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Abstract:  Based on strong efficiency instead of  weak efficiency or efficiency,  this 
paper gives the definitions and some  fundamental  properties of the strong supremum 
and infimum sets. The concepts, some properties and their relationships of  s-(H,Ω) 
conjugate maps, s-(H,Ω)-subgradients,  s- H

pΓ (Ω)-regularitions  of vector-valued 
point-to-set maps are provided, and a  new duality theory in multiobjective nonlinear 
optimization------s-(H,Ω) Conjugate Duality Theory is established by  means of the  
s-(H,Ω) conjugate maps. The concepts and their relationships between  the strong 
efficient solutions of the  primal  and  dual  problems and the strong saddle-points of 
the s-(H,Ω)-Lagrangian  map are  developed. Finally, some possible further research 
works are given. 
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1.  INTRODUCTION 
 

In  the  duality  theory  of  nonlinear  programming  problems,  conjugate functions play  important  roles  
[1,2,8]. So, in order to discuss duality  in multiobjective optimization problems, we  need  to introduce an 
extended notion of "conjugate" which fits well the multiobjective problems. Tanino  and  Sawaragi  [10]  
have  developed  a  duality  theory   in multiobjective  convex  programming  problems  under  the  Pareto   
optimality criterion. However, their  duality  theory  is  not  reflexive  in  the  sense analogous to [1 , 2 ]. 
The nonreflexivity of their duality seems to  be  caused by  the  fact  that  the  objective  functions  in  the  
primal  problems  are vector-valued, while those in the dual problems  are  set-valued.  If  we  are 
concerned with the reflexivity of the duality theory, we will  have  to  start from set-valued objective 
functions in the primal problems. Then a new problem comes about: what kinds of set-valued functions  
are  suitable  for  objective functions ? Feng  [3]   extended  the  results  of  [10]  to  a  more  general 
framework,  and  provided  a  reflexive  duality  theory   in   multiobjective optimization  based  on  
efficiency. Based  on  weak  efficiency  rather   than efficiency, Kawasaki [6,7] developed some 
interesting  results  by  defining conjugate and subgradients via weak supremum. In this article, a  new  
duality theory for weak efficiency is developed with the help of the weak supremum and the 
generalization of the conjugate relations discussed in [6]. Feng[3] extended Kawasaki’s work to a more 
general case. 
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In section 2, the concepts of  the strong infimum and strong supremum are developed. In  section 3,  
we  shall  give  the   definitions   of   s-(H,Ω)   conjugate   maps   and s-(H,Ω)-subgradients and 
s- H

pΓ (Ω)-regulations  of  the  point-to-set  map,  with the discussion of their fundamental properties. 
The strong  saddle-point  problem  is also discussed in this section. In section 4, the  s-(H,Ω)  conjugate  
duality theory is developed which states the relationships between the primal and dual problems. In 
section  5,  the s-(H,Ω)-Lagrangian  map  is  defined  and  its  strong saddle-point problem is discussed. In 
section 6,  some possible extensions are suggested. 

Before going further, we introduce the following notations. Let Rp be  the p-dimensional Euclidean 
space, and  ε  and  -ε  be  the  p-dimensional  points consisting of +∞ and -∞, respectively, and Rp 
=Rp∪{ε,-ε}, and  R+

p  ( R+
p) be the subset of Rp (Rp) with the elements being nonnegative, R-

p=-R+
p, 

R-
p=-R+

p. For any  y1 and y2 in Rp, we denote y1≤=y2 if y1=y2 or y1=-ε or y2=ε or y2-y1∈R+
p\{0}; we 

denote y1≤y2 if y1≤=y2 and y1≠y2,  and y1<y2 if each component of y2-y1 is positive. For any a∈Rp , B⊆Rp  
and C⊆Rp , we define: a+ε=+ε;  a+B={a+b∈Rp : b∈B};  B+C={b+c∈Rp : b∈B,c∈C}.The p-dimensional 
point consisting of a common element a∈R is  simply  denoted by a in this paper. Suppose X⊆Rp and 
F:Rn→Rp,  sometimes, we denote F(X) or ∪x F(x) to be ∪x∈XF(x). Additionally, considering the length of 
the paper, we omit the proofs of  all the theorems.  

