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(H,Ω) CONJUGATE MAPS AND (H,Ω) DUALITY 
THEORY IN MULTIOBJECTIVE 

OPTIMIZATION1  
 

Feng Junwen2 
 
Abstract:  This paper is devoted to develop a duality theory  for the nonlinear 
multiobjective optimization problems which aim to find all the efficient  solutions.  
The  (H,Ω)  conjugate  maps  of  point-to-set  maps  are  defined, and their properties 
and relationships  are  discussed. The multiobjective optimization problem called 
primal problem is embedded  into a family  of perturbed problems, and the dual 
problem with multiobjectives  in  a wide sense, called the (H,Ω) conjugate dual 
problem is defined with the help of its (H,Ω) conjugate maps. The  theorems, such  as 
weak, strong  and  inverse  (H,Ω) duality,  which  describe  the relationships between 
the primal and dual problems are  developed by means of the (H,Ω)-stability. The 
concepts of (H,Ω)-Lagrangian map and saddle-point are provided,  and  it  is  shown 
that  the solution of the primal and the corresponding solution of the dual provide a 
saddle-point of the (H,Ω)-Lagrangian map. Finally, several special cases for H and Ω 
are discussed. 
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1.  INTRODUCTION 
 
In recent years, the  analysis  of  a  programming  problem  with  several incommensurable objectives 
conflicting with  each  other  has  been  a  focal issue. Such a multiobjective optimization problem 
reflects the complexity of the real world and is encountered in various fields.  An optimal solution   to 
such a problem is ordinarily chosen from the set  of  all  Pareto  optimal solutions to it. On the other  hand,  
the  duality  theory  in  multiobjective optimization has been another focal issue  for  a  long  time,  
especially  in multiobjective convex programming. It  holds  now  a  major  position  in  the 
multiobjective programming due to not only its mathematical elegance but  also its  economic  
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implications.   The first   work   on   duality   in multiobjective optimization is the one by 
Gale-Kuhn-Tucher in 1951 [5], which treated "matrix optimization" including  multiobjective  
optimization  as  a particular case. However, their result is far from a natural extension of that in 
traditional mathematical programming. Since then, there have been several developments in the duality 
theory of linear multiobjective optimization by, for example, Kornbluth [12], Isermann [6,7,8]. Above, 
all Isermann's work seems most elegant, because it keeps the parallel  formulation  to  the  traditional 
mathematical programming. For the nonlinear case, Tanino and Sawaragi [15,16,17] reported very 
attractive  results  on  both  Lagrange  duality  and  conjugate duality in a framework of natural extension 
of traditional convex programming. Their main features are that (1) they used  a  vector-valued  
Lagrangian  with vector multipliers, and (2) their duality is not “complete" in the  sense  that the dual 
solution set is not identical to the primal solution set. Especially, the point (1) is a big difference from the 
Isermann's  formulation,  in  which matrix multipliers are  used.  After  that,  Bitran[1]  tried  to  extend  
Isermann's  result  to  nonlinear  cases  by  using a linear  approximation  of nonlinear functions. 
Kawasaki [10,11] gave a complete duality with respect  to weak efficiency for  nonlinear  cases.  
Brumelle [2]   reported  a  conjugate duality for "pointwise infimum" solutions. Jahn [9] published a 
duality based on scalarization instead of using vector-valued Lagrangian. Recently, Nakayama [13] gave 
a geometric consideration of duality in multiobjective optimization. It clarifies a role of vector-valued 
Lagrangian  as  the  supporting  cone  on behalf of the supporting hyperplane in traditional mathematical 
programming.    Based on the geometrical meaning given in [13], this paper develops a new duality 
theory in multiobjective optimization by means of the   generalization of  conjugate  maps.  First, in  
section   2, the   (H,Ω)conjugate   maps   of  the vector-valued functions and point-to-set maps are defined. 
In section 3, the concept of (H,Ω) subgradient of point-to-set maps is provided. In  section  4, a 
multiobjective minimization problem is embedded  into  a  family  of  perturbed problems, and the dual 
problem in  wide  sense, called the (H,Ω)  conjugate  dual problem is defined with the help of their (H,Ω)  
conjugate  maps.  Especially, for a class of stable problems, the relationship between the primal  and  dual 
problems is made clear. In section 5, the (H,Ω) Lagrangian map and its  saddle point are discussed. It is 
shown that the solution of the primal  problem  and the corresponding solution of the dual problem 
provide a saddle point  of  the (H,Ω) Lagrangian  map.  Finally,  several  special  cases  for  H  and  Ω are 
considered. 

