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converge uniformly to u in PCT. Subsequently, the lemma 
can be proved in an argument similar to Lemma 3.1 of 
Chen (2013).

Remark 3.2. From (H5), it follows that there exist 
numbers lk ≥ 0,k =1,...,m, such that

χ(Ik(D)) ≤ lk χ(D)
for any bounded set 

d

Theorem 3.1. Let the assumptions (H1)-(H5) hold. 

Assume further that X is reflexive and T(t) is uniform 
operator topology continuous for t > 0, then for each 

d

, problem (1) has at least one mild solution 
provided that

  

d

 (4)

Proof. For 
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, let

dwhere ω is the solution of the following integral equation
d

where
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One can find that 

d

 is closed, bounded and 
convex.

Let us define the multi-valued map

d

T as 
follows:
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where 
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 is the unique mild solution of the problem (3) 
corresponding to 

d
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. In fact, (H6) and (4) ensure 
the uniqueness of the mild solution of the problem (3).

We first claim that

d

d

d

con
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, it follows from (H2) and (H4) that
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here we have used
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This implies 
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, and then one has 
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then Dn' is closed and convex. It is further easy to see that
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Then 
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 is nonempty and closed convex subset of PCT, 
and 
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.
In the sequel, we will show that 
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 is compact. Let us 
introduce the following MNC in PCT : for a bounded set 
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where Δ(Ω) is the collection of all countable subsets of 
Ω and the maximum is taken in the sense of the partial 
order in the cone . It is noted that β satisfies all usual 
properties of MNC, including the regularity (see e.g., 
Chuong, 2012; Obukhovskii, 2010).

By the definition of β, there exists a sequence 
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such that

d

For

d

, it is easy to see that 
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. Let us 
take 

d

 such that 
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. Then, it follows 
from (H2) that for every 

d

 and s < t,
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w h e r e

d

.  T h i s  y i e l d s  t h a t  t h e 
set

d

 is integral bounded in L(J; X). Also, in 
view of (2) and (H3), it yields that for every t J   and s < t,

d

         (7)

Then, by (2), (7), Lemma 2.3 and Remark 3.2, one obtains that for each 
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,
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