 

2.  STRONG SUPREMUM AND INFIMUM SETS AND THEIR PROPERTIES       
 

Definition 2.1  Let Y⊆Rp. y′∈Rp  is said to be a strong supremum point of Y if (1) y′∈Rp ; (2) y≤=y′ for 
∀y∈Y ; (3) y′≤=y′′ as long as y′′∈Rp and satisfies y≤=y′′ for ∀y∈Y . The  set  of  strong supremum  
points of Y is denoted  by  s-SupY , which  will  be  called the strong supremum  set of Y. Similarly, 
y′∈Rp  is said to be a strong infimum point of Y if (1) y′∈Rp ; (2) y′≤=y for ∀y∈Y ; (3) y′′≤=y′ as long as 
y′′∈Rp and satisfies y′′≤=y for ∀y∈Y . The  set  of  strong infimum  points of Y is denoted  by  s-InfY , 
which  will  be  called the strong infimum  set of Y. 

 

Theorem 2.1 ( Existence and Uniqueness)  For ∀Y⊆Rp, its supremum point and infimum point 
exist and are unique, that is, the sets s-SupY and s-InfY are all single element set. Therefore, we will 
simply denote the sole element by s-SupY and s-InfY, respectively. Furthermore, if s-SupY∈Y, we will 
denote s-SupY by s-MaxY. Similarly, If s-InfY∈Y, we will denote s-InfY by s-MinY. 

 

It is easily known that for any Y⊆Rp, s-SupY=-s-Inf(-Y), s-InfY=-s-Sup(-Y), furthermore, if Y=∅, then 
s-SupY=-ε, s-InfY=+ε; if +ε∈Y, then s-SupY=+ε; if -ε∈Y, then s-SupY=-ε. 

 

Theorem 2.2   Let Y∈Rp .  Then 

(1) For each  y∈Y\{-ε}, there exists a point t∈R+
p  such that y+t=s-SupY. In particular, for each  

y∈Y∩Rp, the corresponding t is unique .  

(2) For each  y∈Y\{+ε}, there exists a point t∈R-
p  such that y+t=s-InfY. In particular, for each  y∈Y∩Rp, 

the corresponding t is unique .  

 

 

Theorem 2.3  For any Y1 and Y2 ⊆Rp, if y1≤=y2 for ∀y1∈Y1 and y2∈Y2, then s-SupY1≤=s-InfY2. If 
s-InfY2∈Y1 or s-SupY1∈Y2, then s-SupY1=s-InfY2. Particularly, if Y1 and Y2⊆Rp, and Y1∩Y2≠∅, then 
s-SupY1 and s-InfY2 are reachable, that is , s-SupY1=s-MaxY1, and s-InfY2=s-MinY2. 
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Theorem 2.4  If Y1,Y2 ⊆Rp and Y1⊆Y2, then s-SupY1≤=s-SupY2. 

  

3.   S-(H,Ω) CONJUGATE MAPS, S-(H,Ω)-SUBGRADIENTS AND 

      S-(H,Ω)-REGULARITIONS   
 

Throughout this paper, we shall designate  by  X  and  Y  two  locally  convex Hausdorff spaces 
(finite-dimensional). Usually, we can suppose  that  X=Rn   and Y=Rm .  

