,K − n; µ, λ), (1.75)

which holds in the entirety of the triangle T0 = D ∪ R ∪ L1 and along x = y > 0. The approximation fails
only when n = O(1), which corresponds to the boundary layers L3 and L4, and corner layers C2, C3 and
C4. If ρ < 2 and ρ ∼ 2 then (1.75) applies in T0 up to a multiplicative constant, and can be used to compute
the relative probabilities for ρ 6 2.

This discussion shows that (1.74) and (1.75) provide more uniform approximations, in that they apply
over larger ranges of the state space, than the approximations we derived. However, the approximations

11
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in (1.74) and (1.75) are quite complicated (cf. (1.63) and (1.69)) whereas the formulas we gave are much
simpler, except near the two corners C1 and C2.

Finally we consider the marginal probability P(n) of finding n customers in the second queue. In view
of the symmetry p(m, n) = p(n,m) we have

P(n) =

n−1∑

m=0

p(n,m) + p(n, n) +

K∑

m=n+1

p(m, n). (1.76)

Using our asymptotic results for p(m, n) we can easily obtain the asymptotics for P(n) for K → ∞. The
results are different for n = O(1), n = Ky with 0 < y < 1, and n = K − O(1); furthermore, the cases ρ < 4,
ρ > 4 and ρ ∼ 4 lead to different results. We summarize the different cases below.

If ρ < 4 and 0 < n/K < 1 we obtain

P(n) ∼ C
2(ρ + 4)

(4 − ρ)(ρ + 2)

(
ρ2

4

)n

, (1.77)

where C is given by (1.23)–(1.25), according as ρ < 2, ρ ∼ 2 or 2 < ρ < 4. For n = O(1) and ρ < 4 we use
(1.63) (and a corresponding result for m = n) in (1.76), to find that

P(n) ∼C
∞∑

j=0

c ja j
nb j

n
[

1
b j − 1

+
a j

1 − a j
+

2
ρ + 2

(
ρ

b j
+ a j)

]
(1.78)

+ C
∞∑

j=0

c j

1 − b j
a j

n, n = O(1), n > 1.

Here c0 = 1 and the a j, b j and c j can be evaluated using (1.64) and (1.65). Actually, (1.78) contains (1.77)
as a special case, since for n → ∞ only the first term in the first sum in (1.78) is important asymptotically.
When n = K − k = K − O(1) we must use (1.69)–(1.73) to evaluate (1.76), with the result that

P(n) = P(K − k) ∼ −C∗
2πi

∫

Γ(w0)
f1(w) [b(w)]−k−1 dw, k > 1, (1.79)

where

f1(w) =
2w − 2 − ρ
2w − 4 − ρ

[
1 − 2

ρ + 2
(w − 1) +

1
w − ρ

]
,

and

P(K) ∼ C∗


1
2

+
1
ρ

+

√
ρ2 + 4
2ρ

 . (1.80)

For k → ∞ the behavior of the contour integral in (1.79) is determined by the pole at w = ρ if ρ > 4, and
the pole at w = (ρ + 4)/2 if ρ < 4. In the latter case the expansion of (1.79) as k = K − n → ∞ reduces to
(1.77), once we note that C and C∗ are related by (1.72).

Now we consider ρ > 4. The evaluation of the right hand side of (1.76) is now different. For ρ < 4
the dominant terms had m = n + O(1) but when ρ > 4 the second sum in (1.76) dominates, and the major

contribution comes from where m = K[
1 − y
1 − ρ + 1], which is a line that is contained within the range R (see

(1.18) and Figure 3). Asymptotically evaluating the second sum using (1.28) and Laplace’s method leads to

P(n) ∼
√

2πK k̃(ε)
ρ − 2
ρ(ρ − 4)

exp[−K(1 − y) log ρ] (1.81)

=C∗
ρ − 2
ρ − 4

ρn−K−1.

12
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This applies for K → ∞ and either n → ∞ with 0 < n/K < 1 or for n = O(1) (as long as n > 1). For
n = K −O(1) the results in (1.79) and (1.80) apply, as these do not depend on whether ρ < 4 or ρ > 4. Note
also that if we expand the contour integral in (1.79) for k → ∞ we also obtain the expansion in (1.81), as
now the pole at w = ρ dominates, and b(ρ) = ρ.

We note that (1.77) and (1.81) both become singular as ρ → 4 and a new expansion is needed. Now
p(m, n) will be approximately constant for n = Ky and m/K ∈ [y, (y + 2)/3]. We introduce the parameter β
by

ρ = 4 +
β

K
= 4 + βε, β = O(1). (1.82)

Then for K → ∞ and β fixed we find that

C ∼ 3
8

e−β/24−K (1.83)

and then

P(n) ∼ Kβ−1eK(y−1) log 4e−β/2
{

exp
[
β(y + 1)

4

]
− exp

[
βy
2

]}
. (1.84)

This applies both for n = O(1) (then we can replace y by n/K in the exponent and y by 0 in the term in
(1.84) in braces) and for n = Ky with 0 < y < 1. For n = K − O(1) (1.79) and (1.80) still hold, but can be
simplified by replacing ρ by 4 in f1(w) and b(w), and expanding C∗ using (1.72) and (1.83), which leads to
C∗ ∼ 2eβ/2. When ρ = 4, f1(w) has a double pole at w = 4 and this determines the asymptotic behavior of
(1.79) as k → ∞, and then (1.79) will asymptotically match to (1.84), as y → 1. We can also show that for
a fixed 0 < y < 1, (1.84) will match to (1.77) as β→ −∞, and to (1.81) as β→ +∞.

2. RAY EXPANSIONS

With the scaling (m, n) = (Kx,Ky) in (1.12) and with (1.15) the main balance equation (1.2) becomes

(ρ + 2)P(x, y) = ρP(x, y − ε) + P(x + ε, y) + P(x, y + ε), (2.1)
0 < y < x < 1.

We can use (1.4) to eliminate the diagonal probabilities p(n, n) = P(y, y) and p(n + 1, n + 1) = P(y + ε, y + ε)
in (1.3). Then (1.4) becomes

P(y, y) =
2ρ
ρ + 2

P(y, y − ε) +
2

ρ + 2
P(y + ε, y), (2.2)

and (1.3) becomes

(ρ+2)P(y+ε, y)=ρP(y+ε, y−ε)+P(y+2ε, y) (2.3)

+
2ρ
ρ + 2

P(y+ε, y)+
2

ρ + 2
P(y+2ε, y+ε)

+
ρ

2

[
2

ρ + 2
P(y+ε, y)+

2ρ
ρ + 2

P(y, y−ε)
]
.

We seek an asymptotic expansion of the form

P(x, y) = εν1 eΦ(x,y)/ε[L(x, y) + εL(1)(x, y) + O(ε2)] (2.4)

where ν1 is a constant and ε = K−1. Then (2.1) implies that Φ satisfies the “eiconal” equation

ρ + 2 = ρe−Φy + eΦx + eΦy (2.5)

13
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and L(x, y) satisfies the (linear) “transport” equation

ρ

(
Φyy

2
L − Ly

)
e−Φy +

(
Φxx

2
L + Lx

)
eΦx +

(
Φyy

2
L + Ly

)
eΦy = 0. (2.6)

From (2.3) we can infer a boundary condition for Φ along x = y, namely

(ρ + 2)eΦx =ρeΦx e−Φy + e2Φx +
3ρ
ρ + 2

eΦx +
2

ρ + 2
e2Φx eΦy +

ρ2

ρ + 2
e−Φy , x = y. (2.7)

We discuss the condition for L(x, y) along x = y later. We solve the PDE (2.5) by the method of character-
istic; the characteristic equations are

dx
dt

= −eΦx ,
dy
dt

= ρe−Φy − eΦy , (2.8)

dΦ

dt
= −ΦxeΦx + Φy

(
ρe−Φy − eΦy

)
, (2.9)

dΦx

dt
= 0,

dΦy

dt
= 0. (2.10)

Here t is a parameter along a characteristic curve, or ray, and a ray must enter the domain x > y for
t > 0. We choose t = 0 when the ray hits the line x = y, so that the “initial manifold” for the problem is
(x(s), y(s)) = (s, s), and a ray starts from the point (s, s) with 0 < s < 1.

