converge uniformly to u in PC_T . Subsequently, the lemma can be proved in an argument similar to Lemma 3.1 of Chen (2013).

Remark 3.2. From (H_5) , it follows that there exist numbers $l_k \ge 0, k = 1, ..., m$, such that

 $\chi(I_k(D)) \le l_k \chi(D)$

for any bounded set

Theorem 3.1. Let the assumptions (H_1) - (H_5) hold.

where ω is the solution of the following integral equation

$$\omega(t) = N_1 + 2M \int_0^{\infty} \eta(s) \omega(s) \, \mathrm{d}s,$$

where

One can find that is closed, bounded and convex.

T as Let us define the multi-valued map follows:

where is the unique mild solution of the problem (3)corresponding to . In fact, (H_6) and (4) ensure the uniqueness of the mild solution of the problem (3). We first claim that . Indeed, taking

and , there exists such that , it follows from (H_2) and (H_4) that For each

Assume further that X is reflexive and T(t) is uniform operator topology continuous for t > 0, then for each

, problem (1) has at least one mild solution provided that

(4)

then $D_{n'}$ is closed and convex. It is further easy to see that

Define

Then is nonempty and closed convex subset of PC_{T} , and

In the sequel, we will show that is compact. Let us introduce the following MNC in PC_T : for a bounded set

(5)

where $\Delta(\Omega)$ is the collection of all countable subsets of Ω and the maximum is taken in the sense of the partial order in the cone R_{+}^{2} . It is noted that β satisfies all usual properties of MNC, including the regularity (see e.g., Chuong, 2012; Obukhovskii, 2010).

By the definition of β , there exists a sequence $\{v_n\} \subset D$ such that

		For	, it is easy to see t	that . Let us
		take	such that	. Then, it follows
here we have used		from (H_2) that for every and $s < t$,		
				(6)
This implies Let	, and then one has	where	. Tł	nis yields that the
		set is integral bounded in $L(J; X)$. Also, in		
	con	view of (2) a	view of (2) and (H_3), it yields that for every $t \in J$ and $s < t$,	

(7)

Then, by (2), (7), Lemma 2.3 and Remark 3.2, one obtains that for each

$$\begin{split} \chi(\{v_n(t)\}) &\leq \chi\left(\left\{\int_0^t T(t-s)f_n(s)\mathrm{d}s\right\}\right) + \chi\left(\left\{\sum_{0 < t_k < t} T(t-t_k)I_k(v_n(t_k))\right\}\right) \\ &\leq \left(4M \| \mu\|_{L(J;\mathbb{D}^+)} + M\sum_{k=1}^m I_k\right)\xi(\{v_n\}). \end{split}$$

4