 

Definition 3.1   Let F:X→Rp, Ω be  a  family  of  vector-valued  functions ω:X→Y, and H be a family 
of vector-valued  functions  h:Y→ Rp ,  closed  s-Sup pointwise, i.e., if H'⊆H, then s-Sup{H'}∈H, where 
s-Sup is taken  pointwisely, that is, for ∀y∈Y, (s-Sup{H'})(y)=s-Sup{H'(y)}. Under the above 
assumption, the s-(H,Ω) conjugate map s-Fc :Ω→H of F is defined by the formula:  

        s-Fc (ω)=s-Sup{h:h∈H,h⊗ω≤=F}  for ∀ω∈Ω 

that is, s-Fc (ω)(y)=s-Sup{h(y): h∈H, h⊗ω≤=F}  for ∀ω∈Ω and y∈Y 

Inversely, let G:Ω→H, the s-(H,X) conjugate map s-G* :X→Rp of G  is defined by the formula: 

         s-G*(x)=s-Sup{h(ω(x)): h∈H, ω∈Ω, h≤=G(ω)}  for ∀x∈X 

It is easily verified that  s-G*(x)=s-Sup ∪ω G(ω)(ω(x))  for ∀x∈X 

Moreover, the s-(H,X) conjugate map of s-Fc  is called the s-(H,Ω)  biconjugate map of F, and is 
denoted by s-Fc*  , i.e., s-Fc*  :X→Rn, and  s-Fc* =s-(s-Fc)* , and  s-Fc*(x)=s-Sup ∪ω∈Ω s-F (ω)(ω(x))  for 
∀x∈X. 

 

Definition 3.2  (s-ΓpH (Ω) Family)  The set of the point-to-point  maps  F:X→Rn which can be 
written in the following form: 

       F(x)=s-Sup{h(ω(x)): h∈H',ω∈Ω'}  for ∀x∈X 

is denoted by s-Γp
H (Ω), where H'⊂H, Ω'⊆Ω and Ω' is nonempty. 

 

Definition 3.3  (s-ΓpH (Ω)-normalization) Let F:X→Rn .  The  point-to-point  map  
s-

~F (H,Ω):X→Rn   defined   by   the   following   formula   is   called   the s-Γp
H (Ω)-normalization of F: 

    s-
~F (H,Ω)(x)=s-Sup{h(ω(x)): h∈H, ω∈Ω, h⊗ω≤=F}  for ∀x∈X 

 

Let HL ={hb :hb (t)=t+b (∀t∈Rp ), b∈Rp }, Ω ={ω* : ω*(x)=<<x,x*>> (∀x∈X), x*∈X*}where X*  is 
the dual space of X, and <•,•> is a bilinear pairing between X and  X* , and 
<<•,•>>=(<•,•>,<•,•>,...,<•,•>). 

 
Theorem 3.1  Let H=HL  , Y=Rp , F:X→Rp , and  G:Ω→H.  Then  s-Fc   can  be written : s-Fc 
(ω)(t)=t-s-Sup{ ∪x{ω(x)-F(x)}}  for ∀ω∈Ω and t∈Y. Similarly, s-G* can be written: s-G*(x)=s-Sup ∪ω 
{ω(x)+A(ω)} for  ∀x∈X,   where A(ω)=s-InfA(ω), and A(ω) satisfies G(ω)(t)=t+A(ω)  for ∀t∈Y and 
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ω∈Ω. In particular, s-Fc*  can be written: s-Fc*(x)=s-Sup ∪ω {ω(x)- F (ω)}  for ∀x∈X, where 
F (ω)=s-Sup ∪ω {ω(x)-F(x)}  for ∀ω∈Ω. 

The   relationships   between    the    s-(H,Ω)    conjugate    map    and s-ΓP
H (Ω)-normalization of F are 

given as follows. 

 

Theorem 3.2  Let F:X→Rp, and G:Ω→H. Then 

(1) s-
~F (H,Ω)∈s-ΓP

H (Ω) and s-G* ∈s-Γp
H (Ω). 

(2) s-
~F (H,Ω)≤=F 

(3) s-
~F (H,Ω)=s-Fc* 

(4) If F'∈s-Γp
H (Ω) and F'≤=F, then F' ≤=s-

~F (H,Ω) 

(5) s-
~F (H,Ω)=F  if and only if F∈s-Γp

H (Ω). 