The ODEs in (2.10) are readily solved to give

Φx = A0(s), Φy = B0(s), (2.11)

where A0(s) and B0(s) are constants along a ray, and only depend on s. With (2.11) the equations in (2.8)
become linear ODEs whose solutions are

x = −eA0(s)t + s, y = (ρe−B0(s) − eB0(s))t + s. (2.12)

Here we imposed the conditions (x, y) = (s, s) at t = 0. Using (2.11) and (2.12) in (2.9), we obtain

dΦ

dt
= −A0(s)eA0(s) + B0(s)(ρe−B0(s) − eB0(s)), (2.13)

whose solution is
Φ(s, t) =

[
−A0(s)eA0(s) + B0(s)(ρe−B0(s) − eB0(s))

]
t + C0(s). (2.14)

We need to determine A0, B0 and C0, which are all functions of s. We have the strip condition

Φs = Φxx′(s) + Φyy′(s), t = 0, (2.15)

and thus
C′0(s) = A0(s) + B0(s). (2.16)

Using (2.5) at t = 0 we obtain
ρ + 2 = ρe−B0(s) + eA0(s) + eB0(s). (2.17)

We solve (2.17) together with (2.7) and obtain

A0(s) = log
[

ρ2

2(ρ + 4)

]
, B0(s) = log

[
ρ + 4

2

]
, (2.18)

14
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so that A0 and B0 are constants. Then we define A, B by A = eA0 = ρ2/[2(ρ + 4)], B = eB0 = (ρ + 4)/2.
Solving (2.16) and letting C0(0) = 0, we obtain

C0(s) = (A0 + B0)s. (2.19)

Note that C0(0) can be absorbed into a normalization constant. Thus,

Φ(s, t) = A0[−eA0 t + s] + B0[(ρe−B0 − eB0 )t + s]. (2.20)

Using (2.12) in (2.20), we can also write Φ in terms of (x, y) as

Φ = A0x + B0y, (2.21)

so that exp(ε−1Φ) = eA0meB0n = AmBn is of product form.
The rays in (2.12) are thus given by

x = − ρ2

2(ρ + 4)
t + s, y = (

2ρ
ρ + 4

− ρ + 4
2

)t + s. (2.22)

For s ∈ (0, 1) and 0 < t < s(ρ + 4)/(ρ2 + 4ρ + 16) the rays fill the domainD (cf. Figure 3).
Using (2.21), (2.18) and (2.22) to simplify (2.6) we obtain

Lt = 0. (2.23)

Thus L(x, y) only depends upon s, and we write

L(x, y) = L(s). (2.24)

By considering the higher order terms in the expansion of (2.3) using (2.4), we can derive a boundary
condition for L(x, y) along x = y, and this will show that L is not just a constant along a ray, but globally a
constant in the regionD. Summarizing our results we have shown that rays from 0 < x = y < 1 lead to the
asymptotic solution

P(x, y) ∼ C
(

ρ2

2(ρ + 4)

)m(
ρ + 4

2

)n

. (2.25)

Since C may depend upon ε = K−1, we can set ν1 = 0 in (2.4).
The determination of the constant C is different according to whether ρ < 2, ρ ∼ 2 or ρ > 2. If ρ < 2 and

K → ∞, most of the probability mass is concentrated in the range m, n = O(1). There we can approximate
the solution by the solution to the stable, infinite capacity SQ problem, as given by (1.63). Then, taking
into account the different form of p(m, n) along m = n, we can determine C by normalizing (1.63), and this
leads to (1.23). When ρ ∼ 2 the probability mass is spread evenly along 0 < x < 1, but with x − y = O(ε)
(i.e., m − n = O(1)). For ρ − 2 = O(ε) = αε, we can approximate (2.25) by

P(x, y) ∼ C
(
ρ

2

)m+n
(

ρ

ρ + 4

)m−n

∼ Ceαx
(

1
3

)L

, L > 1, (2.26)

where L = m−n = (x−y)/ε = O(1) and 0 < x < 1. From (1.27) we obtain the corresponding approximation
for the diagonal probabilities as

P(y, y) ∼ 1
2

Ceαy, 0 < y < 1. (2.27)

By using (2.26) and (2.27) in the normalization condition (1.11) we obtain

1
2

CK
∫ 1

0
eαydy + 2

∞∑

L=1

CK
∫ 1

0
eαx3−Ldx ∼ 1,
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which leads to the expression for C in (1.24). To determine C in the case ρ > 2 we must carefully analyze
the scale K − m,K − n = O(1), which is done in section 4. In this case both queues tend to be filled nearly
to their capacities.

Note that the rays in (2.22) will not fill the entire domain 0 6 y 6 x 6 1. Thus we need to consider the
region R, which is a “shadow”region for the rays from x = y.

To construct the asymptotic solution in region R we use the ansatz

p(m, n) = P(x, y) ∼ k̃(ε)L̃(x, y) exp
[
Ψ(x, y)
ε

]
(2.28)

where k̃ is a multiplicative constant, whose inclusion allows use to define an additive constant that arises in
Ψ in a convenient form.

Using (2.28) in (2.1) we find that Ψ(x, y) satisfies the same PDE as Φ(x, y) in (2.5). The characteristic
equations are thus given by

dx
dτ

= −eΨx ,
dy
dτ

= ρe−Ψy − eΨy , (2.29)

dΨ

dτ
= −ΨxeΨx + Ψy

(
ρe−Ψy − eΨy

)
, (2.30)

dΨx

dτ
= 0,

dΨy

dτ
= 0. (2.31)

Here we use τ as a parameter along a ray, to distinguish the rays in R from those in D. Solving the
differential equations in (2.31) leads to

Ψx = A1, Ψy = B1 (2.32)

where A1 and B1 are constant along a ray. We now use rays that emanate from the corner point (x, y) = (1, 1).
Thus at τ = 0 we have x = 1 and y = 1. Then we use (2.32) in (2.29) and solve the latter equation(s) to
obtain

x = −eA1τ + 1, y = (ρe−B1 − eB1 )τ + 1. (2.33)

Now, Ψ satisfies (2.5) and at τ = 0 this yields, using (2.32) and (2.33),

ρ + 2 = ρe−B1 + eA1 + eB1 . (2.34)

Let us set eB1 = u and use u to index the rays, so that (2.34) becomes

eA1 = ρ + 2 − ρ
u
− u, (2.35)

and the rays (in parametric form) are as in (1.33).
Now consider the permissible range of the parameter u. From (2.33) and (2.35) we find that

dy
dx

∣∣∣∣∣
τ=0

=
ρ − u2

u2 − (ρ + 2)u + ρ
, (2.36)

which gives the slope at which the ray indexed by u enters the corner point (1, 1). When u = (ρ + 2)/2 this

slope is
dy
dx

= 1. As u → umax, where umax = (ρ + 2 +
√
ρ2 + 4)/2 (cf. (1.35)),

dy
dx
|τ=0 → ∞, so that the

ray is locally vertical. When u = umin, where umin = (ρ + 4)/2 (cf.(1.35)), the ray becomes the same as the
curve y = Y(x) in (1.19), that separates the regionsD and R.

