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Abstract
Market demand and inventory are usually known in 
traditional DEA-based resource allocation method. 
However, market demand is always changing according 
to the market discipline. Thus, it is not rigorous to view 
market demand as constant. To cope with the uncertain 
demand, we further develop our mathematical model 
and impose the normality assumption for the stochastic 
product demands. In the end, a numerical example with 
hypothetical production data is used to illustrate the 
model.
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INTRODUCTION
Nowadays, production planning becomes a hot issue. 
Many factors should be considered in the production 
planning process, such as inventory, market demand, and 
raw material and so on. Organizations always pursue the 
maximum of the profit and the minimum of the cost which 
is discussed by many researches. Fisher et al. (2001) built 
a cost-based minimization model based on the assessment 
of ending inventory to deal with a production planning 
problem. Leung et al. (2003) also constructed a multi-
objective model to cope with a centralized decision-

making situation. The profit was maximized during the 
process.

During recent production planning researches, people 
usually assume that the market demand is known in the 
model. However, Demand is always changed according 
to the environment. Thus, the uncertainty was always 
neglected in the past researches. It is obviously not 
always a realistic assumption. Deterministic planning 
methods may produce unreasonable results when the 
effect of demand uncertainty is not captured. Without the 
description of demand uncertainty could lead to either 
loss of market share and unsatisfied customer demand 
or excessively high inventory holding costs (Petkov & 
Maranas, 1998). It may also happen that the data available 
to the decision makers can vary within some limits due 
to various reasons. For example, the demands are always 
stochastic in nature, due to market trends, seasonality, etc. 
One of the key sources of uncertainty in the production-
planning system is demand uncertainty (Gupta & Maranas, 
2003).  Thus, it is necessary to consider the influence of 
demand uncertainty involved in the production process. To 
cope with such uncertainty, stochastic models including 
demand uncertainty are desirable in planning future 
activities. Bertrand and Rutten. (1999) investigated three 
different production-planning procedures that make use 
of recipe flexibility to cope with uncertainty in demand 
and supply. These three procedures were investigated via 
an experimental design of computer simulations of an 
elementary small scale model of the production planning 
situation. Gupta and Maranas (2000) proposed a two-
stage, stochastic programming approach is proposed for 
incorporating demand uncertainty in multi-site midterm 
supply-chain planning problems. Sodhi and Tang 
(2009) extended the linear programming (LP) model 
of deterministic supply-chain planning to take demand 
uncertainty and cash flows into account for the medium 
term. Their survey could be a basis for making modeling/
solution choices in research and in practice to manage the 
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risks pertaining to unmet demand, excess inventory, and 
cash liquidity when demand is uncertain. In the following, 
a general form and a specific form of stochastic scenario 
are presented, which extends our analyses in the previous 
section to incorporate the uncertainty

Since Data envelopment analysis (DEA) was first 
developed by Charnes, Cooper, and Rhodes (1978), it 
has been widely used on the measurement of the relative 
efficiency of Decision Making Units (DMUs) involving 
multiple-input and multiple-output. The DEA technique 
is a nonparametric method which does not need any prior 
information about quantifying or weighing qualitative 
factors. Du et al. (2010) addressed two DEA-planning 
ideas for arranging new input-output combinations in the 
next period given the forecasted demand changes. One is 
to optimize the average production efficiency within the 
whole organization measured by CCR efficiency, and the 
other is to maximize total output while simultaneously 
minimize the total inputs expended in the production 
process. However, many DEA models proposed by 
Charnes and other scholars were deterministic. DEA 
models and concepts are formulated in terms of the 
“P-Models” of Chance Constrained Programming, which 
is then modified to contact the “satisficing concepts” of 
H.A. Simon. (Cooper, Huang, & Li, 1996)

Through the summary of the past papers, we can find 
that the application of DEA models in the production 
planning becomes a hot issue. However, most of these 
researches are based on the known market demand. It is 
inappropriate to always assume that demand is known. 
The market demand may be changed by the market 
environment, seasonality and so on. Some demand may 
conform to certain statistical law. Thus, the novelty of 
the current paper lies in the combination of stochastic 
demand and DEA resource allocation model. We 
introduce the “service level” which helps the managers 
make plans with high service quality. While the managers 
choose high service level, they will pay more for the 
production cost. 

The rest of the paper is organized as follows: In 
section 1, we propose a multi-period model and exhibit 
the associated assumptions and notations. Then a 
numerical example is given to illustrate the proposed 
approach in section 2. Finally, we conclude the paper in 
Section 3.