(6) s-Fc (ω)(ω(x))≤=F(x)  for ∀ω∈Ω and x∈X. 

 

Similar discussions can be made for G:Ω→P(H). 

 

Definition 3.3  (s-ΣpH (Ω) Family)  The set of the  point-to-point  maps  G:Ω→H which can be 
written: G(ω)=s-Sup{h: h∈Hω }  for ∀ω∈Ω,  where Hω ⊆H for each  ω∈Ω is denoted by s-Σp

H (Ω) 

 
Definition 3.4 (s-ΣpH (Ω)-normalization)  Let G:Ω→P(H).  The  point-to-point  map  
s-

~G (H,Ω):Ω→H defined by: 

s-
~G (H,Ω)(ω)=s-Sup{h: h∈H,h≤=G(ω)}=s-Sup{h: h∈H, h(t)≤=G(ω)(t) ∀t∈Y}  for ∀ω∈Ω 

is called the s-Σp
H (Ω)-normalization of G. 

Dually to theorem 3.2, we have: 

 

Theorem 3.5  Let G:Ω→H, F:X→Rp. Then 

(1) s-
~G (H,Ω)∈s-Σp

H (Ω) and s-Fc∈s-Σp
H(Ω) 

(2) s-
~G ≤= s-G*c 

(3) s-
~G * =s-G* 

(4) s-
~G (H,Ω)≤=G 

(5) if G'∈s-Σp
H (Ω) and G'≤=G, then G′≤= s-

~G  (H,Ω) 

(6) s-
~G (H,Ω)=G  if and only if G∈s-Σp

H (Ω) 

(7) if s-SupG(ω)=G(ω) for some ω∈Ω, then G(ω)(ω(x))≤=s=-G*(x) for ∀x∈X. 

 

Definition 3.5  F:X→Rp is said to be s-(H,Ω)-subdifferentiable if there exist h∈H and ω∈Ω such that 
h(ω(x))=y and h⊗ω≤=F.  And such ω∈Ω is called the s-(H,Ω)-subgradient of F. The set of  all  the 
s-(H,Ω)-subgradients of F  is called the s-(H,Ω)-subdifferential of  F , which is denoted by s-∂Ω F(x).  
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Definition 3.6  G:Ω→H is said to be s-(H,X)-subdifferentiable, if  there exists x∈X such that 
h(ω(x))∈s-G*(x),  and  h⊗ω≤=s-G* . And such x∈X is called the s-(H,X)-subgradient of G . The set  of  
all the s-(H,X)-subgradients of G  is called  the  s-(H,X)-subdifferential of G, and will be denoted by s-∂X 
G(ω).   

 

Theorem 3.6   Let F:X→Rp. 

(1) ω∈s-∂Ω F(x) if and only if  F(x)=s-Fc (ω)(ω(x)). 

(2) s-∂ΩF(x)⊆s-∂Ω s-Fc*(x) for ∀x∈X and y∈RP . 

(3)  If  s-Fc*(x)=F(x),  s-Fc =s-Fc*c   ,  then  s-∂Ω F(x)=s-∂Ω s-Fc*(x)  for ∀y∈s-Fc*(x). 

(4) Suppose that Ω contains the element 0Ω  satisfying 0Ω(x)=0∈Y  for  ∀x∈X, and H has the 
following property: for each a∈Rp , there exists ha ∈H  such  that ha (0)=a. Then 0Ω ∈s-∂Ω F(x) if and 
only if F(x)=s-Min ∪x F(x). 

 

Theorem 3.7  Let G:Ω→P(H). 

(1) If x∈s-∂X G(ω), then h(ω(x))=G(ω)(ω(x))=s-G*c(ω)(ω(x)). 

(2) If s-∂X G(ω)≠∅, then there exists h'∈H such that s-∂X s-G*c(ω)≠∅. 

(3) If s-G*c(ω)=G(ω), then s-∂X G(ω)=s-∂ s-G*c(ω) . 