Using (2.33), (2.35), and (2.32) in (2.30), we solve the resulting ODE and obtain (1.30). Then (1.39)
gives Ψ explicitly in terms of (x, y). Here we have chosen Ψ(1, 1) = 0, since we have yet to determine k̃ in
(2.28).
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Now, L̃(x, y) satisfies the transport equation in (2.6) with Φ(x, y) replaced by Ψ(x, y), and t replaced by
τ. We first compute the Jacobian of the mapping in (1.33), to obtain

J = J(τ, u) =
τ

u2

[
(ρ + 2)u2 − 4ρu + ρ2 + 2ρ

]
. (2.37)

Using (2.37) and (1.30) in (2.6), we obtain, after some simplification

L̃τ
L̃

= − 1
2τ
, (2.38)

whose general solution is

L̃(x, y) =
L̃0(u)√

τ
, (2.39)

with u, τ given in (1.37) and (1.38). Note that (2.39) has the same form as (1.31). We will determine k̃(ε)
and L̃0(u) in section 3., by asymptotic matching considerations.

Note that for 1
2 (ρ + 2) < u < umax the rays from the corner point (x, y) = (1, 1) fill the entire triangle T ,

and for 1
2 (ρ+2) < u < umin the rays fill the subtriangleD. Thus inDwe have two ray expansions. However,

after we relate the constants C and k̃ we will see that in D (2.28) leads to a solution that is asymptotically
smaller than (2.25). Hence inD the product form approximation in (2.25) dominates, and the rays from the
corner are only important if umin < u < umax, which corresponds to region R. We also note that for each u
in this range, we reach a critical value of τ where the ray hits y = 0 and exits the domain.

3. CORNER REGION NEAR (1, 1)

We consider the vicinity of the point (x, y) = (1, 1); this region we previously denoted by C1. We use the
local variables l and k, with

l = K − m = O(1), k = K − n = O(1), (3.1)

and note that m > n implies that k > l. In terms of x and y we have

x = 1 − εl, y = 1 − εk. (3.2)

We then define Q(l, k) by

p(m, n) = P(x, y; ε) = Q(l, k; ε) = Q(l, k) [1 + o(1)] . (3.3)

Using (3.3) in (1.2) and using the symmetric property Q(l, k) = Q(k, l) we obtain

(1 +
2
ρ

)Q(l, k) = Q(l, k + 1) +
1
ρ

Q(l − 1, k) + Q(l, k − 1), (3.4)

k > l + 1.

For k = l + 1, from (1.3) we obtain

(1 +
2
ρ

)Q(k − 1, k) (3.5)

=
1
2

Q(k, k) + Q(k − 1, k + 1)

+
1
ρ

[Q(k − 2, k) + Q(k − 1, k − 1)], k = l + 1,
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and for k = l (1.4) implies that

(1 +
2
ρ

)Q(k, k) = Q(k, k + 1) + Q(k + 1, k) (3.6)

+
1
ρ

Q(k − 1, k) +
1
ρ

Q(k, k − 1)

= 2[Q(k, k + 1) +
1
ρ

Q(k − 1, k)], k > 1.

We also obtain a boundary condition along l = 0, which follows from (1.7),

(1 +
2
ρ

)Q(0, k) = Q(0, k + 1) +
1
ρ

Q(0, k − 1), k > 2. (3.7)

From (1.9) and (1.10) we obtain the corner conditions

1
ρ

Q(0, 0) = Q(0, 1), (3.8)

and
(1 +

2
ρ

)Q(0, 1) =
1
2

Q(1, 1) + Q(0, 2) +
1
ρ

Q(0, 0). (3.9)

These equations are the same as those for Flatto’s longer queue model, studied in [19]. Here we would
identify 1/ρ with the arrival rate and set the service rate equal to one. Then we use the results in [33] to
obtain (1.69)–(1.71). Note that the longer queue model is stable only if ρ > 2, but (1.69)–(1.71) satisfy
(3.4)–(3.9) for any value of ρ > 0. When ρ > 2, the probability mass concentrates near (x, y) = (1, 1), so
that we apply the normalization condition (1.11) to the solution Q(l, k) that is valid in this range. To leading
order this gives

Q(0, 0) +

∞∑

l=1

Q(l, l) + 2
∞∑

l=0

∞∑

k=l+1

Q(l, k) = 1, ρ > 2 (3.10)

After some calculations, using (1.69)–(1.71) in (3.10), we obtain

C∗ = ρ − 2, ρ > 2 (3.11)

We relate the constants C and C∗, by asymptotically matching the expansions in (1.21) and (1.70). From

(1.69) we have, as k, l→ ∞ with 1 < k/l < 1 +
4
ρ

+
16
ρ2 ,

Q(l, k) ∼ C∗
ρ + 2
ρ + 4

4
ρ2

[
2(ρ + 4)
ρ2

]l ( 2
ρ + 4

)k

. (3.12)

For this range of k/l the asymptotics of (1.69) are determined by the pole of f0(w) in (1.68) at w = 1
2 (ρ+ 4).

Hence, (3.12) should agree with (1.21) as x → 1, y → 1. In fact, using (1.26) and setting m = K − l,
n = K − k, (1.21) becomes

p(m, n) ∼ C
[

ρ2

2(ρ + 4)

]K−l(
ρ + 4

2

)K−k

. (3.13)

By comparing (3.12) and (3.13), we see that the asymptotic matching is possible, provided that C and
C∗ are related by

C
(
ρ

2

)2K
= C∗

4(ρ + 2)
ρ2(ρ + 4)

, (3.14)

which leads to (1.72). From (3.11) and (3.14), thus obtain C (cf. (1.25)) for ρ > 2. For ρ < 2 and ρ ∼ 2 we
determined C in section 3, so that C∗ can be obtained from (3.14).
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Next we asymptotically match (1.28) and (1.69), i.e., we will match the expansions in region R and
in the corner layer C1. This will determine k̃ and L̃0(u), and thus complete the determination of the ray
expansion in region R.

Note that the slope of the line y = Y(x) that separates the regions D and R is 1 +
4
ρ

+
16
ρ2 , so that we

must consider the limit k, l→ ∞ with 1 +
4
ρ

+
16
ρ2 <

k
l
< ∞. From (1.69) we find that

Q(l, k) ∼ C∗√
2π

wl−k
s [b(ws)]−lM(k, l), (3.15)

where

ws = ws

(
k
l

)
=

(ρ + 2)k +
√

(ρ2 + 4)k2 + 4ρl2

2(k + l)
, (3.16)

b(ws) =
l

2(k + l)2

[
(ρ2 + 4)k − 4ρl + (ρ + 2)

√
(ρ2 + 4)k2 + 4ρl2

]
, (3.17)

M(k, l) =
1

[
(ρ2 + 4)k2 + 4ρl2

]1/4

(ws − 1)
(
ws − 1 − ρ

2

)

√
wsb(ws)

(
ws − 2 − ρ

2

) . (3.18)

For this range the asymptotics of (1.69) are determined by a saddle point at w = ws(k/l), which is obtained
by solving

d
dw

[−l log[b(w)] + (l − k) log w
]

= −l
b′(w)
b(w)

+
l − k

w
= 0.

We then need to show that

k̃ L̃(x, y) exp
[
Ψ(x, y)
ε

]∣∣∣∣∣∣
(x,y)→(1,1)

∼ Q(l, k)|l,k→∞ , (3.19)

for
k
l

=
1 − y
1 − x

> 1 +
4
ρ

+
16
ρ2 , which means that we are within region R.

To evaluate the left side of (3.19) we recall that as (x, y) → (1, 1) we have τ → 0 and by (1.30) and
(1.33) exp[KΨ(x, y)] becomes

exp[KΨ(x, y)] = exp
[
K

(
(x − 1) log(ρ + 2 − ρ

u
− u) + (y − 1) log(u)

)]
(3.20)

= exp
[
(m − K) log(ρ + 2 − ρ

u
− u) + (n − K) log u

]

=

(
1
u

)k−l[
(ρ + 2)u − ρ − u2

]−l
.

Using (1.37) to express u in terms of x and y and then comparing (3.20) to (1.39) (or (1.30)) we find that

KΨ(x, y) = (l − k) log(ws) − l log[b(ws)],

where we also used (3.16) and (3.17). We also note that (ρ + 2)u − ρ − u2 = b(ws) and u = ws(k/l). Hence
the exponentially varying parts of (3.19) agree precisely.

