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Abstract:  In this paper, we study matrix games whose averages of all rows and all 
columns are the same. A necessary and sufficient condition and a necessary condition 
for a matrix game being the form are given. A method of solving the form of matrix 
games by elementary transformations is given as well. 
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INTRODUCTION 
 

As everyone knows, it is very complicated to compute solutions to a general nm× matrix game [1]. 
There is no general algorithm except for linear programming method. The paper [2] studied a matrix 
game with unique Neumann-Shannon game solution that is a refinement of general game solutions. For 
this form of matrix games, averages of all rows and all columns are equal. 

  The games appear frequently in intellectual games played by two players. We can consider the 
following examples 

To determine who is required to do the nightly chores, two children first select who will be 
represented by "same" and who will be represented by "different." Then, each child conceals in her palm 
a penny either with its face up or face down. Both coins are revealed simultaneously. If they match (both 
are heads or both are tails), the child "same" wins. If they are different (one heads and one tails), 
"different" wins. The payoff matrix can be written as 

same
heads tails

different heads -1 1
tails 1 -1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

The game is quite similar to a three strategy version - rock, paper, scissors. 

Two players each make a fist. They count together "1 ... 2 ... Shoot!", "Rock ... Paper ... Scissors ... 
Shoot!", "Rock ... Paper ... Scissors!", "Scissors... Paper... Stone!", or "Ro ... Sham ... Bo!" while 
simultaneously bouncing their fists. On "Shoot", "Go", or "Scissors", each player simultaneously 
changes their fist into one of three hands (or weapons): 
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Rock (or Stone): a clenched fist.  

Paper (or Cloth): all fingers extended, palm facing downwards, upwards, or sideways (thumb 
pointing to the sky).  

Scissors: forefinger and middle finger extended and separated into a "V" shape.  

The objective is to defeat the opponent by selecting a weapon which defeats their choice under the 
following rules: 

1st. Rock smashes (or blunts) Scissors (rock wins)  
2nd. Scissors simply cuts Paper (scissors win)  
3rd. Paper covers Rock and roughness is covered (paper wins)  

If players choose the same weapon, the game is a tie and is played again. 

Often the short game is repeated many times so that the person who wins two out of three or three out 
of five times wins the entire game. The payoff matrix can be written as 

r s p
r 0 1 1
s 1 0 1
p 1 1 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

The two matrix games have a common property, i.e., averages of all rows and all columns in its 
payoff matrix are equal. 

In ancient China, there was a very famous competition called King Qi’s Horse Racing [3] that is a 
game in the form. By algebraic and liner programming methods, respectively, the papers [4,5] proved 
that it has infinite number of solutions. 

  In this paper, we study matrix games, called equi-average matrix games, of which all rows and all 
columns have the same average. We give a necessary and sufficient condition and a necessary condition 
for an equi-average matrix game. We also give an elementary transformation method to compute 
solutions to an equi-average matrix game. The new method is faster and more convenient. 

 

1．  AN EQUI-AVERAGE MATRIX AND ITS AVERAGE  

 

Definition 1  If average of every row (resp. column) in ( )
nmijaA

×
= is v ， then the matrix is called 

row (resp. column)- equi-average matrix, and rv  (resp. cv ) is called its row (resp. column)-average.  

If a matrix ( )
nmijaA

×
= is row-equi-average and column-equi-average, and r cv v v= = , then the 

matrix is called an equi-average matrix with the average v . 

Obviously, we have that 

 

Theorem 1  If a row (resp. column)-equi-average matrix is symmetrical, then it is equi-average.  

 
Theorem 2  If a row (resp. column)-equi-average matrix is anti-symmetrical and its average is equal 
to zero, then it is equi-average. 
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２．  TWO CONDITIONS FOR EQUI-AVERAGE MATRIX GAMES 
 

Let ( )
nmijaA

×
= be the payoff matrix of a matrix game and let  

},,2,1{ mI L= , },,2,1{ nJ L=  
be players 1’s and 2’s finite sets of pure strategies, respectively. A probability distribution on I (resp. J ) 
is called player 1’s (resp. player 2’s) mixed strategy. Let X andY be players 1’s and 2’s sets of mixed 
strategies, respectively.  