 The relationship between the s-(H,Ω)-subgradient  and  s-(H,X)-subgradient is as follows. 

 
Theorem 3.8   Let F:X→P(Rp), G:Ω→P(H). 

(1) If ω∈s-∂Ω F(x), then x∈s-∂Xs-Fc(ω). Inversely, if F∈s-Γp
H (Ω) and x∈s-∂X s-Fc(ω), then  ω∈s-∂Ω 

F(x). 

(2) If x∈s-∂X G(ω), then there ω∈s-∂Ω s-G*(x). Inversely, if s-G*c(ω)=G(ω), ω∈s-∂Ωs-G*(x), then  
x∈s-∂X G(ω). 

In the following,  we  will  discuss  the  strong  saddle-point  problem  of point-to-point maps. Let 
point-to-point map L be L:X×Y→Rp, where X and  Y  are two finite-dimensional locally convex 
Hausdorff spaces. 

 

Definition 3.9   

The point (x′,y′)∈X×Y is called the strong saddle-point of map  L if   L(x′,y)≤=L(x′,y′)≤=L(x,y′) for 
∀x∈X And y∈Y. 

When p=1 and L:X×Y→R, the above definition coincides  with  that  of  the saddle-point, in the sense, 
of a function. 

In the following, for convenience, we shall use the notations given by: 

   s-SupLx =s-Sup ∪y L(x,y) ;  s-InfLy =s-Inf ∪x L(x,y); 

   s-Infs-SupL=s-Inf ∪x s-SupLx  ; s-Sups-InfL=s-Sup ∪y s-InfLy ; 

   s-Mins-SupL=s-Min ∪x s-SupLx  ; s-Maxs-InfL=s-Max ∪y s-InfLy 

By the definition of the strong saddle-point,   (x,y)  is  the strong saddle-point of L if and only if 
L(x,y)=s-Max ∪y L(x,y) = s-Min ∪x L(x,y) if and only if L(x,y)=s-Max ∪y s-Min ∪x L(x,y) =s-Min ∪x 
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s-Max ∪y L(x,y). 

  

4.  S-(H,Ω) DUALITY IN MULTIOBJECTIVE OPTIMIZATION                
 

Let X,U, and Y be three locally convex Hausdorff spaces, where X is called the decision space and U is 
called the perturbation space. Let Φ be a  map  from X×U into Rp , i.e., Φ:X×U→Rp. We assume that Φ is 
not identically empty  on X×{0}. 

Let ΩX  and ΩU  be two families of functions from X into Y  and  U  into  Y, respectively. Especially, 
we denote Ω'=ΩX ⊗ΩU  and Ω=ΩU , where Ω' is a family of functions from X×U into Y and ω′∈Ω′ if and 
only if there exist ω∈ΩX and θ∈ΩU such that ω′=ω⊕θ, that is, ω′(x,u)=ω(x)+θ(u) for ∀( x,u)∈X×U . For 
ω′=ω⊕θ, we sometimes write it  ω′=(ω,θ). In  particular,  we  assume  that ΩX contains  the element 0X  
satisfying 0X(x)=0Y∈Y, where 0Y is the zero element of Y. Finally, Let H be a family of functions  from Y 
into Rp , closed s-Sup pointwise. 

Then we consider  the  following  optimization  problems  with  set-valued objective functions: 

 (MO)  The original problem: Find x∈X such that Φ(x,0)=s-Min ∪x Φ(x,0) 

 

(MP)   The primal problem:  Find x∈X such that Φ(x,0)=s-Inf ∪x Φ(x,0) 

 

(MD')  The s-(H,Ω) conjugate dual problem of (MO): Find θ∈Ω such that 

          s-Φc (0X ,θ)(θ(0))=s-Max ∪θ s-Φc (0X ,θ)(θ(0)) 

 

(MD)   The s-(H,Ω) conjugate dual problem of (MP): Find θ∈Ω such that 

            s-Φc (0X ,θ)(θ(0))=s-Sup ∪θ s-Φc (0X ,θ)(θ(0))    

