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WARM STANDBY REPAIRABLE SYSTEM
CONSISTS OF TWO COMPONENTS WITH
PRIORITY AND A UNRELIABLE SWITCH!

Li Hongxia?>  Meng Xianyun li Ning

Abstract: Based on References, the paper studies a more commonly used system in
project, that is, under the condition of unreliable switch, we study the warm standby
repairable system which consists of two components with priority and a repair facility.
A repairable model of this system is set up where both the lifetime and repaired time
of the components and the switch obey the general time-distribution and the system
fails immediately when the switch fails. Finally, several reliability indices of this
model are obtained.
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1. INTRODUCTION

Standby repairable system contains cold standby repairable system and warm standby repairable system.
The standby component replaces the failed component by the switch. The switch is instantaneous. In fact,
the switch is not perfect, and it can fail. But in order to make the questions easy, we can suppose the
switch is reliable, so the component’s lifetime determines the reliability of the system. For the above
systems, Cao Jinhua and Cheng Kan (1986) has discussed a two-unit repairable model where both the
lifetime and repaired time of the components and the switch obey the general time-distribution. The
system can fail immediately or not when the switch fails, so different models are set up based on
different situations. Peng Jiangyan and He Ping (2003) has discussed the warm standby repairable
system, which is composed of n identically distributor components and a repair equipment.
Consequently two models are set up respectively for two situations that the system fails immediately or
not when the switch fails. LiYan,Ye Erhua,Wu Qingtai (2003); Wu Qingtai (2004) Bao lintao,Zhang
Minyue and Duan Hongxing et al..(2007), described models that have been set up for the situation that
the system does not fail immediately when the switch fails. Chen Guanjuan, Meng Xianyun and Liu Yan
et al.. (2005) have discussed the warm standby repairable system, which is composed of two dissimilar
components. A model is set up for the situations when the system fails immediately when the switch fails,
but the lifetime and repaired time of the components obey exponential distribution. Under the condition
of unreliable switch, this paper studies a repairable model of the warm standby repairable system which
consists of two components and a repair facility, which is set up where both the lifetime and repaired
time of the components and the switch obeys the general time distribution and the system fails
immediately when the switch fails. We also consider the priority for different components. By using
Markov renewal process theory, some important reliability indices of the system can be derived in this
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paper.

2. THE ASSUMPTIONS OF THE MODEL

Assumption 1. The system consists of two dissimilar components, a repair facility and an unreliable
switch. The component 1 has priority in working and repair. If the component 1 is repaired when the
component 2 is working and the switch is perfect, the component 2 will stop working and the component
1 will work at once. If the component 1 fails when the component 2 is being repaired, the component 2
will be suspended and the repair facility will repair the component 1 at once. The system fails
immediately when the switch fails. If the switch and components fail, whichever component that is being
repaired will be suspended and the repair facility will repair the switch, when the switch is repaired then
the repair facility will repair the component 1 and the component 2 in turn. The switch is instantaneous
and after repair is ““as good as new’’.

Assumption 2. Because the two components are in warm standby configuration, so that a component
can fail during its standby state. The repair time of the component as a warm standby and operative are
the same.

Assumption 3. The working time X and the repair time Y; of the component i (i = 1,2.)and the
switch | (i = 3) obey the general time-distribution F, (t)and G, (t) respectively.

The working time |, of the component i (i :1,2.) as a warm standby obeys the general
time-distribution H., (t).

Assumption 4. Assume that the two components after repair are also ‘“as good as new’’. All random
variables are mutually independent.

Assumption 5. Initially, the two components are both new, and the component 1 is in working state
while the component 2 is in cold standby state.

3. SYSTEM ANALYSIS

LetN (t) denote the states of the system at timet ,so all possible states are as follows:

-2 > Component 2 is working, component 1 is under repair and the switch is perfect at time t.

-1 > Component 1 is working, component 2 is under repair and the switch is perfect at time t.

0 » Component 1 is working, component 2 is in warm standby and the switch is perfect at time t.
1 > Components are in warm standby, the switch is under repair at time t .

2 » Component 1 is waiting for repair, component 2 is in warm standby and the switch is under repair
attime t.

3 » Component 1 is in warm standby, component 2 is waiting for repair and the switch is under repair
attime t.

4 > Component 1 is under repair, component 2 is waiting for repair and the switch is perfect at time
t.

5 » The switch is under repair, component 1and component 2 are waiting for repair in turn at time t.
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It can be observed that the time points 1,2,3,4,5 are not regenerative points. Then {N (t),t 2 O}is a
Markov renewal process with state space E = {— 2,—1,0,1,2,3,4,5}. Let X (t) = ] denote the system
enters the state | attime t,and j =-2,-1,0,---,4,5.

