Management Science and Engineering \Vol.2 No.2 June 2008

STEADY-STATE ANALYSIS OF THE GI/M/1
QUEUE WITH MULTIPLE VACATIONS AND
SET-UP TIME

ZHAO Guohui* DU Xinxin>  TIAN Naishuo®  ZHAO Xiaohua®  ZHAO Dongmei®

Abstract: In this paper, we consider a GI/M/1 queueing model with multiple vacations and
set-up time. We derive the distribution and the generating function and the stochastic
decomposition of the steady-state queue length, meanwhile, we get the waiting time
distributions.
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INTRODUCTION

Vacation queues servers to stop the customers’ service at some periods, and the time during which the
service is interrupted is called the vacation time. Vacation queue research originated from Levy and
Yechial, then many researchers on queuing theory deal with this fields. So far, the theory frame whose
core is the stochastic decomposition is developed and vacation queues have been applied successfully to
many fields, such as computer systems, communication networking, flexible manufacture, electronic
and call centers. Details can be seen in the surveys of Doshi and the monographs of Tian. For GI/M/1
type queues with server vacations, Tian used the matrix geometric solution method to analyze and
obtained the expressions of the rate matrix and proved the stochastic decomposition properties for queue
length and waiting time in a GI/M/1 vacation model with multiple exponential vacations. Using
matrix-geometric approach, we give expressions of distributions for queue length at an arrival epoch and
the steady-state distribution for the waiting time.
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1. DESCRIPTION OF THE MODEL

A(X) and a (S) be the
distribution function and L.S transform of the inter-arrival time A of customers. The mean inter-arrival

E(A) =

Consider a classical GI/M/1 queue, inter-arrival times are i.i.d.r.vs. Let

/
—a" = g1
time is a (0)=2 ,Service times during service period, vacation times and set-up times

are assumed to be exponentially distributed with rate H 0 , B , respectively. We assume that the service
discipline is FCFS.

Suppose 7, be the arrival epoch of nth customers with 7,=0. Let L, = L, (z,) be the number of
the customers before the nth arrival. Define
0, thenth arrival occurs during a service period,
J, =J(r,)=1<1,thenth arrival occurs during a set - up period,
2, the nth arrival occurs during a vacation period.

The process {(L,,J,),N > 1} is a Markov chain with the state space
Q={0,2)U(k, j).k>1j=0,1,2}.

Meanwhile, we introduce the expressions below

[ut-x)]

4 e “dxdA(t),k >0,

0 k o t
a, = j%e-ﬂtdA(t),k >0, b, :”,Be“’x
0 " 00

ot t-y t —x— Kk
Ck = E')"([ '([ Heiexﬂeiﬁy Meﬂ(txy)dXdydA(t), k > 0

First, the transition from (i,0)to ( j,0) occur if i +1— ] services complete during an inter-arrival
time. Therefore, we have

Pioio) = Qi jri 2L J =11 +1.

Similarly,
Piniio) =B i 2L j =1 i +1. Puyan = € dAM) =a"(B) = 7,
0
p(i,2)(i+1,2) = J‘eimdA(t) = a*(l9) =73 p(i,2)(j,0) = Ci+1—j 120, J =1---,i+1.
0

P 211 = T 6’eigxeiﬂ(tix)dA(t) =0(a'(p)-a’ (9))/(9 - /6) =a(y,—7,)-

00
The transition matrix of (L, J,) can be written as the Block-Jacobi matrix
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B Aun
REE
P=IB, A A A
B, A A A A
where B =1-Co—a(y,=73) =75 A =(Co (¥, =73):73),
a, 0 0 a 0 0
A =| by 7> 0, A=|b 0 0[k>1
¢, aly,=7) 7, ¢ 00
K
1-> 4
i=0
K
B, = 1_Zbi V2 k=1,

1_Zci —a(y,=73)—73)

The matrix IS is a GI/M/1 type matrix.
2. STEADY-STATE DISTRIBUTION

Lemmal. If p=Au~" <1, 8, >0, then & >0, %(5—& > 0.

where s "B n-rs _ n-aO) _ n-r
p-ul-a’(p) B-ul-7,) 0-ull-a’(0)] 0-ul-y,)

()

Theorem 1. If p<1, @, f >0, then the matrix equation R :Z:RKAk has the minimal
k=0

non-negative solution

" 0 0
R=| po Ya 0
af(6-4A) aly,=7) 7,
where y; is the unique roots in the range 0 < z <1of the equation z = a” (u(1- 2)) .

a=6/(0-f),5 and Aare defined as in (1).