A mixed situation * *( , )x y X Y∈ × is called a game solution of a matrix game 
( )

nmijaA
×

= if  
* * * *T T TxAy x Ay x Ay≤ ≤ , ( , )x y X Y∀ ∈ × ,  

where *x and *y are called the players 1’s and 2’s optimal strategies, respectively. 
 

Definition 2   If the payoff matrix of a matrix game is an equi-average matrix with the average v , 
then the game is called equi-average matrix game with the average v . 
 

Theorem 3   A matrix game
( )

nmijaA
×

=
satisfies the logical relation )3()2()1( ⇒⇔ , 

where  
1st.  A  is an equi-average matrix game with the average v . 

2nd. ),1,,1((),( 00 mmyx L= ))1,,1( nn L and v  are game solution and game value, 
respectively.  

3rd.    * *( , )x y  is a game solution of A  if and only if * *,x y satisfies 

* * * * , 1, , ; 1, ,m T T nT
i je Ay x Ay v x Ae i m j n= = = = =L L 。  （*） 

Proof： )2()1( ⇒ . See [2]. 

)3()2( ⇒ . Let *x and *y be players 1’s and 2’s optimal mixed strategies, respectively. Then  

* * * * , 1, , ; 1, ,m T T nT
i je Ay x Ay v x Ae i m j n≤ = ≤ = =L L . 

Assume that 

0

* * *m T T
ie Ay x Ay v< =  for some )1( 00 mii ≤≤ . 

Since * , 1, ,m T
ie Ay v i m≤ = L  and )1,,1(0 mmx L=  is player 1’s optimal strategy,  

0 * * * *

1 1

1 1 1 1( , , ) ( ) ( )
m m

T T m T m T
i i

i I
v x Ay Ay e Ay e Ay v

m m m m= =

= = = = <∑ ∑L , 

a contradiction. Hence mivAye Tm
i ,,1,* L== . Similarly * , 1, ,nT

jv x Ae j n= = L . 

Conversely, let * *,x y  satisfy（*）. It is obvious that *x and *y are players 1’s and 2’s optimal mixed 
strategies, respectively.  
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)1()2( ⇒ . Let both )1,,1(0 mmx L= and )1,,1(0 nny L=  be players 1’s and 2’s 
optimal strategies, and v  game value. By )3()2( ⇒ , we have 

njmiAexvAyxAye nT
j

TTm
i ,,1;,,1,0000 LL ===== . 

Since 

mia
n

n

n
aaAye

n

j
ijini

Tm
i ,,1,1

1

1
),,(

1
1

0 LML ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∑

=

, 

nja
m

a

a

mm
Aex

m

i
ij

mj

j
nT
j ,,1,1)1,,1(

1

1
0 LML ==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= ∑
=

, and 

∑∑
= =

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

m

i

n

j
ij

mnm

n
T a

mn
n

n

aa

aa

mm
Ayxv

1 1
1

111
00 1

1

1
)1,,1( M

L

LLL

L

L , 

we obtain 

nva
m

a
m

i

n

j
ij

n

j
ij == ∑∑∑

= == 1 11

1 , 1, ,i m= L . 

Therefore we have ∑
=

=
n

j
ija

n
v

1

1
, 1, ,i m= L . Similarly nja

m
v

m

i
ij ,,1,1

1
L== ∑

=

. 

Note： )1()3( ⇒  is false. For example, consider the game ⎥
⎦

⎤
⎢
⎣

⎡
=

20
01

A . It does not satisfy（1）. 

But it is obvious that * *( , )x y is a game solution of A , where * * 1 (2,1)
3

x y= = . Since 

* 1 01 2(2,1) (1,1)
0 23 3

x A ⎡ ⎤
= =⎢ ⎥

⎣ ⎦
 and * 1 0 2 11 2

0 2 1 13 3
TAy ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, 

we have  

*
1 1

12 2( ,1 )
13 3

TxAy x x ⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
, 1*

1

2 2(1,1)
13 3

T y
x Ay

y
⎡ ⎤

= =⎢ ⎥−⎣ ⎦
, 

for any 1 1 1( ,1 ), (0 1)x x x x= − ≤ ≤  and 1 1 1( ,1 ), (0 1)y y y y= − ≤ ≤ . We so obtain 

* * * * 2
3

T T Tx Ay x Ay xAy= = = . 