To complete the matching verification we must show that

k̃ L̃(x, y)
∣∣∣∣
(x,y)→(1,1)

∼ C∗√
2π
M(k, l). (3.21)
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From (1.33) we obtain

τ =
1 − x

ρ + 2 − ρ
u
− u

=
εl

ρ + 2 − ρ
u
− u

, (3.22)

and
k
l

=
1 − y
1 − x

=
ρ − u2

ρ + u2 − (ρ + 2)u
. (3.23)

Using (1.31), (2.39), (3.18), (3.22) and (3.23), after some computations we obtain

k̃(ε)L̃0(u)=
C∗√
2π

√
εl√

ρ + 2 − ρ
u
− u

1
[
(ρ2 + 4)k2 + 4ρl2

]1/4 (3.24)

× (ws − 1)√
wsb(ws)

ws − 1 − ρ
2

ws − 2 − ρ
2

.

We have thus determined L̃0(u) and k̃ as

L̃0(u)=

√
u√

(ρ + 2)u − ρ − u2

[
(ρ2 + 4)v2 + 4ρ

]−1/4
(3.25)

× (u − 1)√
u[(ρ + 2)u − ρ − u2]

u − 1 − ρ
2

u − 2 − ρ
2

,

where

v =
ρ − u2

ρ + u2 − (ρ + 2)u
=

k
l
, (3.26)

and

k̃(ε) =
C∗
√
ε√

2π
. (3.27)

After some simplification (3.25) becomes the same as (1.32). Finally, k̃, C and C∗ are related in (1.29) and
(1.72).

We comment that in imposing the matching condition in (3.19), we expanded Q(l, k) for l, k → ∞ by
the saddle point method, but expanding the left side as (x, y) → (1, 1) amounted to doing nothing. This is

because Ψ and L̃ have the forms Ψ = (1 − x)Ψ∗

(
1 − y
1 − x

)
and L̃ = (1 − x)−1/2L∗

(
1 − y
1 − x

)
. This shows that

the corner approximation p(m, n) ∼ Q(l, k) is actually uniformly valid in the entire triangle T , with the
exception of y ≈ 0 which we discuss later. But, the ray approximations in the regionsD and R lead to much
simpler results.

4. TRANSITION LAYER EXPANSION

The expansions in region D (cf. (1.21)) and region R (cf. (1.28)) do not agree along the common ray
y = Y(x) (cf. (1.19)). We can show that

Φ(x,Y(x)) − 2 log(
ρ

2
) = Ψ(x,Y(x)),

so that the exponential orders of magnitude of CeKΦ do agree with those of C∗eKΨ along the common ray.
But, the remaining factors in (1.21) and (1.28) do not agree, and in fact L̃(x, y) becomes singular along
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y = Y(x) (then u → 1
2

(ρ + 2) = umin in (1.32)). Thus, there is a transition layer between D and R. We
consider the vicinity of the ray that separatesD and R, a region we called L1.

We introduce the scaling

η =
y − Y(x)√

ε
=
√

K(y − Y(x)) = O(1) (4.1)

and set
p(m, n) = AmBnP(x, η), (4.2)

where A, B are as in (1.51).
We then use (4.1) and (4.2) in (1.2) to obtain

ρB−1(−ε∂y +
ε2

2
∂y

2 + · · · )P + A(ε∂x +
ε2

2
∂x

2 + · · · )P + B(ε∂y +
ε2

2
∂y

2 + · · · )P = 0. (4.3)

Here we used ρ + 2 = ρ/B + B + A and expanded P(x + ε, y) as P + εPx +
1
2
ε2Pxx + O(ε3), etc. We change

variables to (x, η) noting that

∂x → ∂x − 1√
ε

Y ′(x)∂η, ∂y → 1√
ε
∂η. (4.4)

After rewriting (4.3) using (4.4), at the O(
√
ε) order we obtain

−ρB−1 − A · Y ′(x) + B = 0, (4.5)

but this holds automatically in view of (1.19) and (1.51). At the next order (O(ε)) we obtain the parabolic
PDE

APx +
1
2

[
A(Y ′(x))2

+ ρB−1 + B
]

Pηη = 0. (4.6)

Using the values of A, B and Y ′(x) we rewrite (4.6) as

Px + aPηη = 0, (4.7)

where

a =
(ρ + 4)(ρ3 + 6ρ2 + 8ρ + 32)

ρ4 .

When η → ∞, (4.2) should match to (1.21), which implies that P → C as η → ∞. When η → −∞, (4.2)
should match to (1.28). Based on these observations we seek a solution of (4.7) using a similarity variable
(= η/

√
1 − x) and obtain

P(x, η) =
C

2
√

aπ

∫ η/
√

1−x

−∞
exp

(
− u2

4a

)
du, (4.8)

where C is as in (1.23)–(1.25). From (4.8) we clearly satisfy the matching condition as η → −∞. As
η→ −∞, from (4.8) we have

P(x, η) ∼ C(ρ + 4)1/2(ρ3 + 6ρ2 + 8ρ + 32)1/2

√
πρ2

√
1 − x
−η (4.9)

× exp
(
− 1

4a
η2

1 − x

)
.

We proceed to expand the ray expansion in region R, as y→ Y(x), and thus verify the matching between
regions R and L1. With (1.33) and m = Kx, n = Ky, we write the product form AmBn as

AmBn = eKΦ(x,y), (4.10)
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where Φ(x, y) is in (1.22) (with (1.33)). We expand Φ and Ψ about y = Y(x), using

Φ(x, y) = Φ(x,Y(x)) + Φy(x,Y(x))
√
εη +

1
2

Φyy(x,Y(x))εη2 + O(ε3/2) (4.11)

and

Ψ(x, y) = Ψ(x,Y(x)) + Ψy(x,Y(x))
√
εη +

1
2

Ψyy(x,Y(x))εη2 + O(ε3/2), (4.12)

where y = Y(x) +
√
εη.

From (1.22) and (1.33) we find that

Φ(x,Y(x)) − Ψ(x,Y(x)) = log(
ρ2

4
), (4.13)

Φy(x,Y(x)) = Ψy(x,Y(x)) = log(
ρ + 4

2
), (4.14)

Φyy(x,Y(x)) = 0, (4.15)

and

Ψyy(x,Y(x)) =
ρ4

2(ρ + 4)(ρ3 + 6ρ2 + 8ρ + 32)(x − 1)
=

1
2a(x − 1)

. (4.16)

From (4.16), we see that
1
2

Ψyy(x,Y(x))η2 is the same as − 1
4a

η2

1 − x
. Thus the exponential parts of (4.2) and

(1.28) match.
When (x, y)→ (x,Y(x)), u→ umin = (ρ + 4)/2, and thus (1.31) becomes

L̃(x, y)=
L̃0(u)√

τ
(4.17)

∼
√

2
√
ρ + 4(ρ + 2)√

ρ3 + 6ρ2 + 8ρ + 32(ρ + 4)

1√
1 − x

1
u − umin

.

Using (1.37) we find that

u − umin ∼ uy(x,Y(x))(y − Y(x)) = uy(x,Y(x))
√
εη, (4.18)

where

uy(x,Y(x)) = − ρ4

4(ρ3 + 6ρ2 + 8ρ + 32)
1

1 − x
. (4.19)

With (1.29), (4.17), (4.18), (4.19), (4.13) and (4.12) we see that k̃L̃(x, y), as y → Y(x), agrees with the
pre-exponential factors in (4.18). We have thus verified that the local expansion in region L1, as given by
(1.50) (with (1.52)) or (4.2) (with (4.8)), asymptotically matches to the ray expansions in regionsD and R.

We can also verify that (4.2) (with (4.8)) matches to the corner layer C1. Note that as we approach the
corner (x, y) = (1, 1),

η√
1 − x

=
y − Y(x)√
ε
√

1 − x
=

y − 1 − Y ′(1)(x − 1)√
ε
√

1 − x
=

1√
l

[
(1 +

4
ρ

+
16
ρ2 )l − k

]
.