Proof. Because all A, , k > 0 are upper triangular, we assume that R has the same structure as
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r, 0 O
R=|r, r, O

rSl r-32 r33
we easily obtain

h,= zria —a(:u(l 0) T =V T=7,
k=0

© k-1 ©
k- K
r21:zr21(z 1|1 22 I]ak+zr22bk’ I =a(y,—7s)

i=0

© k-1 0 k
_ i k-1-i

k=2

2

- k=2-i
h

2 —
0 j=0

jpk—2-i—j
r-22r33 ]ak
k-1

-0

k=1 i=0

As we known, if p <1,8>0, the first equation has the unique roots I, =y, intherange0 <1, <1.
We can compute

irzkzbk _pla (u-ry)) -] _ Al (u-1,)) - 7,] ,

k=0 :B_ﬂ(l_rzz) ,B_ﬂ(l_yz)
© k _ * _ * _ —
1_2(2“',;1'.;2 1-i ]a —1— 271 72 a, =1- rn—a (ul-7,)) _a V) 72’
k=1 \i k=t V177> e V1= 7

Finally, we obtain I, = 80, I, =af3(5 — A) and the expression for R .
Theorem 2. The Markov chain (L, , J,,) is positive recurrent if and only if p <1, 8,5 >0.

Proof. Based on Neuts, the Markov chain (Ln, Jn) is positive recurrent if and only if the spectral

radius SP(R)=max {7/1, V21 V3 }of R is less than 1, and the matrix

B00 AOl
BIRI=| X" pe-ip N pkt
> R'B, D R¥'A,
k=1 k=1
has a positive left invariant vector. Evidently, SP(R)=max {;/1 Vo 73}<1. Substituting the expressions
for R, A and B, in B[R] > we obtain

1-c, Co 0 0
2 _ & 0 0
71 71
BIRI=|, foa, b, péa, b,
EVER ! Y1iV2 V2
A B alz”?s
V3
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Where
A=_aﬂ(5—A+5(72_73)Ja0_a72_73+C_o_a7/z_73
7173 V1Y 2V3 VaV3 V3 Vs
A S(v. - _
B=aﬂ(§ A+ (72 73)ja0+a_]/2 s _Co
Ve V17 2V3 V2V V3

It can be verify that B[R]has the left invariant vector
7 =K@ap(0-A),a(y,—75).7s) - 3
Thus, if p <1, @, >0, the Markov chain (L,,, J,,) is positive recurrent.
If p<1,6, >0, let(L,,J)be the stationary limit of the process (L, , J, ).Let

Ty =T T = (Mo Tiar T2 ) K 21,
my =P{L=k,J = j}=LiLE10P{Ln =k,J,=jhK, )

Theorem 3. If p <1, the stationary probability distribution of (Lv ' J ) is

K K Kk
”koZKaﬂ[h V2 5_7/1 73 A],kZl,
Y1=72 Vi=73

ma=Ka(y; —r5) k=1,
Ky¥ k>0,

:1
Il

where ¢ _ (-7)A-7)1-7s)
aﬂ[(1—73)5—(1—;/2)A]+a(7/2—}/3)(1—]/1)+(1—}/1)(l—}/2)

Proof. (7yy, Ty, 1y, 75,) IS given by the positive left invariant vector (3) and satisfies the

normalizing condition

Ty * (s s Tio ) — R)"e=1
Then, we get
_ (1-7)(A-7)1-75) .
aBf[(1-75)0 —(L-r)A|+a(r,—7)A-7)+(@=7)(1-7,)
We obtain