 
We call solutions of (MO), (MP), (MD'), and (MD) in X  or  Ω strong  efficient solutions,  

respectively,  which  will  be  denoted  by   s-Eff(MO),  s-Eff(MP), s-Eff(MD') and s-Eff(MD), 
respectively. Moreover, denote 

  s-Min(MP)=s-Min ∪x Φ(x,0)   

  s-Inf(MP)=s-Inf ∪x Φ(x,0)  

  s-Max(MD)=s-Max ∪θ s-Φc(0X ,θ)(θ(0))    

  s-Sup(MD)=s-Sup ∪θs-Φc(0X,θ)(θ(0))  

 

Theorem 4.1  s-Eff(MO)=s-Eff(MP) ; s-Eff(MD')=s-Eff(MD). 
By virtue of this theorem, we have only to consider  the  duality  between (MP) and (MD) instead of 

(MO) and (MD'). The first duality  is  the  following weak duality. 

 

Theorem 4.2  (s-(H,Ω) Weak Duality Theorem) 

(1)    s-Max(MD)≤=s-Min(MP) 
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        s-Max(MD)≤=Φ(x,0) for ∀x∈X  

        s-Φc(0X ,θ)(θ(0))≤=s-Min(MP)  for ∀θ∈Ω; 

        s-Max(MD)≤=∪x Φ(x,0);  ∪θ s-Φc(0X ,θ)(θ(0))≤=s-Min(MP) . 

(2)  If x∈X and θ∈Ω satisfy s-Φc(0X ,θ)(θ(0))=Φ(x,0), then x∈s-Eff(MP)  and θ∈s-Eff(MD). 

(3) If  x∈X satisfies Φ(x,0)=s-Max(MD),  then  x∈s-Eff(MP) and s-Min(MP)=s-Max(MD). 
Substituting s-Max  for  s-Sup,  the  conclusion  still holds. 

(4) If θ∈Ω satisfies s-Φc(0X ,θ)(θ(0))=s-Min(MP),  then  θ∈s-Eff(MD)  and s-Min(MP)=s-Max(MD). 
Substituting s-Min  for  s-Inf,  the  conclusion  still holds. 

 

Theorem 4.3   s-Sup(MD)≤= s-Inf(MP). 
The perturbed problem relative to (MP) and (MD) is given as follows. 

 (MPu )  The primal perturbed problem: find x∈X such that 

            Φ(x,u)=s-Inf ∪x Φ(x,u) 

 (MDω )  The dual perturbed problem:   find θ∈Ω such that 

            s-Φc (ω,θ)(ω(0)+θ(0))=s-Sup ∪θ s-Φc (ω,θ)(ω(0)+θ(0)) 

 

Definition 4.1  

 The point-to-set maps P:U→Rp and D:ΩX→H defined by 

       P(u)=s-Inf ∪x Φ(x,u)   for ∀u∈U . 

       D(ω)(t)=s-Sup ∪θ s-Φc(ω,θ)(t+θ(0))  for  ∀ω∈Ω and t∈Y 

are called the primal and dual perturbed maps, respectively. 

The following theorem shows how to describe (MP) and (MD) by  means  of  P and D. 

 

Theorem 4.4  

(1)s-Pc(θ)=s-Φc(0X,θ) for ∀θ∈Ω, that is, s-Pc(θ)(t)=s-Φc(0X,θ)(t) for ∀θ∈Ω and y∈Y. 

(2) s-D*(x)=s-Φc*(x,0) for ∀x∈X. 

(3) If Φ∈s-Γp
H (Ω*),  in  particular,  as  long  as  Φ(x,0)=s-Φc*(x,0)  for  ∀x∈X, then s-D*(x)=Φ(x,0) 

for ∀x∈X. 

ASSUMPTION (A1)  For each a∈Rp , there is ha∈H such that ha(0)=a. 