Before we go further, for convenience,  let  us  introduce  the  following notations.  let   
a=(a1 ,a2 ,...,ap ),  b=(b1 ,b2 ,...,bp )   be the  vectors   in p-dimensional Euclidean Space Rp. Then 

a≤=b   if and only if   ai ≤bi   for all i=1,2,...,p. 

a≤≠b   if and only if   a≤=b is not true. 

a≥=b   if and only if   ai ≥bi   for all i=1,2,...,p. 

a≥≠b   if and only if   a≥=b is not true. 

a≤b     if and only if   ai ≤bi   for all i=1,2,...,p, and a≠b. 

a<b     if and only if   ai <bi , for all i=1,2,...,p. 

Rp
+ ={a∈Rp : a≥=0 }, Rp

- =-Rp
+ . Let A, B⊆Rp , if for any a∈A, and b∈B, a≥b , we  denote it by A≥B . 

This denotation is true for the operations ≤ ,≥=, ≥≠, ≤=, ≤≠, >, and <. Furthermore, we denote P(Rn) to be 
the set of  all possible sets in Rn, and for F:Rn→P(Rp), X⊆Rn,  F(X) or ∪x F(x) to be ∪x∈X F(x). 
Sometimes, when the discussion universal of variable x is clear, we just denote ∪x F(x) to be the union of 
all possible F(x). Additionally, considering the length of the paper, we omit the proofs of all the theorems 
and corollaries. 

2.   (H,Ω) CONJUGATE MAPS                           
 
First, we define an efficient point of a set in the space Rp  as follows. Given a set A in Rp , a point a∈Rp  is 
said to  be  a  lower (respectively.,  an  upper) efficient point of A if a∈A and there is no a'∈A such that 
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a'≤a  (respectively, a'≥a), we denote this by a∈Min A (respectively, a∈Max A ). A⊆Rp   is  called  
Max-complete  if A⊆Max A+Rp

- . Similarly, A⊆Rp  is called Min-complete if A⊆Min A+Rp
+ . 

 

 

Definition 2.1 ((H,Ω) conjugate map and its inverse) 
Let  Ω  be  a  set  of functions ω: Rn→ Rm , and H be a family of vector-valued functions h: Rm→ Rp , 
where H  is  closed  under  Max-pointwise,  that  is,   such   that   H'⊆H   implies Max{h:h∈H'}⊆H. Given 
F:Rn →P(Rp ) being the point-to-set map, a point-to-set map Fc :Ω→P(H), defined by the formula:  
∀ω∈Ω,       Fc (ω)=Max{h: h∈H, h⊗ω ≥≠F} =Max{h: h∈H, h(ω(x))≥≠F(x) for ∀x∈Rn } i.e., for ∀ω∈Ω, 
t∈Rm , Fc (ω)(t)=Max(h: h∈H, h(ω(x))≥≠F(x) for ∀x∈Rn }.    Inversely, given G:Ω→P(H),  its  (H,Rn )  
conjugate  map  G* :Rn →P(Rp )  is defined by  G* =Max ∪ω∈ΩG(ω)⊗ω i.e., for ∀x∈Rn ,  G* (x)=Max 
∪ω∈ΩG(ω)(ω(x)) We call the (H,Rn) conjugate map of Fc   the (H,Ω) biconjugate map of  F,  and denote it 
by Fc*  , i.e., Fc*  =(Fc )* . 

 
Theorem 2.1   
For F:Rn →P(Rp ), if y∈F(x)and h'∈Fc(ω)  for  any  x∈Rn ,ω∈Ω,  then y≤≠h'(ω(x)), i.e., for ∀x∈Rn ,and 
ω∈Ω, F(x)≤≠Fc(ω)(ω(x)). Furthermore, F(x)≤≠Fc*(x) for ∀x∈Rn . 

Now, we give the concept of the (H,Ω)-convexity. 

 
Definition 2.2 ((H,Ω)-convexity)  
A point-to-set  map  F:Rn→ P(Rp )   will  be called  weak  (H,Ω)-convex,  (H,Ω)-convex,  strong  
(H,Ω)-convex  and  inverse (H,Ω)-convex  at  x∈Rn ,  respectively,  if  the  following  facts  are  true, 
respectively, F(x )∩F0(x )≠∅ , F(x )⊆F0 (x ), F(x )=F0 (x ), F(x )⊇F0 (x ),where F :Rn →P(Rp ), and for 
∀x∈Rn ,   F0 (x) =Max{h(ω(x)): h∈H,∈Ω, h⊗ω≥≠ωF}. Furthermore, if F is weak  
(H,Ω)-convex,(H,Ω)-convex, strong  (H,Ω)-convex  and inverse  (H,Ω)-convex  at  ∀x∈X⊆Rn , 
respectively,  we  will  call  F  weak (H,Ω)-convex, (H,Ω-convex, strong (H,Ω)-convex, and inverse 
(H,Ω)-convex on X, respectively. 