But since Y(x) is a linear function of x, the above is an exact identity. We can show that when (1.69) is

expanded for k, l→ ∞ with k/l ∼ 1 +
4
ρ

+
16
ρ2 , we obtain precisely (4.2) (with (4.8)). In this limit the saddle

point ws is close to the pole at w = (ρ + 2)/2.
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5. BOUNDARY LAYER EXPANSION NEAR x = 1

We construct an approximation in the boundary layer region L2, which was defined in (1.42). In this region
1 − x = O(ε) (hence m = K − l = K − O(1)) and 0 < y < 1. On this scale we set

p(m, n) = P(x, y) = Ql(y), (5.1)

(1.2) becomes

(ρ + 2)Ql(y) = ρQl(y − ε) + Ql−1(y) + Ql(y + ε), l > 1, (5.2)

and (1.7) becomes

(ρ + 2)Q0(y) = ρQ0(y − ε) + Q0(y + ε), (5.3)

where p(K, n) = Q0(y).
We first analyze (5.3) and assume that Q0 has an expansion in the WKB form

Q0(y) = exp
[
KF(y)

] [
G(y) +

1
K

G(1)(y) + O(
1

K2 )
]
. (5.4)

Then we use (5.4) in (5.3), and after expanding for ε = K−1 → 0 we obtain the following ODEs for F and
G:

ρ + 2 = ρe−F′(y) + eF′(y), (5.5)

0 = ρe−F′
(

1
2

F′′G −G′
)

+ eF′
(

1
2

F′′G + G′
)
. (5.6)

Solving (5.5) yields

F′(y) = log


ρ + 2 +

√
ρ2 + 4

2

 . (5.7)

The other root of (5.5) has F′ < 0 and must be discarded in view of later asymptotic matching considera-
tions. Integrating (5.7) we obtain

F(y) = log


ρ + 2 +

√
ρ2 + 4

2

 (y − 1). (5.8)

Then F′′ = 0 and using (5.7) in (5.6) we find that G′(y) = 0, so that G(y) ≡ G0 is a constant.
Now consider l > 1 in (5.2). Setting

Ql(y) ∼ exp
[
KF(y)

]
ε−lGl(y) (5.9)

in (5.2) and expanding the resulting equation for small ε we obtain to leading order
(
eF′ − ρe−F′

)
G′l(y) + Gl−1(y) = 0. (5.10)

The general solution of (5.10) is

Gl(y) =
1
l!

[D(y)]lG0, (5.11)

where
D′(y) = −

[
eF′ − ρe−F′

]−1
= − 1√

ρ2 + 4
. (5.12)
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Asymptotic matching to the corner layer L1 will require that D(1) = 0 so that the solution of (5.12) is

D(y) =
1√
ρ2 + 4

(1 − y). (5.13)

From (5.4), (5.8) and (5.13) we have

p(m, n) ∼ exp
[

F(y)
ε

]
ε−l

l!


1 − y√
ρ2 + 4


l

G0, (5.14)

where G0 is a constant, to be fixed by asymptotic matching.
We match (5.14) with the solution in corner layer C1. From (1.69), we obtain in the limit l = O(1), k →

∞,

Q(l, k) ∼ C∗w0
−k kl

l!
(ρ2 + 4)

−l/2M1(ρ), (5.15)

where

w0 =
ρ + 2 +

√
ρ2 + 4

2
,

M1(ρ) =

√
ρ2 + 4 + ρ + 2

2ρ2 .

Note that F′(y) = log w0 by (5.7), thus exp[F(y)/ε] = w−k
0 . In view of (5.13), we have

ε−l[D(y)]l =


k√
ρ2 + 4


l

. (5.16)

With (5.16) and (5.15) we see that (5.14) with (1.69) match if

G0 = C∗

√
ρ2 + 4 + ρ + 2

2ρ2 . (5.17)

With (5.17), (5.14), (1.72), and (5.8) we have established (1.54).
Finally, we verify the matching between (5.14) (with (5.17)) and region R result in (1.28). We need to

expand the ray expansion in R as x ↑ 1, for a fixed y ∈ (0, 1). In terms of the ray variables this corresponds

to letting u→ umax =
1
2

(ρ + 2 +
√
ρ2 + 4) for a fixed τ.

By Stirling’s formula, for l→ ∞,

ε−l

l!
[D(y)]l ∼ 1√

2πl
(

e
lε

)
l
[D(y)]l. (5.18)

Using 1 − x = εl we rewrite (5.18) as

ε−l

l!
[D(y)]l ∼

√
ε

2π
1√

1 − x
exp

{
1
ε

[−(1 − x) log(1 − x) + 1 − x + (1 − x) log(D(y))
]}
. (5.19)

Using (1.33) we have

τ=
y − 1
ρ

u
− u

, (5.20)

and since ρ/umax − umax = −
√
ρ2 + 4, we have, as u→ umax
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τ→ τ̃(y) = − 1√
ρ2 + 4

(y − 1) = D(y). (5.21)

From (1.30) and (1.33) we obtain

Ψx(x, y) = log
(
ρ + 2 − ρ

u
− u

)
. (5.22)

Since ρ + 2 = ρ/umax + umax, Ψx has a logarithmic singularity at u = umax. Using (1.33) we can also write τ
in terms of x and u as

τ =
x − 1

ρ

u
+ u − ρ − 2

. (5.23)

Using (5.23) and (5.21) in (5.22) we obtain

Ψx = log
[
1 − x
τ

]
∼ log(1 − x) − log[D(y)], u→ umax. (5.24)

By integrating (5.24) with respect to x and noting that Ψ(1, y) = F(y), we obtain

Ψ(x, y) =F(y) − (1 − x) log(1 − x) + (1 − x) (5.25)
+ (1 − x) log(D(y)) + o(1 − x), x→ 1.

Thus, as x→ 1, exp[Kψ(x, y)] agrees with the exponential factor in (5.19).
To verify the matching of the algebraic factors, we must show that

k̃(ε)L̃(x, y) ∼C∗

√
ρ2 + 4 + ρ + 2

2ρ2

√
ε√

2π

1√
1 − x

, x→ 1. (5.26)

We use (5.23) to eliminate τ in (1.31), with which the left side of (5.26) (with (1.32)) becomes

k̃(ε)
(u − 1)(2u − 2 − ρ)

√
u
√

(ρ + 2)u2 − 4ρu + ρ2 + 2ρ(2u − 4 − ρ)
√

1 − x
. (5.27)

The factors that depend on u in (5.27) are not singular as u → umax (x → 1), and simply replacing u by
umax we can easily show that (5.27) becomes the same as the right side of (5.26) (note also that C∗ and k̃ are
related by (1.72)). This verifies the matching between boundary layer L1 and the ray expansion in region
R.

6. BOUNDARY LAYER EXPANSIONS NEAR y = 0

In this section we consider the scale n = O(1) (y = O(ε)) so there are only a few customers in the second
queue. The structure of p(m, n) is different for the following 5 ranges of m: m = O(1) (corner layer C2),
0 < m/K < X0(ρ) = (16 + 4ρ)/(16 + 4ρ + ρ2) (boundary layer L3), m/K = X0(ρ) + O(K−1/2) (corner layer
C4), X0(ρ) < m/K < 1 (boundary layer L4), and m = K − O(1) (corner layer C3). We proceed to analyze
(1.2)–(1.11) for these ranges of (m, n).

If m, n are both O(1) and K → ∞ we solve (1.2)–(1.6) and omit the boundary conditions (1.7)–(1.10).
Using the compensation approach of Adan [9] leads to the approximation in (1.63) for m > n, and (1.4)
can be used to compute p(n, n). The value of the constant C in (1.63) follows from (1.11) if ρ < 2, and by
asymptotic matching to the regionD ray expansion if ρ > 2 or ρ − 2 = O(ε).

