
162Copyright © Canadian Research & Development Center of Sciences and Cultures 163

ISSN 1913-0341[Print]
ISSN 1913-035X[Online]

www.cscanada.net
www.cscanada.org

The Analysis and Comparison of Inter-Process Communication Performance
between Computer Nodes

ZHANG Xiurong1,*

1Institute of Media, Inner Mongolia University for Nationalities,
Tongliao, 028043, China.
*Corresponding author.
Address: Institute of Media, Inner Mongolia University for Nationalities,
Tongliao, 028043, China.
Email: zhangxiurong6413@163.com

Received 10 June, 2011; accepted 6 August, 2011

Abstract
According to the physical location of communication
processes in web-based software system, there are usually
two types of communication processes, namely the
communication at different nodes and the communication
between different processes. The former is mainly
achieved by internet domain sockets, while the later is
achieved by pipes, shared memory and sockets provided
by most operating systems. We therefore studied
theses three kinds of technologies and evaluated their
communication performance.
Key words: Process; Communication; Machine
communication; Comparison

Z H A N G X i u r o n g (2 0 11) . T h e A n a l y s i s a n d C o m p a r i s o n
o f I n t e r - P r o c e s s C o m m u n i c a t i o n P e r f o r m a n c e B e t w e e n
Compute r Nodes . Management Sc ience and Eng inee r ing ,
5(3) , 162-164. Available from: URL: ht tp: / /www.cscanada.
net/index.php/mse/article/view/j.mse.1913035X20110503.052
DOI: 10.3968/j.mse.1913035X20110503.052

INTRODUCTION
According to the physical location of communication
processes in web-based software systems, there are
usually two types of communication processes, namely the
communication at different nodes and the communication
between different processes. The former is mainly
achieved by internet domain socket, while the later is
achieved by pipes, shared memory and sockets provided

by most operating systems. Many network applications
such as intrusion detection systems (IDS) and network
management system require very high level of real-time
performance. Under such circumstances, the quality of
communication performance will directly determine
the applicability and efficiency of a system. Among
these communications, the inter-process communication
within a node[1] usually accounts for a large proportion.
Therefore, to study its performance is very important.

The network programming usually involves the
interaction between various processes and coordinates
their activities through some active or passive inter-
process communications[2].

Linux systems provide a variety of inter-process
communication methods, mainly including signals,
anonymous and named pipes , message queues ,
semaphores, shared memory and memory mapping, and
UNIX domain sockets. In this paper, we focus on pipes,
shared memory, and UNIX domain sockets and introduce
the main method of each technology and the principle of
how the inter-process communication is achieved. We
then test the inter-process communication performance of
each of the aforementioned method.

1. PIPES

1.1 The Definition of Pipe
In order to accomplish a task, data sharing is bound to
happen during the cooperation of two or more processes.
It is not suitable to transfer a large amount of information
from one process to another, even if the signals are very
useful for handling abnormal events or errors. To solve
this problem, UNIX provides a technology called pipe.
Pipe is often used as a one-way communication channel
that connects one process with another[3]. The process
on one end uses write calls to send data through the pipe
while the process on the other end uses read calls to
receive data.

Management Science and Engineering
Vol. 5, No. 3, 2011, pp. 162-164
DOI:10.3968/j.mse.1913035X20110503.052

162 163 Copyright © Canadian Research & Development Center of Sciences and Cultures

1.2 The Type of Pipes
Pipe provides a simple and synchronous transmission
of information between processes. It can be divided
into two categories: anonymous pipe and named pipe.
An anonymous pipe can only be used between related
processes, i. e., between parent and child processes or
between two sub-processes. In addition, it should exist
together with the creating process. A named pipe has
directory entries to access files. Therefore, it can be used
between un-related processes.

1.3 The Implementation of Pipeline Technology
Pipes use first-in-first-out (FIFO) method to save a certain
amount of data. When the pipe is opened, a process writes
in one end and another process reads from the other
end of pipe. The main process uses fork () to create a
child process so that both parent and child processes can
simultaneously read and write through the same pipe.
Because the pipeline must be one-way, the direction
of data flow must firstly be determined and then the
unnecessary commands should be turned off. Thereafter,
you can use the read () and write () to read and write. The
steps of inter-process communication using anonymous
pipes are as follows:

(1) Create necessary pipelines.
(2) Generate one or more child processes.
(3) Close / copy the file descriptors in order to link to

the relevant end of pipe.
(4) Close unwanted ends of the pipes.
(5) Perform communication activities.
(6) Close all remaining open file descriptors.
(7) Wait for child process to finish.
When the read () or write () function is performed, it

can block the pipeline operation, which ensures the write
process prior to the read process. As a result, the parent
and child processes become synchronized.

2. SHARED MEMORY

2.1 The Principles of Shared Memory
Shared memory is a mapping of virtual memory that is
mapped and shared between various processes. With this
technology, different processes can simultaneously access
the same data stored in shared memory and read / write
through a certain proportion of shared address space,
thereby achieving a direct communication with each other.
To some extent this is the fastest but not the easiest way
of process communication. These data can be accessed
randomly. To avoid the inconsistency of data, semaphores
are often introduced to coordinate the accesses to shared
memory segments.