Remark. If H or Ω is taken broadly enough, for example, H=HL  being the set of the affine linear 
functions, and Ω being the set of the all  the  functions  ω:Rn →Rp ,  then  any  F:Rn →Rp (notice that m=p)  
is  (H,Ω)-convex  on  Rn .   Generally,   given F:Rn →P(Rp ), if F(x)=Max F(x) for ∀x∈Rn , then F is 
(H,Ω)-convex on Rn . 

Assumption (A1). For ∀ω∈Ω, the set {h:h∈H, h⊗ω≥≠F} is  Max-complete,  i.e.,  for  

∀t∈Rm , {h(t):h∈H, h⊗ω≥≠F} is Max-complete. 

 
 Theorem 2.2 
(1) F0 ⊆Fc*  . If (A1) is true, then F0 =Fc*  . 

(2) For G:Ω→P(H), G*  be (H,Ω)-convex point-to-set map on Rn . 

(3) Fc ≥≠F0c  , i.e., Fc (ω)≥≠F0c (ω) for ∀ω∈Ω. If F is (H,Ω)-convex  on  Rn ,  then Fc =F0c.  

(4) F0  is  (H,Ω)-convex  point-to-set  map  on  Rn .  Therefore,  F0   is  the "greatest" (H,Ω)-convex 
point-to-set map of F with  respect  to  the  ordering "≥". F0  will be called the (H,Ω)-convex map hull of 
F. 
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Corollary 2.2 
If F  is  (H,Ω)-convex  on  Rn ,  then  F(x)⊆Fc*(x)  for  ∀x∈Rn . Especially, under (A1), F(x)=Fc*(x) for 
∀x∈Rn . 

Dually, the convexity of G:Ω→P(H) is introduced as follows. 

 
Definition 2.3 ((H,Rn )-convexity)   
The point-to-set map  G:Ω→P(H)  is  called weak  (H,Rn )-convex,  (H,Rn )-convex,   strong   
(H,Rn )-convex,   and   inverse (H,Rn )-convex at ω ∈Ω, respectively, if the following are true, 
respectively, G(ω )∩G*c(ω )≠∅ , G(ω) ⊆G*c  (ω ), G(ω )=G*c  (ω ), G(ω )⊇G*c  (ω ).Furthermore, if the 
above are true for any ω∈Ω, then we will  called  G  weak (H,Rn )-convex, (H,Rn )-convex, strong 
(H,Rn )-convex, and inverse  (H,Rn )-convex on Ω,respectively. 

 
Theorem 2.3 

Under the assumption (A1), if F:Rn→P(Rp ) is (H,Ω)-convex on  Rn , then F  is strong 
(H,Rn )-convex. 
 

3.   (H,Ω)-SUBGRADIENT                        

 
Definition 3.1 ((H,Ω)-subgradient)   
Let F:Rn →P(Rp ), suppose x∈Rn , y∈F(x). F is called (H,Ω)-subdifferentiable at (x;y), if there exist 
ω∈Ω and h∈H  such that  h (ω(x))=y, and h (ω (x)≥≠F(x) for ∀x∈Rn .where ω∈Ω is  called  the  
(H,Ω)-subgradient  of  F  at  (x;y).  The  set  of (H,Ω)-subgradients of F at (x;y) is called the 
(H,Ω)-subdifferential of  F  at (x;y)  and  is  denoted   by   ∂Ω F(x;y).   Moreover,   F   is   said   to   be 
(H,Ω)-subdifferentiable at x, if ∂Ω F(x;y)≠∅ for ∀y∈F(x).  

Let  ∂Ω F(x)=  ∪y∈F(x) ∂Ω F(x;y) 

 
Theorem 3.1 
(1). If:F: Rn →P(Rp ) is (H,Ω)-subdifferentiable at  (x;y),  then  y∈Min  F(x). Hence, if F is 
(H,Ω)-subdifferentiable at x, then F(x)=Min F(x), i.e., F(x) is Min-complete. 

(2).Suppose that f:Rn →Rp , f∈Ω, and h ∈H is the identical  function,  then f is (H,Ω)-subdifferentiable at 
any x∈Rn . 

(3).Let G:Rn→ P(Rp ), and G(x)=Min F(x), h ∈H be the identical  function,  g be the induced function of 
G, i.e., g:Rn→ Rp , and g(x)∈G(x) for  ∀x∈Rn,  then, as long as g∈Ω, F is (H,Ω)-subdifferentiable at 
∀(x;g(x)). Moreover, if for any induced function g of G, we have g∈Ω, then  G  is  
(H,Ω)-subdifferentiable  at ∀x∈Rn . 