Now consider boundary layer L3, where n = O(1) and 0 < x < X0(ρ). On this scale only (1.2) and (1.5)
apply. We use the variables x and n and define P by

p(m, n) = CAmBnPn(x; ε). (6.1)
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Then (1.2) becomes

(ρ + 2)Pn(x; ε) =
ρ

B
Pn−1(x; ε) + APn(x + ε; ε) (6.2)

+ BPn+1(x; ε)

while (1.5) yields (ρ+ 1)P0(x; ε) = AP1(x + ε; ε) + BP1(x; ε), which is in view of (6.2) may be replaced by
the “artificial” boundary condition

P0(x; ε) =
ρ

B
P−1(x; ε) =

2ρ
ρ + 4

P−1(x; ε). (6.3)

If (6.1) is to asymptotically match to the regionD expansion in (1.21) we must havePn(x; ε)→ 1 as n→ ∞.
Assuming that Pn(x; ε) ∼ Pn(x) as ε→ 0, (6.2) becomes (ρ+2)Pn(x) = (ρ/B)Pn−1(x)+ APn(x)+ BPn+1(x),
which is a simple difference equation that admits solutions of the form βn, where β = 1 or β = 4ρ/(ρ + 4)2(<
1). By the matching condition we must havePn(x) = 1+cβn, and the “reflection coefficient” c is determined
by the boundary condition in (6.3). We have thus obtained the approximation in (1.57). Note that c = 0 if
ρ = 4, in which case the regionD approximation remains valid for n = O(1).

Next we consider the boundary layer L4, where X0(ρ) < x < 1. We again use the variables x and n, but
now set

p(m, n) = k̃(ε)eKΨ(x,0)Rn(x; ε), (6.4)

with Rn(x; ε) → Rn(x) as ε = K−1 → 0. We will require that as n → ∞ the expansion in (6.4) matches
to the approximation in (1.28) as y → 0, which necessitates the exponential factor in (6.4). This matching
condition implies that the leading term Rn(x) satisfies

Rn(x) ∼ L̃(x, 0)enΨy(x,0), n→ ∞, (6.5)

which we obtained by expanding (1.28) as y→ 0.
Using (6.4) in (1.2) and expanding for ε → 0, using KΨ(x + ε, 0) = KΨ(x, 0) + Ψx(x, 0) + O(ε), leads

to the limiting equation

(ρ + 2)Rn(x) = ρRn−1(x) + eΨx(x,0)Rn(x) + Rn+1(x), (6.6)

while (1.5) is equivalent to the boundary condition

R0(x) = ρR−1(x). (6.7)

Equation (6.6) is again a simple difference equation in n, but now the coefficients depend upon x.
Seeking geometric solutions of the form Rn(x) = [β∗(x)]n we see that

β∗2 + ρ = [ρ + 2 − eΨx(x,0)]β∗. (6.8)

Since Ψ(x, y) satisfies (2.5), we set y = 0 in (2.5) with Φ replaced by Ψ, and compare the result to (6.8), to
conclude that β∗(x) = eΨy(x,0) is one solution of (6.8). The second solution of the quadratic equation is then
β∗ = ρe−Ψy(x,0), and we recall that Ψy(x, 0) is given explicitly in terms of x in (1.59). In view of the matching
condition of (6.5) we thus write

Rn(x) = L̃(x, 0)
[
enΨy(x,0) + c∗(x)ρne−nΨy(x,0)

]
. (6.9)

Using (6.7) we determine c∗(x) as c∗ = [ρe−Ψy(x,0) − 1]/[1 − eΨy(x,0)], and we thus obtain the approximation
in (1.58). Note that from (1.59) we can easily show that 2Ψy(x, 0) > log(ρ), so that as n → ∞ the second
exponential in (6.9) becomes negligible.

We next analyze the corner layer C4, where we use the variables n and ξ where ξ = [x − X0(ρ)]
√

K =

[x − X0(ρ)]/
√
ε = O(1). We set

p(m, n) = CAmBnFn(ξ; ε) (6.10)
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and Fn(ξ; ε) ∼ Fn(ξ) will be the leading term as ε → 0. From (1.2) we again find that Fn will satisfy the
difference equation (ρ+ 2)Fn = (ρ/B)Fn−1 + AFn + BFn+1, and (1.5) leads to F0 = (ρ/B)F−1. We thus write

Fn(ξ) =

{
1 +

2(4 − ρ)
8 + 6ρ + ρ2

[
4ρ

(ρ + 4)2

]n}
F∗(ξ). (6.11)

To determine the dependence on ξ we use asymptotic matching. As n → ∞ in region C4 we approach the
transition line L1, where (1.50)–(1.53) apply. From (6.11) we have Fn(ξ) → F∗(ξ) as n → ∞, while the
similarity variable η/

√
1 − x in (1.52), as (x, y)→ (X0(ρ), 0),becomes

η√
1 − x

=
y − Y(x)√
ε
√

1 − x
∼ −Y ′(X0)(x − X0)√

ε
√

1 − X0
(6.12)

= − ξ Y ′(X0)√
1 − X0

= −ξ (16 + 4ρ + ρ2)3/2

ρ3 .

By matching we thus have

F∗(ξ) =
1

2
√

aπ

∫ −ξ̃

−∞
exp

(
− u2

4a

)
du (6.13)

where ξ̃ = ξ(16 + 4ρ + ρ2)3/2ρ−3. With (6.13) and (6.11), the leading term for (6.10) becomes the same as
(1.63), after setting u = −√2av in the integral in (6.13). Note that ξ′

√
2a = ξ̃, where a is as in (1.53).

We can also verify that the approximation in (1.60) for x ≈ X0(ρ) asymptotically matches to those for
x < X0(ρ) and x > X0(ρ) (keeping n = O(1)). In fact, for ξ → −∞ (1.60) reduces to (1.57), as then∫ ∞
ξ′ e−v2/2dv → √

2π. The matching between (1.60) and (1.58) is more difficult to verify. We need to
show that as ξ (hence ξ′) → ∞ (1.60) agrees with (1.58) as x ↓ X0(ρ). As x → X0(ρ) (1.59) shows that

Ψy(x, 0) → Ψy(X0(ρ), 0) = log
(
ρ + 4

2

)
so that the factor inside the brackets in (1.58) becomes Bn times the

factor inside the braces in (6.11). Then letting ξ → ∞ in (1.60) the matching condition is equivalent to

k̃eKΨ(x,0)L̃(x, 0)
∣∣∣∣
x↓X0
∼ CAm 1√

2πξ′
e−(ξ′)2/2 (6.14)

From (1.39) we find that

Ψ(X0(ρ), 0) = X0 log A − log
(
ρ2

4

)
,

Ψx(X0(ρ), 0) = log A = log
[

ρ2

2(ρ + 4)

]
,

and

Ψxx(X0(ρ), 0) = − (16 + 4ρ + ρ2)3

2ρ2(ρ + 4)(ρ3 + 6ρ2 + 8ρ + 32)
= −

(
ξ′

ξ

)2

.