In other words, the game satisfies（3）. 
 

3．  SOLVING AN EQUI-AVERAGE GAME BY LINEAR EQUATIONS  

 

Theorem 4 Let 
( )

nmijaA
×

=
be an equi-average game with the average v . Then v  is its game 
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value. And a situation YXyyxxyx nm ×∈= )),,(),,,((),( 11 LL is a game solution if and only 
if x  and y  satisfy the two systems of linear equations 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=≥

=

==−

∑

∑

=

=

mix

x

njxva

i

m

i
i

m

i
iij

,,1,0

1

,,1,0)(

1

1

L

L

and 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=≥

=

==−

∑

∑

=

=

njy

y

miyva

j

n

j
j

n

j
jij

,,1,0

1

,,1,0)(

1

1

L

L

, 

respectively. 

Proof：The games ( )
nmijaA

×
= and ( )

nmij vaA
×

−=' are equivalent.  

Theorem 5   Let rA ='Rank  and let, without lose of generality, Hermite form of the 
matrix ( )

nmij vaA
×

−='  be  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

00

00

00

00
10

01

1,

11,1

L

LLL

L

L

LLL

L

L

LLL

L

L

LLL

L

rnrr

nr

ξξ

ξξ

. 

Let nrk
r

j
jkk ,,1,1

1
L+=−= ∑

=

ξα . Then player 2’s set of optimal strategies is 

|),,,,,{( 1
11

1 rn

n

rk
rkrk

n

rk
rkk cccc −

+=
−

+=
− ∑∑ −− LL ξξ  

;,,1,0;1
11

rjcc
n

rk
jrrk

n

rk
rkk L=≤= ∑∑

+=
−

+=
− ξα },,1,0 rnjc j −=≥ L . 

Player 1 has the dual result. 

Proof：The simplest form of the second given systems of linear equations is  

                   
⎪
⎩

⎪
⎨

⎧

−−−=

−−−=

++

++

nrnrrrr

nnrr

yyy

yyy

ξξ

ξξ

L

LLL

L

11,

111,11

. 

Its general solution vectors are  
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⎟⎟
⎟
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+

1
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1
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1
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M
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rr
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n

r

r cc
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y
y

y

ξ

ξ

ξ

ξ

. 

The nonnegative solution is 

               
⎪⎩

⎪
⎨
⎧

+=≥

=≥−
=

−

+=
−∑

nrjc

rjcy
rj

n

rk
jkrk

j

,,1,0

,,1,0
1

L

Lξ
. 

When 1
1

=∑
=

n

j
jy , we have 

∑∑ ∑∑∑∑
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   Example 1 Compute the general solution to rock, scissors, paper games [2，6]. 

   Solution: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

011
101
110

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
⎯⎯→⎯ =

110
110

011
0*v

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

000
110
101

~ . 

So 1)]1()1(1[ =−−−− c or 31=c . Hence )31,31,31(),,(* == cccy . Similarly 

)31,31,31(* =x . The general solution is ((1 3,1 3,1 3), (1 3,1 3,1 3)) . 

Example 2  Solve the game [2，3] 

 ⎥
⎦

⎤
⎢
⎣

⎡
1
1

2
0

0
2

. 

Solution: 

⎥
⎦

⎤
⎢
⎣

⎡
1
1

2
0

0
2

⎥
⎦

⎤
⎢
⎣

⎡ −
−

⎯⎯→⎯ =

0
0

1
1

1
11*v

⎥
⎦

⎤
⎢
⎣

⎡ −
0
0

0
1

0
1

~ . 

1)01()]1(1[ =−+−− dc , 0≥c , 021 ≥=− dc . So )21,,(* cccy −= , 210 ≤≤ c . 
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⎯⎯→⎯
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=1*

1
2
0

1
0
2

v ~
0
1
1

0
1

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

0
0
1

0
0
1

. 

211)]1(1[2 =⇒=−−= ccc . Hence )21,21(),(* == ccx . The general solution is 

((1 2,1 2), ( , ,1 2 ))c c c− , 210 ≤≤ c . 
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