 
Theorem 3.2 
(1). F:Rn→P(Rp ) is weak (H,Ω)-convex at x∈Rn , if and only if there  exists y∈F(x) such that F is 
(H,Ω)-subdifferentiable at (x;y). 
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(2).  F:Rn →P(Rp )  is  (H,Ω)-convex  at  x∈Rn ,  if  and  only   if   F   is (H,Ω)-subdifferentiable at x. 

 
Corollary 3.2  
Let F:Rn →P(Rp ), ∂Ω F(x;y)≠∅ if and only if y∈Fc*(x). Therefore, F is (H,Ω)-subdifferentiable at x if 
and only if F(x)⊆Fc*(x). 

The relationship between the (H,Ω)-subgradient and the efficient solution  of multiple objective 
minimization problem is given as follows. 

 
Theorem 3.3   
Suppose that Ω contains the zero element 0Ω ,  i.e.,  0Ω (x)=0  for ∀x∈Rn , and H verifies the following 
properties: for ∀α∈Rn , there exists hα∈H such that hα(0Ω) =α. Then for F:Rn →P(Rp ), y∈F(x) and  
y∈Min ∪  F(x),  if  and only if 0Ω ∈∂ΩF(x;y). So, for f:Rn→Rp, f(x)∈Min ∪x f(x)}=Min{f(x):x∈Rn } if 
and only if 0Ω∈∂Ω f(x). 

The following theorem provides a relationship between the (H,Ω)-subgradient and (H,Ω) conjugate 
map. 

 
Theorem 3.4  
ω∈Ω is the (H,Ω)-subgradient of F:Rn →P(Rp ) at (x;y), if and only if y∈F(x) and y∈Fc (ω)(ω(x)). 

Dually, the subgradient concept of G:Ω→P(H) is defined as follows. 

 
Definition 3.2 ((H,Rn )-subgradient)  
Suppose that G:Ω→P(H), ω ∈Ω and h∈G(ω ), G is said to be the (H,Rn )-subdifferentiable at (ω; h) if 
there exists x∈Rn such that h(ω(x ))∈G*(x ), and x  is called the (H,Rn )-subgradient of G at (ω ;h),  and 
is denoted by ∂H G(ω ;h). Moreover, if ∂H G(ω ;h)≠∅ for ∀h∈G(ω ),  then  G  is called the 
(H,Rn )-subdifferentiable at ω∈Ω. Denote ∂H G(ω )=  ∪h∈G(ω)   ∂H G(ω ;h) 

For the (H,Ω)-subgradient  and  (H,Rn )-subgradient,  the  following  result describes their 
relationship. 

 
Theorem 3.5   
F:Rn →P(Rp ). If ω∈∂Ω F(x ;y), then  there  exists  h∈Fc (ω) such that x ∈∂H Fc (ω;h). Inversely, if F is 
strong (H,Ω)-convex at x , and  (A1)  is true, and x ∈∂HFc(ω;h), then there must exist y∈F(x )such that ω 
∈∂Ω F(x ;y) 

 

4.   (H,Ω) CONJUGATE DUALITY THEORY IN MULTIOBJECTIVE 
OPTIMIZATION      

 
In  this  section,  we  are  concerned  with  a  so-called  multiobjective minimization problem which aims 
to minimize several incommensurable objective point-to-set functions simultaneously. We define a  dual  
problem  in  a  wide sense and examine the relationship between the primal  problem  and  the  dual 
problem. 



Feng Junwen/Management Science and Engineering  
 Vol.1  No.1  2007 33-44 

 38

We are concerned with the following multiobjective set-valued minimization problem: 

       (MP)    Min {F(x): x∈X} 

where F:Rn →P(Rp ), X⊆Rn . Problem (MP) will be termed the primal problem. 

We analyze (MP) by embedding it  into  a  family  of  perturbed  problems. Consider  the  
p-dimensional  set-valued  function  Φ:X×U→P(Rp )   such   that Φ(x,0)=F(x) for ∀x∈X. where U⊆Rl  
for some integer l, is the subset of Rl  containing 0. U will be call the perturbed space. For every u∈U, the 
following minimization problem shall be considered: 

     (MPu )     Min {Φ(x,u): x∈X } 

Clearly, for u=0, (MPu) is none other than (MP).  Problems  (MPu ) will be called perturbed problems 
of (MP) with respect to the given perturbation Φ. 

Let Ωk  be a set  of functions ω:Rk →Rm , where k can be any  integer number. H is the same as section 
2, i.e., it is a family of functions h:Rm→Rp , closed under Max-pointwise. Especially, denote Ω*=Ωn 
⊕Ωl , Ω=Ωl , where ω*∈Ω*  if and only  if  there  exist  ω∈Ωn,  θ∈Ωl   such  that  ω*(x,u)=ω(x)+θ(u)  for 
∀(x,u)∈X×U. 