Then expanding Ψ(x, 0) in Taylor series about x = X0 and noting the relation between k̃ and C (which holds
for all ρ) in (1.72), we cancel the exponentially varying factors in (6.14) to obtain

√
ε

2π
ρ2(ρ + 4)
4(ρ + 4)

L̃(x, 0)

∣∣∣∣∣∣
x↓X0

∼ 1√
2πξ′

=

√
ε

2π
1

x − X0

ξ

ξ′
. (6.15)

As y→ 0 we have (u, τ)→ (u∗(x), τ∗(x)) in (1.37) and (1.38), and furthermore setting x = X0 we find that

u∗(X0) = B =
ρ + 4

2
, τ∗(X0) =

2(ρ + 4)
ρ2 + 4ρ + 16

(6.16)
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and
u′∗(X0)
u∗(X0)

=
(16 + 4ρ + ρ2)2

2(ρ + 4)(ρ3 + 6ρ2 + 8ρ + 32)
. (6.17)

Setting y = 0 and letting x→ X0 in (1.31) and (1.32) we find that

L̃(x, 0) ∼ 1√
τ∗(X0)

1
2u′∗(X0)

1
x − X0

K∗, (6.18)

K∗=
(u∗ − 1)(2u∗ − 2 − ρ)√

(ρ + 2)u∗ − u∗2 − ρ
√

(ρ + 2)u∗2 − 4ρu∗ + ρ2 + 2ρ
,

where u∗ is also evaluated at x = X0. To obtain (6.18) we also used 2u(x, 0) − ρ − 4 = 2u∗(x) − ρ − 4 ∼
2u′∗(X0)(x−X0). Expression (6.18) shows that L̃(x, 0) has the correct singularity as x→ X0, and using (1.61)
and (6.16)–(6.18) we can easily verify that the multiplicative constants in the left and right sides of (6.15)
also agree. This verifies the matching between (1.58) and (1.60).

Finally we consider the corner layer C3, where m = K − O(1) and n = O(1). We set l = K − m and

p(m, n)=G(l, n; ε). (6.19)

In this corner range only the balance equations (1.2), (1.5), (1.7) and (1.8) apply, and these yield

(ρ + 2)G(l, n) = ρG(l, n − 1) + G(l − 1, n) (6.20)
+ G(l, n + 1); l, n > 1

(ρ + 1)G(l, 0) = G(l − 1, 0) + G(l, n), l > 1 (6.21)

(ρ + 2)G(0, n) = ρG(0, n − 1) + G(0, n + 1), n > 1 (6.22)

and
(ρ + 1)G(0, 0) = G(0, 1). (6.23)

The local approximation G must satisfy several asymptotic matching conditions. As n → ∞ with l = O(1)
it should agree with (1.54) as y → 0; as l → ∞ with n = O(1) it should agree with (1.58) as x ↑ 1; and for
n, l → ∞ with n/l ∈ (0,∞) it should agree with the region D ray expansion, as the latter is expanded for
(x, y) → (1, 0). In order to have a chance of matching to (1.54), G must contain the factor ε−l = Kl and the

factor exp[KF(0)] =


2

ρ + 2 +
√
ρ2 + 4


K

.

Let us thus set
G(l, n) ∼ KleKF(0)

√
2πK k̃ G∗(l, n). (6.24)

The matching between (1.54) and (6.19) will hold if

G∗(l, n) ∼
√
ρ2 + 4 + ρ + 2

2ρ2

1
l!


1√
ρ2 + 4


l
ρ + 2 +

√
ρ2 + 4

2


n

, n→ ∞. (6.25)

Using (6.24) in (6.20) leads to

(ρ + 2)G∗(l, n) = ρG∗(l, n − 1) + G∗(l, n + 1); l, n > 1 (6.26)

and (6.21) yields

(ρ + 1)G∗(l, 0) = G∗(l, 1), l > 1. (6.27)
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Equations (6.22) and (6.23) then show that (6.26) and (6.27) hold also at l = 0. The general solution to
(6.26) and (6.27) is

G∗(l, n) = G̃(l)



ρ + 2 +

√
ρ2 + 4

2


n

+ c̃


2ρ

ρ + 2 +
√
ρ2 + 4


n (6.28)

where

c̃ = 1 +
ρ2

2
− ρ

2

√
ρ2 + 4.

Then using the matching condition (6.25) we determine G̃(l) as

G̃(l)=
ρ + 2 +

√
ρ2 + 4

2ρ2

1
l!


1√
ρ2 + 4


l

. (6.29)

We have thus established (1.62).
We verify that as l→ ∞, (1.62) matches to (1.58) as x ↑ 1. From (1.59) we see that

eΨy(1,0) =
ρ + 2 +

√
ρ2 + 4

2
,

ρe−Ψy(1,0) − 1
1 − eΨy(1,0) = c̃

and thus the bracketed factor in (1.58) approaches, as x→ 1, that in (6.28). It thus remains to show that

KleKF(0)
√

2πKG̃(l)
∣∣∣∣
l→∞
∼ L̃(x, 0)eKΨ(x,0)

∣∣∣
x→1 . (6.30)

From (1.39) and (1.61) we have Ψ(1, 0) = F(0). For x→ 1 we also obtain from (1.39)

Ψ(x, 0) = Ψ(1, 0) + (x − 1) log(1 − x) + 1 − x +
1
2

(x − 1) log(ρ2 + 4) + o(1 − x).

Since 1 − x = εl it follows that

eKΨ(x,0) ∼ eKF(0)(εl)−l(ρ2 + 4)
−l/2

el, x ↑ 1. (6.31)

Using (6.31) in (6.30) and expanding l! in (6.29) by Stirling’s formula we have
√

2πK/l! ∼ l−lel √K/l,
√

K/l =

1/
√

1 − x, so the matching in (6.30) is possible if

L̃(x, 0) ∼ 1√
1 − x

√
ρ2 + 4 + ρ + 2

2ρ2 , x→ 1. (6.32)

Setting y = 0 and letting x→ 1 in (1.40) leads to

lim
x→1

[
√

1 − xL̃(x, 0)] =

√
τ∗(1)[u∗(1) − 1][2u∗(1) − 2 − ρ]

u∗(1)[2u∗(1) − 4 − ρ][ρ2 + 4]1/4 (6.33)

But, τ∗(1) = τ(1, 0) = (ρ2 + 4)−1/2 and u∗(1) =
1
2

[ρ + 2 +
√
ρ2 + 4] by (1.37) and (1.38), and then (6.33)

agrees precisely with (6.32). This completes the matching verification between the regions L4 and C3.
We comment that for n = O(1) and for all 5 ranges of x, the local expansions amount simply to adding

a second exponential in n, to satisfy the boundary condotion in (1.5). This shows that the boundary n = 0
affects the solution only locally, on the scale n = O(1), for K → ∞. This can also be said about the boundary
condition along m = K in (1.7). However, the BC along m = n in (1.3) and (1.4), and the corner condition(s)
at (m, n) = (K,K), do affect the solution at points far from these regions.
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7. NUMERICAL STUDIES

We test the accuracy of some of our asymptotic results. First we consider the diagonal probabilities, with
m = n. Our asymptotic analysis led to different approximations for the scales n = O(1) (corresponding to
corner region C2), 0 < y = n/K < 1 (where (1.27), with (1.23)–(1.25), applies), and n = K − l = K − O(1)
(corresponding to C1, where (1.70) or (1.71) applies). In Table 1 we take ρ = 2 and K = 15, and compare
the exact p(n, n) to the three asymptotic results. For n = O(1) we used (1.63) in (1.4) to get

p(n, n) ∼ 2C
ρ + 2

∞∑

j=0

c j(a jb j)n
(
ρ

b j
+ a j

)
, n > 1 (7.1)

and then ρp(0, 0) = 2p(1, 0) yields

p(0, 0) ∼ 2C
ρ

∞∑

j=0

c ja j. (7.2)

Here c0 = 1.
For ρ = 2, (1.24) with α = 0 yields C ∼ 2/(3K). On the scale n = O(1) we used (7.1) and (7.2),

while for 0 < y < 1 we used (1.27), which is this case gives p(n, n) ∼ C/2 ∼ 1/(3K) = 1/45, and this
is independent of n. Table 1 shows that the n = O(1) result agrees with the exact to 4 decimal places for
0 6 n 6 9, while the n = K −O(1) result agrees with the exact to 4 decimal places for 8 6 n 6 15. The table
also shows that the uniform approximation p(n, n) ≈ 1/45 is correct to 2 decimal places for 2 6 n 6 12,
but breaks down near n = 0 and n = K = 15. Near these boundaries it becomes necessary to use the corner
layers C2 and C1, as our asymptotic analysis predicts.