Because multiple processes share a physical memory
space without unnecessary data replication, it can improve
the inter-process communication performance. However,
the synchronization and ejection of replication must be

addressed[4].

2.2 The Implementation of Shared Memory
Technology

(1) Use a process to create / allocate a shared memory
segment and set the size and access rights during the
creation.

(2) Attach the process to this memory segment and
map it to the current data space simultaneously. Each
process can access the shared memory segment through
its articulated address.

(3) When the process has finished the operation on the
shared memory segment, it can be disconnected from the
segment.

(4) Operate the shared memory segment by the
process.

(5) When all processes complete the operation on the
shared memory segment, they are usually deleted by the
process that creates the segment.

3. SOCKETS

3.1 Socket Communication Theory
Socket is an abstractive data structure provided by the
operating system to create a channel (connecting point)
in order to send and receive messages between unrelated
processes[5]. It actually provides an endpoint of inter-
process communication, which enables the completion of
data transfer.

Socket is designed for the client - server model.
Different socket system calls are provided for the client
and server programs. Linux sockets include stream sockets
(sock-STREAM), datagram sockets (sock-DGRAM), and
row sockets (RAW-SOCKET).

The basic model of programming using socket is
the client - server model. The server calls socket () first
to create a new socket, and then use bind () to bind the
socket to the client port. Thereafter, the server calls listen
() to set the length of listen queue in order to prepare
for accepting the request from clients; and then it listens
to the request from the clients at connecting ports with
listen (). The processes in client end create certain types
of socket through the socket () and call host servers for a
connection request with connect (). While connected, the
host’s IP address, socket, and other relevant information
must be provided. The inter-process communication can
be achieved using the socket method.

3.2 The Implementation of Socket Technology
The working procedures of server processes:

(1) Create a socket.
(2) Configure IP address.
(3) Bind the IP address to the socket.
(4) Listen to the request of connection from other

processes.
(5) Accept the connection request.

ZHANG Xiurong (2011).
Management Science and Engineering, 5(3), 162-164

164Copyright © Canadian Research & Development Center of Sciences and Cultures 165

(6) Creates a child process to receive the data
transmitted from the client process and locate it in the
designated buffer.

(7) Appropriate data processing.
(8) Wait for all child processes to finish and then exit.
The working procedures of client processes:
(1) Create a socket.
(2) Obtain the server’s IP address.
(3) Requests a connection to the server.
(4) Send data.
(5) Receive response signals.
(6) Exit.

4. THE EVALUATION OF COMMUNICATION
PERFORMANCE BY THREE METHODS

4.1 Test Procedures
The hardware used for performance test included eight
Intel Pentium 4 personal computers (CPU 2.0 G, Ram
1 G, operating system redhat Linux 9.0), connected
via 100Mbps Ethernet. Test procedure was based on
anonymous pipes, shared memory, and UNIX domain
socket technologies. The program was designed with C
language. The aim was to test the machine performance of
inter-process communication at a user level.

The standard procedure was used to test the
communication performance of anonymous pipes, shared
memory, and socket method. In each test the system had
the same resource usage with a CPU utilization of 35%.
During the test each packet with different length was
tested for 30 times and the average value was obtained
as the final result. Transmission time was defined as the
duration from the time when the information of main task
was sent out to the time when the response signal was
received.

4.2 Performance Analysis
According to the test results of communication
performance, the transmission time of pipeline was
basically unchanged regardless of the amount of data
transferred. It was time-consuming to establish a pipeline.
But once it was established, the data transmission time
was basically the same regardless of the amount of data.
However, the data transmission time was increased
with the increase of the number of bytes transferred by
shared memory and sockets. Therefore, pipeline was the
best method when a large amount of data needed to be
transmitted. When the amount of data transferred was less
than 4600 bytes, shared memory had obvious advantages
in transferring data with a very fast speed. However, when
the data transmission amount exceeded 4600 bytes, such
advantage was eliminated because it had to introduce
semaphores increasingly to coordinate the accesses to a
shared memory segment. As a result, its communication
performance became poorer than other two methods.
When the data transmission amount was 5100-12000
bytes, the communication performances of pipes and
shared memory were not as good as UNIX domain socket.

REFERENCE
[1] Wu, G. (2009). Linux Basic Study (2nd edition). Beijing:

Tsinghua University Press.
[2] Cohoon, J., Davidson, J., et al. (2005). Java Programming.

Beijing: Tsinghua University Press.
[3] What is the Computer Pipeline Technology [EB / OL].

Retrieved from Http://www.01ruodian.com/school/news.
asp?id=10009.

[4] Gao, S. C., Mao, D. L., & Cao, X. (2008). Computer
Network Tutorials. Beijing: Higher Education Press.

[5] Lee, Y. S., Lu, J. W., & Cao, X. (2003). Java Language
Programming for a Layman . Beijing: China Youth
Publishing House.

The Analysis and Comparison of Inter-Process Communication Performance Between
Computer Nodes