Taking (H,Ω ) conjugate for Φ:X×U→P(Rp ), we have by theorem 2.1: 

  

Φc (ω,θ)(ω(x)+θ(u))≥≠Φ(x,u)     for ∀(ω,θ)∈Ωn×Ω  

Suppose that Ωn  contains the zero element 0Ω , that is, 0Ω (x)=0 for ∀x∈Rn . Setting ω=0Ω , u=0, we 
obtain 

Φc (0Ω ,θ)(θ(0)) ≥≠ Φ(x,0) for ∀x∈X, θ∈Ω. 

 

This motivates the following definition: 

Definition 4.1  
The following problem 

     (MD)     Max  ∪θ∈Ω Φc (0Ω ,θ)(θ(0)) 

will be called the (H,Ω) conjugate dual problem of (MP) with  respect  to  the perturbation Φ, briefly 
called  the  dual  problem.  Moreover,  the  following perturbed set-valued optimization problem: 

     (MDu )    Max  ∪θ∈Ω  Φc (0Ω ,θ)(θ(u)) 

will be called the (H,Ω) conjugate dual problem of the perturbed problem (MP).  

 
Definition 4.2  

x∈X is said to be the efficient solution of (MP), if 

        Φ(x,0)∩ Min ∪x Φ(x,0)≠∅ 

Similarly, θ∈Ω is said to be the efficient solution of (MD), if 

        Φc (0Ω ,θ)(θ(0))∩ Max ∪θ∈Ω Φc (0Ω ,θ)(θ(0))≠∅  

Let    Min(MP)=Min  ∪x  Φ(x,0) 

         Max(MD)=Max  ∪θ∈Ω  Φc (0Ω ,θ)(θ(0)) 

 

The first dual result between (MP) and (MD) is the following theorem. 
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Theorem 4.1 ((H,Ω) weak duality theorem) 

(1). For ∀x∈Rn , and θ∈Ω, we have Φc (0Ω ,θ)(θ(0))≥≠ Φ(x,0) 

(2).  If  x∈X,θ∈Ω,and  Φc (0Ω ,θ)(θ(0)) ∩Φ(x,0)≠∅,  then  x  and  θ are  the efficient solutions of (MP) 
and (MD), respectively, and Min(MP)∩Max(MD)≠∅ . 

(3). If there exist x∈X  such  that  Φ(x,0) ∩  Max(MD)≠∅,  then  x  is  the efficient solution to (MP) 
and there exists the  common  efficient  point  for (MP) and (MD). 

(4). Suppose that θ∈Ω satisfies  Min(MP)∩Φc (0Ω ,θ)(θ(0))≠∅, then θ is the efficient solution to 
(MD), and there exists the common  efficient  point  for (MP) and (MD). 

 

Definition 4.3  
The (H,Ω) conjugate dual gap between (MP) and (MD) is said  to be weakly zero, zero,  strongly  zero,  
and  inversely  zero, respectively,  if, respectively,   Min(MP)∩Max(MD)≠∅,   Min(MP)⊆Max(MD), 
Min(MP)=Max(MD),   and Min(MP) ⊇ Max(MD). 

 
Definition 4.4   
The  primal  perturbation  map  P:U→P(Rp )  and  the  dual perturbation map D:Ωn →P(H) are defined by 

  P(u)=Min  ∪x Φ(x,u)  for ∀u∈U 

   D(ω)(t)=Max  ∪θ∈Ω Φc (0Ω ,θ)(t+θ(0)) for ∀ω∈Ω , t∈Rm . 

Assumption (A2). The set   ∪x Φ(x,u) is Min-complete for ∀u∈U. 

Assumption (A3). The set   ∪θ∈ΩΦc (ω,θ)(ω(x)+θ(0)) is Max-complete for ∀ω∈Ω ,x∈X. 

Assumption (A4). The set {h: h∈H, h⊗θ≥≠P } is Max-complete for ∀θ∈Ω, i.e.,  for ∀θ∈Ω,t∈Rm , 
{h(t): h∈H, h⊗θ≥≠P } is Max-complete. 

Associating with P its (H,Ω) conjugate map Pc , D its (H,Rn ) conjugate  map D* , we have the 
following result. 

 

Theorem 4.2  
(1). Φc (0Ω ,θ)≥≠Pc (θ)  for ∀θ∈Ω. Under assumption (A2), Φc (0Ω,θ)=Pc(θ) for ∀q∈Ω. 

(2). Φc* (x,0)⊆D* (x) for ∀x∈X. Under Assumption  (A3),  Φc*(x,0)=D*(x)  for ∀x∈X. 