ASSUMPTION (A2)  Φ∈s-Γp
H(Ω*) or Φ is s-Γp

H (Ω*)-normalizable at (x,0)∈X×U for  each x∈X, 
i.e., s-Φc*(x,0)=Φ(x,0) for ∀x∈X. 

 

Theorem 4.5  
(1) s-Sup(MD)=s-Pc*(0), s-Inf(MP)=P(0). 

(2) Under the assumptions (A1) and (A2), s-Inf(MP)=s-D*c(0X)(0). 

Now, we introduce two concepts: normality and stability. 
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Definition 4.2   

(MP) is called s-(H,Ω)-stable if P is s-(H,Ω)-subdifferentiable at   u=0∈U. Dually, (MD) is  called    
s-(H,X)-stable  if  D is s-(H,X)-subdifferentiable at ω=0X ∈ΩX . 

 

Definition 4.3  (MP) is called s-(H,Ω)-normal  if  P  satisfies  P(0)=s-Pc*(0). Dually, (MD) is called 
s-(H,X)-normal if D satisfies D(0X)(0)=s-D*c(0X)(0). 
 
Theorem 4.6  

(1) (MP) is s-(H,Ω)-normal if and only if s-Inf(MP)=s-Sup(MD). 

(2) Under assumptions (A1) and (A2), (MD) is s-(H,X)-normal if and only  if s-Inf(MP) =s-Sup(MD) 
if and only if (MP) is s-(H,Ω)-normal. 

  
Theorem 4.7  

(1) If s-Pc*(0)=P(0), then s-Eff(MD)=s-∂Ω P(0). 

(2) Under  assumptions  (A1)  and  (A2),   s-Eff(MP)=s-∂X s-D*c(0X).  Moreover,  if  
s-D*c*(0X)(0)=D(0X)(0), then s-Eff(MP)=s-∂X D(0 ). 

 
Theorem 4.8 

(1) (MP) is s-(H,Ω)-stable if and only if s-Inf(MP)=s-Sup(MD)=s-Max(MD). 

(2) Under assumptions (A1) and (A2), (MD) is s-(H,X)-stable if and only  if  

               s-Inf(MP)=s-Sup(MD)=s-Min(MP) 

 
Definition 4.4 The s-DGS(MP,MD)=s-Inf(MP)-s-Sup(MD) is called the  s-(H,Ω) conjugate dual gap 
of (MP) and (MD), briefly called the dual gap. 

From the results of the above several  theorems,  we  have  the  following s-(H,Ω)  strong  duality   
theorem   based   on   the   s-(H,Ω)-stability   or s-(H,Ω)-subgradient. 

 

Theorem 4.9  (s-(H,Ω) Strong Duality Theorem) 

(1)   If  (MP) is   s-(H,Ω)-stable,   then   (MD)   has   the   solution θ∈Ω, θ∈s-Eff(MD). Moreover, (MP) 
is s-(H,Ω)-stable  if  and  only  if  for  there are  x and θ such that Φ(x,0)=s-Φc(0X ,θ)(θ(0)). And if (MP) 
is s-(H,Ω)-stable and s-Min(MP)≠∅, then for each x∈s-Min(MP), there  is  θ∈Ω  such that   
Φ(x,0)=s-Φc(0X ,θ)(θ(0)) 

(2) (MD) has a solution, i.e., s-Eff(MD)≠∅,  and  s-DGS(MP,MD)=0  if and only if (MP) is 
s-(H,Ω)-stable. In  this  case, s-Eff(MD) =s-∂Ω P(0). 

 
Theorem 4.10 ( s-(H,Ω) Inverse Duality Theorem) 

Under assumptions (A1) and (A2), we have 

(1) (MD) is s-(H,X)-stable if and  only  if  s-Sup(MD)=Φ(x,0).   In   particular,   if   (MD)   is 
s-(H,X)-stable,  then  s-Eff(MP)≠∅, and for each θ∈s-Eff(MD), there is x∈s-Eff(MP) such that  
s-Φc(0X,θ) (θ(0))=Φ(x,0) . 
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(2) s-Eff(MP)≠∅ and s-DGS(MP,MD)=0 if and only if (MD) is s-(H,X)-stable. In this case, 
s-Eff(MP)=s-∂X D(0X). 