Table 1
K = 15, ρ = 2.0

n Num Result n = O(1) 0 < y < 1 n = K − O(1)
0 .01254 .01254 .02222 .02222
1 .01968 .01968 .02222 .02222
2 .02164 .02164 .02222 .02222
3 .02209 .02209 .02222 .02222
4 .02219 .02219 .02222 .02222
5 .02221 .02221 .02222 .02222
6 .02222 .02222 .02222 .02222
7 .02222 .02222 .02222 .02222
8 .02222 .02222 .02222 .02222
9 .02222 .02222 .02222 .02222

10 .02223 .02222 .02222 .02223
11 .02225 .02222 .02222 .02225
12 .02232 .02222 .02222 .02232
13 .02255 .02222 .02222 .02255
14 .02357 .02222 .02222 .02357
15 .03333 .02222 .02222 .03333

In Table 2 we take ρ = 3 and K = 15. Now we approximate C by (1.25), and again use (7.1) or (7.2)
for n = O(1), (1.27) for 0 < y < 1, and (1.70) or (1.71) for n = K − O(1). Now Table 2 shows that
p(n, n) increases with n, which can be expected since ρ < 2. The data again shows the necessity of treating
separately the three scales of n, and the agreement with the exact numerical results is very good.
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We next test the accuracy of the region R ray expansion, i.e. (1.28), for x > y > 0 and y < Y(x). In
Table 3 we take ρ = 8 and K = 30. For ρ = 8 the transition curve that separates regions R andD is given by
y = Y(x) = 1

4 (7x − 3), for x ∈ ( 3
7 , 1). Table 3 has 24 6 m 6 26 and 12 6 n 6 15, which corresponds to (x, y)

lying in region R. Note that by either decreasing m or increasing n we move toward the transition curve L1,
where (1.28) ceases to be valid. The errors between exact and asymptotic results in Table 3 are typically
about 20%, with the worst error being about 36%, when (m, n) = (24, 15), and the least error being about
8%, when (m, n) = (26, 12). Note that (m, n) = (24, 15) is closest to the transition line L1, i.e., y = Y(x).

In Table 4 we retain ρ = 8 but increase K to 50. We want to examine a similar window in the triangle
T as in Table 3, so we scale the values of (m, n) in Table 3 by a factor of about 5/3, and consider in Table
4 the lattice points {(m, n) : 40 6 m 6 43, 20 6 n 6 25}. Now the worst error is about 28%, when
(m, n) = (40, 25), and the least error is about 5%, when (m, n) = (43, 20). Typical errors are 10 − 15%.
The improved accuracy shown in Table 4 (over Table 3) is consistent with (1.28) having an error factor of
1 + O(K−1), and this is indeed predicted by our asymptotic analysis.

Finally we test the accuracy of (1.26) (or (1.21)), the ray expansion in region D. We now take a small
value of ρ, ρ = 0.5, with which the transition curve L1 becomes y = Y(x) = 73x − 72, x ∈ ( 72

73 , 1). The
slope of Y(x) is nearly vertical and thus regionD fills nearly the entire triangle T . Now C is computed from
(1.23) and Table 5 has K = 30, 13 6 m 6 15 and 5 6 n 6 9. For each data point the exact and asymptotic
results agree to 4 decimal places. This is also consistent with the asymptotics, as when ρ < 2 (1.26) fails
to be exact due only to the effects of the finite capacities, but these are exponentially small for K large and
(x, y) ∈ D.

In Tables 2–5 we use the notation 1.00(−5) for 1.00 × 10−5. The numerical comparisons show the
necessity of treating the separate regions of the state space, including the boundary and corner regions. The
agreement between the asymptotic and numerical results is fairly good for region R and excellent for region
D, and this is easily explained in terms of the error factors in the expansions.

Table 2
K = 15, ρ = 3.0

n Num Result n = O(1) 0 < y < 1 n = K − O(1)
0 5.961 (−7) 5.960 (−7) 9.933 (−7) 9.933 (−7)
1 1.992 (−6) 1.992 (−6) 2.235 (−6) 2.235 (−6)
2 4.893 (−6) 4.892 (−6) 5.028 (−6) 5.028 (−6)
3 1.124 (−5) 1.123 (−5) 1.131 (−5) 1.131 (−5)
4 2.542 (−5) 2.541 (−5) 2.545 (−5) 2.546 (−5)
5 5.728 (−5) 5.725 (−5) 5.728 (−5) 5.730 (−5)
6 1.289 (−4) 1.288 (−4) 1.288 (−4) 1.289 (−4)
7 2.903 (−4) 2.899 (−4) 2.899 (−4) 2.903 (−4)
8 6.537 (−4) 6.524 (−4) 6.524 (−4) 6.537 (−4)
9 1.473 (−3) 1.468 (−3) 1.468 (−3) 1.473 (−3)

10 3.323 (−3) 3.303 (−3) 3.303 (−3) 3.323 (−3)
11 7.519 (−3) 7.432 (−3) 7.432 (−3) 7.519 (−3)
12 1.711 (−2) 1.672 (−2) 1.672 (−2) 1.716 (−2)
13 3.956 (−2) 3.762 (−2) 3.762 (−2) 3.956 (−2)
14 9.650 (−2) 8.465 (−2) 8.465 (−2) 9.650 (−2)
15 3.333 (−1) 1.904 (−1) 1.904 (−1) 3.333 (−1)
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Table 3
K = 30, ρ = 8.0

m
c

cc
n 24 25 26

3.155 (−18) 5.718 (−18) 9.185 (−18)12
3.715 (−18) 6.368 (−18) 9.906 (−18)
2.230 (−17) 4.179 (−17) 6.967 (−17)13
2.715 (−17) 4.737 (−17) 7.584 (−17)
1.559 (−16) 3.025 (−16) 5.239 (−16)14
1.989 (−16) 3.510 (−16) 5.772 (−16)
1.078 (−15) 2.166 (−15) 3.903 (−15)15
1.470 (−15) 2.595 (−15) 4.367 (−15)

Table 4
K = 50, ρ = 8.0

m
c

cc
n 40 41 42 43

1.543 (−29) 2.839 (−29) 4.875 (−29) 7.718 (−29)20
1.742 (−29) 3.111 (−29) 5.228 (−29) 8.154 (−29)
1.085 (−28) 2.037 (−28) 3.574 (−28) 5.790 (−29)21
1.244 (−28) 2.254 (−28) 3.859 (−28) 6.145 (−28)
7.580 (−28) 1.452 (−27) 2.605 (−27) 4.319 (−27)22
8.856 (−28) 1.627 (−27) 2.836 (−27) 4.610 (−27)
5.259 (−27) 1.029 (−26) 1.887 (−26) 3.204 (−26)23
6.289 (−27) 1.170 (−26) 2.075 (−26) 3.441 (−26)
3.624 (−26) 7.242 (−26) 1.358 (−25) 2.362 (−25)24
4.462 (−26) 8.391 (−26) 1.511 (−25) 2.557 (−25)
2.479 (−25) 5.060 (−25) 9.711 (−25) 1.731 (−24)25
3.167 (−25) 5.998 (−25) 1.095 (−24) 1.890 (−24)

Table 5
K = 30, ρ = 0.5

m
c

cc
n 13 14 15

1.971 (−18) 5.477 (−20) 1.521 (−21)5
1.971 (−18) 5.477 (−20) 1.521 (−21)
4.436 (−18) 1.232 (−19) 3.423 (−21)6
4.436 (−18) 1.232 (−19) 3.423 (−21)
9.983 (−18) 2.773 (−19) 7.702 (−21)7
9.983 (−18) 2.773 (−19) 7.702 (−21)
2.246 (−17) 6.239 (−19) 1.733 (−20)8
2.246 (−17) 6.239 (−19) 1.733 (−20)
5.053 (−17) 1.403 (−18) 3.899 (−20)9
5.053 (−17) 1.403 (−18) 3.899 (−20)
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