According to this theorem, under (A2), (MD) can be rewritten as  

      (MD)      Max  ∪θ∈Ω Pc (θ)(θ(0)) 

Hence, Max(MD)=Pc*(0). On the other hand, by the  definition  of  P,  we  have Min(MP) =P(0).  If 
we define the (H,Rn ) dual problem of (MD) to be 

      (MP')     Min  ∪xψ*(x) 

where ψ:Ωn→P(H) is defined by  

       ψ(ω)(t)=  ∪θ∈Ω Φc (ω,θ)(t+θ(0)) 

then under (A3), (MP') can be rewritten as 
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       (MP')    Min  ∪x D*(x). 

It is easily shown that ψ*(x)=Φc*(x,0), for ∀x∈X. 

 
Corollary 4.2  
Under (A4), (A2), the (H,Ω)  conjugate dual gap between (MP) and (MD) is weakly zero, zero, strongly 
zero, and inversely zero, respectively,  if and only if the primal perturbation map P is weak (H,Ω)-convex,  
(H,Ω)-convex, strong (H,Ω)-convex at 0∈X, and P0(0)⊆P(0), respectively. 

 
Definition  4.5 (stability)  
(MP) is called   (H,Ω)-stable,  if  P  is (H,Ω)-subdifferentiable at 0∈U. Correspondingly, (MD) is called 
(H,Rn )-stable, if D is (H,Rn )-subdifferentiable at 0Ω ∈Ω . 

 
Theorem 4.3  
Under the complete conditions A2 and A4, Eff(MD)⊆∪ ∂Ω P0(0;y), where Eff(MD) denotes the set of 
efficient solutions to (MD). Moreover,  if  P is (H,Ω)-convex map on U, then Eff(MD)=  ∪y∂Ω P0(0;y). 

Based on the (H,Ω)-stability and  (H,Ω)-subgradient,  we  have  the  following strong duality. 

 
Theorem 4.4 ((H,Ω) strong duality theorem)   
Under the assumption (A2), 

(1) (MP) is (H,Ω)-stable, if and only if for every efficient solution  x∈X to (MP) and y∈Φ(x,0)∩ P(0), 
there exists θ∈Ω as the efficient solution  to (MD), such that y∈Φc(0Ω ,θ)(θ(0)).  Therefore, for every 
y∈P(0)∩Φ(x,0),  there exists θ∈Ω such that y∈Pc (θ)(θ(0)), i.e., θ∈∂Ω P(0;y). 

(2) Suppose that P(0)≠∅, that is, Eff(MP)≠∅. Then, (MD) has the  efficient solution, i.e., 
Eff(MD)≠∅, and the dual gap is zero between (MP) and (MD), if and only if ∂ΩP(0;y) ≠∅  for  ∀y∈P(0).  
In  this  time,  Eff(MD)⊇  ∪y ∂ΩP(0;y). Furthermore, if the dual gap between (MP) and  (MD)  is  strongly  
zero,  than Eff(MD)=  ∪y ∂Ω P(0;y). 

Theorem 4.5  
Under the assumption (A2), suppose that there exists h0∈H  being an identical element, i.e., h0(t)=t for 
∀t∈Rm , and for every induced  function  θ of P, θ∈Ω, then P is (H,Ω)-subdifferentiable  at  0∈U,  hence,  
(MD)  has  the efficient solution and P(0)⊆Pc*(0), that is, the dual  gap  between  (MP)  and (MD) is zero. 

This theorem shows that, taking H={hb: hb(t)=t+b (∀t∈Rm )  , b∈Rp  }(p=m), as long as Ω is broad 
enough, then (MD) has the efficient solution and dual  gap  between (MP) and (MD) is zero. The way to 
take Ω can be  implemented  based  on  the primal problem (MP). 

Assumption  (A5).  {h:  h∈H,  h(ω(x)+θ(u))≥≠Φ(x,u)  for  ∀x∈X, and  u∈U}is Max-complete for 
∀ω∈Ωn  ,θ∈Ω. 

 
Theorem 4.6 ((H,Ω) strong duality theorem)     
Suppose  that  for  ∀x∈X,  Φ  is strong (H,Ω )-convex or inverse (H,Ω )-convex at (x,0)∈X×U, and the 
assumption (A5) is true. 
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(1). Eff(MD)≠∅ and the  dual gap is weakly zero, if and only if  there  exists z∈ψ(0Ω)   such that 
∂Hψ(0Ω,z)≠∅, so Eff(MP)≠∅. In this time, Eff(MP)⊇∪z∂Hψ(0Ω;z).  Furthermore, if  the  dual  gap  is  
zero,  then Eff(MP)=∪z∂Hψ(0Ω;z). Under the assumption (A3), substituting ψ for  D,  the  above  
conclusion  is still true. 