Let T, denote the time of the system when the system performs the N step state
transition (T, = 0),and let Z, = X (T, = 0) denote the state of the system when the system carries

out the N step state transition. Q; (t)denotes c.d.f of transition time from regenerative state i to j .

From the relationships of state transfer we can know:
WO =P <tX, >V XY, QL) =P{X, <tY, > X4, X, > X, )
t)= {XzstY > X, X, > X, 1 Qut)=P{Y, <t, X, >Y,, X, >V, };
_13(t) P{X, <t,X, > X,,Y, > X, }s Q. (t)=P{X, <t,Y, > X, X5 > X, }:
)=P{Z,<t,X,>Z,,X,>Z,}:  Qu,t)=P{X, <t,Z, > X, X>x}
)=P{X, <t, X, > X,,Z, > X} Qut)=P 3st21>X3,ZZ>X3},
Q,(t)=P{Z,<t,2,>2,,Y,>2,}; Qut)=P{Z,<t,2,>2,Y,>2,}:
)= P{Zz<tY>Z} Qo (t) =P <t,Z, > Yo} Qult)=P{Z, <t.Y, > Z,}:
Q3—1(t):P{Y3—t’Zl>Y} Q. 1(t) {X <t X >X} Q54() {Yagt}

Taking Laplace-Stieltjes transforms of equations above and we can get,
Q. j e F, (t)F, (t WG, (t): j e F, ()G, (tJF, (t):
J(s)=[ e R (UG, (thR,(1): Q (s) [ e "R OR NG, (1):

= |, e *R)G, (HR, (t): Quu(s)= I e R, (t)G, (tHF (1)
Iwe O, (HR.(t): Qu(s)=
(

0

4. RELIABILITY INDICES OF THE SYSTEM

24



Li Hongxia, Meng Xianyun & Li Ning/Management Science and Engineering
\ol.1 No.2 2007 22-28

Theorem 1: Let A (t)= P{Thesystemis workingit timethesystenentersstatei at tim@),

i =—2,—1,0 .According to the definition of availability, denoted by A(t) of the system and the

relationships of state transfer we can obtain Laplace transforms of A , (t) A, (t)and A, (t) and the
steady state availability of the system is

A= !Lng%j; A (u)du =1imsA’i(s). i=-2,-10
Proof. A, (t) = P{Thesystemis workingt time|Z, =2}
= P{The systemis working at timet,T, > t|ZO = —2}
+ P{The systemis working at timet,T, <t|Z, = —2}

In the first term of above formula’s right margin, the system enters the state -2 at time 0 and start from
here, because T, >t means the system still stays in the state -2, so the system is working, we can get

P{Thesystenis workingt time, T, >tZ, =—2}=1-Q ,,(t) - Q ,,(t) ~Q ,,(t).
By using Total Probability Formula for the second term of above formula’s right margin, we can get
P{The systemis working at timet, T, <t[Z, = — }

_ZI Thesystemlsworklng attimet|Z, = j,T, =u,Z, = Z}dQ 5

jeE

= Qo (t)* A(t)
Thus, we can get the Markov Renewal equations as follows:
Az():Q () ()"’1 Q—zo() Q—zz(t) Q—24(t)
A (t) Q () ()+1_Q—10()_Q—13(t)_Q—14(t)
Ao t Qo 2() ()+Q0 1() ()"’1 Qo 2()_Q0—1(t)_Q01(t)
Taking Laplace transforms of equations above and we can get,
A (S): é—zo( ) [1 Q 20 Q 22 (S)_Q—m (S)] (O
A (S) = é—lo( ) [1 Q—lO Q—13 (S)_ 6—14 (S)] (2

Ao(5)= Qo (S)A2(5)+ Qo )R +(8)+ L1 0y (6)-0a(9)- Q)] @

Solving the above equatlons we obtain
A*o(S) _ Qo 2(1 Q—zo Q 22 Q—24)+ Qo 1(1 Q—lO Q_li _Q—14)+1_Q0—2 _Q0—1 _Q01
5(1 Qo 2szo QO—lQ—lO)

(4)
Substituting Eq. (4) with Egs. (1) and (2) yields A"_2(s)and A"-1(s).
We can see from state analysis » two of Q,_,(t),Q_,(t),Q,_,(t)and Q_,,(t) are non-lattice at
least, using the Limit theorem of Markov Renewal Process and the Tauberian theorem of Laplace
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transforms ,we can obtain
.1t : . .
A= !LrEILAi(u)du =limsA"i(s), i=-2-10.
Theorem 2. Let @, (t)= P{the time to first failure of the systemz <t[Z, =i}
i=-2,-10.
According to the definition of d)i(t) and the relationships of state transfer we can

obtain &372( ),(i)fl (s) and Ci)o(s) We also get the mean time to the first failure T, when the system

start from state I,
i—2-100T =—36 (s)_, =—®i(0) » i=-2-10.