 
Corollary  Under assumptions (A1) and (A2), (MP)  is  s-(H,Ω)-stable  and s-Eff(MP) ≠∅ if and only 
if (MD) is s-(H,X)-stable  and  s-Eff(MD)≠∅.  In  this case, s-Inf(MP) 
=s-Sup(MD)=s-Max(MD)=s-Min(MP). 
     

5.  S-(H,Ω)-LAGRANGIAN MAPS                            
 

In this section, we shall introduce a s-(H,Ω)-Lagrangian map of  the  (MP) relative to the given 
perturbation Φ, and  clarify  the  relationship  between pairs of (MP) and (MD) and the weak 
saddle-points of the s-(H,Ω)-Lagrangian map. 

 
Definition 5.1 The s-(H,Ω)-Lagrangian map L:X×Ω→Rp of (MP) relative  to  Φ is defined by  
L(x,θ)=s-Φxc (θ)(θ(0))  for ∀x∈X and θ∈Ω,  where  for  each  x∈X, Φx : Ω→Rp,   Φx(u)=Φ(x,u)  for 
∀u∈U. 

The (MP) and (MD) are represented  by  the  s-(H,Ω)-Lagrangian  map  L  as follows. 

 
Theorem 5.1  

(1) s-Φc(0X ,θ)(θ(0))≤=s-InfLθ  for ∀θ∈Ω, If H is closed s-Inf pointwise, then for ∀θ∈Ω, 
s-Φc(0X ,θ)(θ(0))=s-Inf ∪x L(x,0) =s-InfLθ . 

(2) s-SupLx ≤= s-InfΦ(x,0) for ∀x∈X.  If Φx ∈s-Γp
H (Ω), then s-SupLx =Φ(x,0).  If Φx ∈s-Γp

H (Ω) for 
∀x∈X, then for ∀x∈X, s-SupLx =Φ(x,0). 

 

Theorem 5.2  If H is closed s-Inf pointwise, and Φx ∈s-ΓpH (Ω) for ∀x∈X, then the following 
conditions are equivalent to each other: 

(1) (x,θ)∈X×Ω is a strong saddle-point of L; 

(2) x∈s-Eff(MP), θ∈s-Eff(MD) and Φ(x,0)=s-Φc(0X,θ)(θ(0)); 

(3)Φ(x,0)=s-Φc(0X ,θ)(θ(0)). 

 
Theorem 5.3   Under the Condition of theorem 5.2, if  (MP)  is  s-(H,Ω)-stable, then the following 
conditions are equivalent to each other: 

(1) x∈s-Eff(MP); 

(2) there exists θ∈Ω such that (x,θ) is a strong saddle-point of L. in this case,  θ∈s-Eff (MD). 

 
Theorem 5.4  Under the condition of theorem 5.2, if assumptions (A1)  and  (A2) hold, and (MD) is 
s-(H,X)-stable, then the following conditions are equivalent to each other: 

(1) θ∈s-Eff(MD); 

(2) there exists x∈X such that (x,θ) is a strong saddle-point of L. in this case, x∈s-Eff (MP). 
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6.  CONCLUSIONS        
                                                           

In this paper, based on strong efficiency, we have extended the concepts  of "conjugate”, and 
“subdifferentiability" of functions to those of point-to-point maps, and developed a duality theory in 
multiobjective optimization. 

One possible generalization of this paper is to  consider the case that some cone "K" is introduced and 
the duality  theory  for multiobjective optimization with the domination structure with respect to the 
strong efficiency can be developed. 

Finally,  we  hope  to  make  contributions  for  solving   multiobjective optimization problems in 
some sense by taking special cases for H and Ω. 
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