(2). Eff(MD)≠∅ and the dual gap is inversely zero,  i.e.,  Max(MD)⊆Min(MP), if and only if for 
every z∈Max ψ(0Ω), therefore z∈ψ(0Ω),  ∂Hψ(0Ω;z)≠∅.  In this time, Eff(MP)≠∅ and Eff(MP)⊇∪z ∂H 
ψ(0Ω;z).  Furthermore, if  the dual gap is zero, than              Eff(MP)=   ∪z∂H ψ(0Ω;z). Under the 
assumption (A3), substituting ψ for D, the above  conclusion  is still true. Notice that D(ω)=Max ψ(ω) 
for ∀ω∈Ω . 

(3). Under assumptions (A2) and (A3), (MP)  is  (H,Ω)-stable  and  (MD)  is (H,Rn )-stable, if and 
only if  Eff(MP)≠∅,  Eff(MD)≠∅,  and  the  dual  gap  is strongly zero. 

(4). If the dual gap is strongly  zero,  then  Eff(MP)≠∅  if  and  only  if Eff(MD)≠∅. 

 
Definition 4.6 (normality)  
If P is weak (H,Ω)-convex,  (H,Ω)-convex,  strong (H,Ω)-convex and inverse (H,Ω)-convex at 0∈U, 
respectively, then (MP) is said weak (H,Ω)-normal,(H,Ω)-normal,, strong (H,Ω)-normal and inverse 
(H,)-normal, respectively. Dually,  if  D  is  weak  (H,Rn )-convex,  (H,Rn )-convex,  strong 
(H,Rn )-convex and inverse (H,Rn )-convex, respectively, then (MD) is said  weak 
(H,Rn )-normal,(H,Rn )-normal, strong (H,Rn )-normal and inverse (H,Rn )-normal. 

 
Corollary   
Under the assumptions (A2) and (A3), suppose that for  ∀x∈X,  Φ  is strong (H,Ω )-convex at 
(x,0)∈X×U, then the dual gap  is  weakly  zero,  zero, strongly zero and inversely zero, if and only if (MP) 
is weak (H,Ω)-normal  or equivalently (MD) is weak (H,Rn )-normal, (MP) is (H,Ω)-normal or  
equivalently (MD) is inverse (H,Rn )-normal, (MP) is  strong  (H,Ω)-normal  or  equivalently (MD) is 
(H,Rn )-normal, and (MP) is inverse (H,Ω)-normal or  equivalently  (MD) is (H,Rn )-normal, 
respectively. 

 

5.   (H,Ω)-LAGRANGIAN MAP AND SADDLE POINTS 
               
In this section, we will define the  (H,Ω)-Lagrangian  map  of  (MP)  and investigate the properties of its 
saddle-points. 

 
Definition 5.1 ((H,Ω)-Lagrangian map)    The  point-to-set  map  L:X×U→P(Rp ) defined 
by the formula: 

       L(x,θ)=Φx(θ)(θ(0)) for ∀(x,θ)∈X×Ω 

is called the (H,Ω)-Lagrangian map of (MP) relative to the given  perturbation Φ, where 
Φx :U→P(Rp ) for ∀x∈X is defined by  Φx (u)=Φ(x,u) for ∀u∈U. 

First, we will discuss the expressions of (MP) and (MD) in  terms  of  the map L. 

Assumption (A6). For ∀x∈X, {h: h∈H, h⊗θ≥≠Φx } is Max-complete. 

Assumption (A7). For ∀x∈X, Φx  is (H,Ω)-convex at 0∈U. 

Assumption (A8). For ∀θ∈Ω,x∈X,u∈U, and y∈Φx(u), there exists h∈Φx
c(θ ) such that h(θ(u))≤≠y. 
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Assumption (A9). For ∀θ∈Ω, y∈Φx
c (0Ω,θ)(θ(0)), there exists no  x∈X  such  that y≤≠Φx

c (θ)(θ(0)). 

 
Theorem 5.1 

(1). Under the assumptions (A5) and (A7), F(x,0)=Max  ∪θ∈Ω L(x,θ)  ,and  (MP) can be expressed as    
Min ∪x{Max  ∪θ L(x,θ)} . 

(2). Under the assumptions (A6) and (A7), for ∀θ∈Ω,we have Φx
c (0Ω,θ)(θ(0))⊆Min ∪x L(x,θ). 

Furthermore, if H is  closed  Min-pointwise  and (A5),(A8) are true, then Φx
c (0Ω,θ)(θ(0))=Min ∪x L(x,θ) 

for ∀θ∈Ω, and (MD) can be expressed as     Max  ∪θ{Min  ∪x L(x,θ)}. 

 
 

Definition 5.2 (saddle-point)   
(x,θ)∈X×Ω is called the saddle-point of map L, if 

        L(x,θ)∩(Max ∪θL(x,θ))∩(Min ∪xL(x,θ))≠∅. 