T = [ o, () i
Proof. @ _,(t)= P{r < t|Z0 = —2}
=Pl <t,T, >z, = -2}+ P{r <t,T, <t|z, = -2}
For the first term of above formula’s right margin, because T, >t means the system still stays in the

state -2, so P{r <tT, > t|Z0 = —2}2 0.
By using Total Probability Formula for the second term of above formula’s right margin, we can get

Plr<t,T, <z, =2
=Y [Ple<tz, =T =uz,

jeE

= Q—zo (t) * cDo (t)+ Q—22 (t)+ Q—24 (t)

= 2P{T, <u,Z, = jjz, = -2}

Thus, we can get the Markov Renewal equations as follows:
o, (t) =Q 4 (t)* q)o(t)"' Q. (t)"' Qo (t)
q)—l(t) =Q (t)* @, (t)"' Qi3 (t)"' Q. (t)

D, (t) =Qu (t)* D, (t)"' QO—l(t)* ¢—l(t)+ Q01(t)

Taking Laplace-Stieltjes transforms of equations above and we can get,
(5)

ci)—2 (S) = Q—zo (S)&)o (S) + é—zz (S)+ 6—24 (S)
&)—1(5): Qo (S)&)O(S)+Q—13(S)+Q—14 (S) (6
ci)o(s): Qo2 (S)(i)fz (S)+Q071(S)<i)71(t)+Q01(S) "
Solving the above equations, we obtain
C’I‘)O (S) _ éofz ((5722 + 6:24 )j— QAO—l (?43 ,\+ (5714 )+ 601 (8)
1- Qo-zQ-zo - QO—lQ—lO
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Substituting Eq. (8) with Egs. (5) and (6) yields®_,(s)and®_,(s).

The mean time to first failure when the system starts from state lis,

00 . d o ol M
T =[to,(t) i=-2-100rT = < (s)(S:0 =—d/(0) - i=-2-10.
Theorem 3: Let N (t) denote the number of the system failures (0,t], M (t) = E{N (t)Z0 = i},

i =—2,—1,0, denote the expected number of the system failures (0, t] when the system enters the
state 1 at time 0 and starts from here. According to the definition of M, (t) and the relationships of state

transfer we can obtain M P (s) M a (S)and M 0 (S) The steady state failure frequency of the system is

M = limMi limsM,(s), i=-2,-10.

too t s—0

Proof. M _, (t) = E{N(t)Z, = -2}

=S ENZ = iT, 20,2, =200 ,, )+ ENQT, > 1.2, = 2P, >1.2,=2)

jeE

The second term of above formula’s right margin, because T, >t, Z, = —2 means the system still
stays in the up state, E{N (t)|T1 >t,Z, = —Z}P{T1 >t,Z, =—-2}=0.

The first term of above formula’s right margin, we can get

ZI; E{N (t)|zl =],T,=u,Z, :_Z}dQ—Zj(u): z I; M j(t_uhQ—zj(u)

jeE j=0,2,4

Thus, we can get the Markov Renewal equations as follows:

M_, (t) =Q_ 5 (t) *M, (t)"‘ Q. (t)+ Q2 (t)
M —1(t) =Q. (t)* M, (t)"‘ Qs (t)+ Qs (t)
M (t) = Qo () [M_, (1) + 1]+ Qo (t) # [M_; (t) + 1]+ Quu t)

Taking Laplace-Stieltjes transforms of equations above and we can get,

M _,(5)= Q.2 ($)M(5) + Q. () + Q24 (5) (9)
M—l(s):6—10(S)M0(t)+é_ls(s)+(j_14(s) (10)
Mio(s)= Qo ()% M () + 1+ Q1 ()% [V 4 () +1]+ Qsfs) ()
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Solving the above equations, we obtain

A _ (50_2 ((5_22 + (5_24 j— 1)-1— (50_1 ((?_13 A"‘ 6_14 + 1)+ (301

M, s) (12)
1- Qofz szo - QO{LQ—lO

Substituting Eg. (12)into Egs. (9) and (10) yields |\7| 5 (s)and |\7| _l(S).

Using the Tauberian theorem, we can get the steady state failure frequency of the system

M = limMi limsM, (s), i=-2,-10.

too  t s—0
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