7o, =K, (7,11, 7m,) = K(aB(0 = A),a(y, —73).75) -
We have

T = (Mo Tas T2) = (7710’”11’72'12)Rk71: k=1,
Finally, we easily obtain the theorem.
Theorem 4. If p <1, the stationary queue length L, can be decomposed into the sum of two
independent random variables: L, = L+ L, , where L is the stationary queue length of a classical
GI/M/1queue without vacation, follows a geometric distribution with parameter y; ; L, follows the

discrete PH distributions (¢, T) of order 2 » where
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0 = K (a7/z_71+ﬂ5 _(a_l)(73_71)+aﬂA\J,¢3: K 1T=[72 j’TO:[l_sz
1-7 1-7, 1-7, 1-n Vs 1-74
Proof. The PGF of L, is as follows:

L(2)=3 z*P(L, = k)

=Ka|iﬂ+(}/2k_73k)2k+ﬂa(}/lk_}/;)zk—ﬁA(ylk_}/;)Zk]
o

V1= 72 Y1773
-1-y, K (0[1— 2y, + 288 (a -1)(A-1zy,)+ ZaﬁAj:L(z)Ld(z)

1-zy,1-7, 1-1y, 1-1zy,
Where L(Z) is the PGF of L of a classical GI/M/1queue without vacation.
L, (2)= K [al—z;/1+z,85_(a—l)(l—z;xl)+mﬂAJ )
1-7 1-1y, 1-12y,
1-zy, +2p6

:(1_ Zy, +Zﬂ5)2y52k :1"'(7/2 +ﬁ5_71)z7/§_lzk :
k=0 k=1

Substituting the above equation into (4) - we obtain the distribution of L.

1-1zy,

We can easily get means

E(L)=-Lo 1 K [a
1-y 1-n

7/2_71"'185_ (0(—1)(7/3—}/1)+06ﬁA:|_
1-7,)? 1-75)°

3. WAITING TIME DISTRIBUTION

Let W and VV(S) be the steady-state waiting time and its LST, respectively. Firstly, let
H,,H,, H,be the probability that the server is in the service(set-up, vacation) period when a new
customer arrives. We can compute
. ap[(1-7,)5 - (1-7.)A] ,
ap [(1_73)5 —(1—;/2)A]+a (72-7)A=r)+(1-7)A-7,)
H, = a(r,=7:)1-71) ,
aﬁ[(1_73)5_(1_72)A]+0‘ (72=7) A=)+ (1=-7)(A-72)
- (1-7)(-7.)

NS A7) A 7)A ] a (7)) G- )A-77)

Theorem 5. If p <1, 8, >0, the LST of stationary waiting time W is
W(s)=p, £ (ur)l=yy) u@-7) 4y 0  wl-y) P
Bt+s ul-y,)+s ul-y;)+s O+s ull-y;)+s p+s
+H{N+ (6 -4)s }(ws)(l—m (L-7))  pl-ys)
S(=yy)-AQ=-yp,) | u@-py)+s u@-y,)+s ul-—ys)+s
Proof. When a new customer arrives, if there are K customers and the server is in the service period, the
waiting time equals K service times by the rate £ . Then, we have
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zﬂ-kowko(s)—KaﬁZEh Yo g ¥i— 73Aj( p jk

Y1i=72 Y1773 H+sS
:H{#+ (6-4)s yy+wa—n> U-7) pl-7)
(=) =AQ=7,) | uQ=r)+s pl=7y,)+s ull-y;)+s

When a new customer arrives, if there are K customers and the server is in the set-up period, the waiting

time is the sum of the residual set-up time and K service times by the rate £ . Then, we have

;ﬂ-klwkl(s)z KO! 2(72 (,U+Sj

5 s wier | o
"p+s ul-p,)+s ull-ys)+s

Similarly,

~ 17 B0 _ 9 ul-y) B
W K : | !
Z”"Z 2(8) = Z( j B+sO+s H26+Sﬂ(1—73)+5ﬂ+5 ?

From (5)-(7), we have the result in Theorem 4.
With the structure in Theorem 4, we can get the expected waiting time

EW)=H { ;+i}+H{ Yo 1 +i}
0 ull-y,) B u@=y,) wu@-y,) B

+ 2 5—-A 1 1 _
H, - + +
Lt(l—n) pl6@Q-r)-Al-y,)] w@-7,) u(l—n)}
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