The relationship  between  the  saddle-points  of  map  L  and  the  efficient solutions to (MP) and (MD) 
is given as follows. 

 
Theorem 5.2  
Under the assumptions (A5)---(A9), suppose that  H  is  closed Min-pointwise. Then 

(1) x∈Eff(MP), θ∈Eff(MD) and Φ(x,0)∩Φx
c( 0Ω,θ)(θ(0))≠∅ if and only  if  (x,θ) is the saddle-point 

of map L. 

(2) under the assumption (A2), if (MP) is (H,Ω)-stable or the dual  gap  is zero, then x∈Eff(MP) if 
and only if there exists θ∈Ω such that  (x,θ)  is  the saddle-point of map L. 

(3) under the assumption (A3), if (MD) is (H,Rn )-stable  or  the  dual  gap is inversely zero, then 
θ∈Eff(MD) if and only if there  exists  x∈X  such  that (x,θ)  is the saddle-point of map L. 

 

6.  SOME SPECIAL CASES FOR H AND Ω  
                       

Case 1   
Consider the following multiobjective convex programming problem: 

 (MCP)    Min{f(x):x∈X}, X={x∈X’: g(x)≤=Q 0, X'⊆Rn  } 

where  

(1) Q is the pointed closed  convex  cone  with  the  nonempty  interior int(Q)≠∅ in Rm  ; 

(2) f:Rn →Rp , continuous; 

(3) g:Rn →Rm , continuous and Q-convex. 

       H={hb :hb(t)=-t+b (∀t∈Rp ), b∈Rp  } 

       Ω={Λ∈Rp×m   : ΛQ⊆Rp  } 

and perturbation map Φ is vertical, given by  Φ(x,u)=f(x) for x∈X′ and g(x)≤=Q , u∈Rm, otherwise 
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Φ(x,u)=+∞. 

Under some proper conditions, the (H,Ω) conjugate dual  problem  (MCD)  of (MCP) is the same as 
the dual problem discussed in [13] with the corresponding domination cone being positive Rm+ . 
Therefore, the dual results of [13] can be considered as the special case of this paper. Especially, for the 
linear case, the duality results of [8] are the special case in this paper. 

 
Case 2   
Consider the following nonlinear programming problem: 

    (NP) min {f(x): x∈X}  X={x: g(x)≤=0,x∈X'⊆Rn }. 

where f:Rn →R, g:Rn →Rm . Let p=1, then the duality results of this  paper  are the same as [3,4]. 

 

7.   CONCLUDING REMARKS                               
 
In this paper, we have  developed  a  duality  theory  for  multiobjective optimization, and that for 
multiobjective programming is the special case  for special Φ, with the help of the generalized conjugate 
map. The approach  taken in this paper is based on efficiency (Pareto optimality) and some  interesting 
results parallel with the well-known ordinary conjugate duality are  obtained. For the multiobjective 
convex optimization  problem,  the  form  of  H  and  Ω discussed in section 6 is enough for developing 
the necessary duality results. But for the multiobjective nonconvex optimization problem, such a  form  
of  H and Ω is not enough, and other families of H and Ω need to be  developed.  How to select properly 
the form of H and Ω such that the duality can  be  used  to make decision analysis for multiobjective 
problems is a program to be researched further. 

However, there are  some  unsatisfactory  points  for  the  (H,Ω)  duality theory, since the concept of 
"vector supremum" or "vector  infimum"  based  on efficiency is not well defined. One possible way to 
define  "vector  supremum" is given by  Sup A=Max clA, where A⊆Rp , clA denotes the topological 
closure of set A. As yet, there has  been  no  development  of  Sup  or  Inf  playing  an effective role in 
duality for efficient solutions. This should be  the  subject of further research. Kawasaki [10,11] provided  
some  interesting  results  by defining conjugate and  subgradients  via  weak  supremum.  His  approach  
is, however, artificial and so very  difficult  to  understand,  and  weak  Pareto optimality is not a good 
solution concept as Pareto optimality.  Hence,  we have adopted the more intuitive approach in this paper. 
The interested readers may refer to his papers or Sawaragi et al [14]. 

There are some possible generalizations which perhaps  can  be  useful  in multiobjective nonconvex 
duality theory. 

(a). A first  generalization  can  be  made  by  replacing  the  family  of vector-valued functions H or Ω 
by more general family of set-valued functions. 

(b). Another possible generalization can be  obtained  by  taking  H= ∪Hω , where Hω  is a family of 
vector-valued functions depending upon ω∈Ω, and  Ω  is given as in this paper. 

(c). Finally, we have discussed the duality in finite-dimensional Euclidean space. Similarly, we can 
extend the discussion to the case in some topological space, which will lead the conclusion of duality 
theory to its applications in the optimal control problem and variational problem. 
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