converge uniformly to u in $P C_{T}$. Subsequently, the lemma can be proved in an argument similar to Lemma 3.1 of Chen (2013).

Remark 3.2. From $\left(H_{5}\right)$, it follows that there exist numbers $l_{k} \geq 0, k=1, \ldots, m$, such that

$$
\chi\left(I_{k}(D)\right) \leq l_{k} \chi(D)
$$

for any bounded set $D \subset X$.
Theorem 3.1. Let the assumptions $\left(H_{1}\right)-\left(H_{5}\right)$ hold.

Assume further that X is reflexive and $T(t)$ is uniform operator topology continuous for $t>0$, then for each $\varphi \in C_{h}$, problem (1) has at least one mild solution provided that

$$
\begin{equation*}
4 M\|\mu\|_{L\left(J ; \square^{+}\right)}+M \sum_{k=1}^{m} l_{k}<1 . \tag{4}
\end{equation*}
$$

Proof. For $\varphi \in C_{h}$, let

$$
\mathcal{D}_{0}=\left\{u \in P C_{T}: u(t)=\varphi(t) \text { for } t \in[-h, 0], \text { and } \sup _{s \in[0, t]}\|u(s)\| \leq \omega(t) \text { for all } t \in J\right\}
$$

where ω is the solution of the following integral equation

$$
\omega(t)=N_{1}+2 M \int_{0}^{t} \eta(s) \omega(s) \mathrm{d} s
$$

where

$$
N_{1}=M\|\varphi(0)\|+M \sum_{k=1}^{m} c_{k}+\left(M+M\|\varphi\|_{\mathcal{C}_{h}}\right)\|\eta\|_{L\left(J ; R^{+}\right)}
$$

One can find that $\mathcal{D}_{0} \subset P C_{T}$ is closed, bounded and convex.

Let us define the multi-valued map $\mathcal{F}: P C_{T} \rightarrow 2^{P C_{T}} T$ as follows:

$$
\mathcal{F}:=\mathcal{G} \circ \operatorname{Sel}_{F},
$$

where $\mathcal{G}(f)$ is the unique mild solution of the problem (3) corresponding to $f \in L(J ; X)$. In fact, $\left(H_{6}\right)$ and (4) ensure the uniqueness of the mild solution of the problem (3).

We first claim that $\mathcal{F}\left(\mathcal{D}_{0}\right) \subset \mathcal{D}_{0}$. Indeed, taking $u \subset \mathcal{D}_{0}$ and $v \in \mathcal{F}\left(\mathcal{D}_{0}\right)$, there exists $f \in \operatorname{Sel}_{F}(u)$ such that $v=\mathcal{G}(f)$. For each $t \in J$, it follows from $\left(H_{2}\right)$ and $\left(H_{4}\right)$ that

$$
\begin{aligned}
\|v(t)\| & \leq M\|\varphi(0)\|+M \int_{0}^{t}\|f(s)\| \mathrm{d} s+M \sum_{0<t_{k}<t}\left\|I_{k}\left(u\left(t_{k}\right)\right)\right\| \\
& \leq N_{1}+2 M \int_{0}^{t} \eta(s) \sup _{\sigma \in[0, s]} u(\sigma) \mathrm{d} s \\
& \leq N_{1}+2 M \int_{0}^{t} \eta(s) \omega(s) \mathrm{d} s \\
& =\omega(t),
\end{aligned}
$$

here we have used

$$
\left|u_{s}\right|_{0}=\sup _{\sigma \in[-h, 0]}\|u(s+\sigma)\| \leq\|\varphi\|_{C_{n}}+\sup _{\sigma \in[0, s]}\|u(\sigma)\| .
$$

This implies $v \in \mathcal{D}_{0}$, and then one has $\mathcal{F}\left(\mathcal{D}_{0}\right) \subset \mathcal{D}_{0}$.
Let

$$
\begin{align*}
\mathcal{D}_{n^{\prime}+1}=\overline{\operatorname{con} v} \mathcal{F}\left(\mathcal{D}_{n^{\prime}}\right), \quad n^{\prime}=0,1,2, \cdots, & \text { view of }(2) \text { and }\left(H_{3}\right), \text { it yiel } \\
\chi\left(\left\{T(t-s) f_{n}(s)\right\}\right) & \leq M \mu(s)\left[\chi\left(\left\{v_{n}(s)\right\}\right)+\sup _{\sigma \mathrm{G}-h, 0]} \chi\left(\left\{v_{n}(s+\sigma)\right\}\right]\right. \tag{7}\\
& \leq 2 M \mu(s) \xi\left(\left\{v_{n}\right\}\right) .
\end{align*}
$$

Then, by (2), (7), Lemma 2.3 and Remark 3.2, one obtains that for each $t \in J$,

$$
\begin{aligned}
\chi\left(\left\{v_{n}(t)\right\}\right) & \leq \chi\left(\left\{\int_{0}^{t} T(t-s) f_{n}(s) \mathrm{d} s\right\}\right)+\chi\left(\left\{\sum_{0<t_{k}<t} T\left(t-t_{k}\right) I_{k}\left(v_{n}\left(t_{k}\right)\right)\right\}\right) \\
& \leq\left(4 M\|\mu\|_{L\left(J ; \square^{+}\right)}+M \sum_{k=1}^{m} l_{k}\right) \xi\left(\left\{v_{n}\right\}\right) .
\end{aligned}
$$