1.  THE MODEL

1.1  Notations
The notations in the model are defined as follows:

(1) xh
ij and xh

sj are historical input data, where xh
ij 

represents i-th variable input and xh
sj s-th non-variable 

input for j-th historical data. Specially xh
s represents the s-th 

non-variable input since it stays the same in the predicting 
scenario, hence xh

s=xh
sj , j=1,2,...k.

(2) yh
rj indicates r-th output for j-th historical data.

(3) xp
i is the i-th predicted variable input value of the 

company’s p-th period in future.
(4) yp

r is the r-th target output of the company’s p-th 
period in future.

(5) Ip
r is the p-th time period inventory volume for r-th 

output, while I 0
r represents the initial stock, which is a 

constant quantity.
(6) wp

i indicates the unit cost for the i-th input in the p-th 
time period.

(7) qp
r indicates the unit inventory cost for the r-th 

output in p-th time period. 
(8) Dp

r represents the p-th period market demand 
for the r-th output, which is a known quantity when 
scheduling the production process for certain time period. 

(9) i is the subscript for variable input.
(10) s is the subscript for non-variable input.
(11) p is the superscript for the forecasting time period. 
(12) n is the total number of forecasting time period.
(13) r is the subscript for output.
(14) j is period for reference data, here signifying the 

subscript for processing units.

1.2  The Deterministic Model
Complying with the aforementioned notations, we firstly 
introduce a multi-period production planning model based 
on known market demand (Bi, Mao, & Ding, 2013):
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The objective function in (1) minimizes the total costs. 
The first part of objective function represents input costs 
(the sum of products of unit cost for each input and the 
corresponding volume of input resource in every period) 
and the rest represents stock costs (the sum of products 
of unit inventory cost and the corresponding volume of 
inventory in every period). (2)-(17) are 4 groups of cognate 
constraints. Take the first period as an example. (2)-(4) 
are the company’s capacity constraints: constraint (2) 
demonstrates the constraints for variable inputs; (3) for 
non-variable inputs; constraint (4) for outputs, which are 
all derived from the theory of production possibility set, 
one of the central elements in DEA field. Constraint (5) 
implies that the products of the firm must satisfy the market 
demand, where initial stock I0

r and demand Dp
r  are known 

quantities. The posterior constraints for period 2, period 3 
until period n all conform to similar situations. To speak of 
the aforesaid assumption (1), constraints (3), (7), (11) and 
(15) are actually reduced to convex weights constraints 
(Σ λp

j=1). Therefore they represent the technology of 
variable return to scale in nature.

Here we illustrate the multi-period model of a specific 
situation for a company. Our model is to determine 
the production plan for the next three months and use 
the historical data of input-output of the six preceding 
months and the next months demand. When the total cost 
of the company represented by the objective function is 
minimized, we can obtain the rational resource allocation 
plan, output target and inventory storage. A month can 
also be replaced by a quarter, a year and so on.

1.3  Chance Constraints
In this section, we introduce the chance constraint to 
consider the impact of the environment variation. Since 
the proper representation of stochastic parameters is a 
key component of incorporating the consideration of 
uncertainty into the stochastic model and the demand 
is an essential stochastic variable in the production 
planning process. We will model the demand as normally 
distributed with a specified mean and standard deviation. 
The normality assumption is widely invoked in literature 
(S Nahmias; Steven Nahmias & Cheng, 1997; Wellons 
& Reklaitis, 1989) because it has the essential features of 
demand uncertainty and is convenient to use. 

Let us introduce the chance constraint which is used 
to consider the demand uncertainty. We assume that 
demand variables are random variables, but the other 
variables remain deterministic as before. By introducing 
the stochastic variable D~ p

r(p=1,...n) to substitute for 
the deterministic variable D p

r, the constraints including 
variable Dp

r can be transformed as: 
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Here, P means “Probability” and the D~ p
r is used to 

identify the demand as a random variable with a known 

normality distribution and parameters for p-th period 
(Cooper, Huang, & Li, 1996). Other variables remain the 
same definition as before. 

Since we can let I p
r=0 and 
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constraint (21) is satisfied evidently. Thus it is reasonable 
to write:
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Here, “*”  means the optimal value. Thus, the α*

p 
means the possibility of achieving this optimal value. 
We should note that we must have α*

p ≤ αp, since 1-αp is 
prescribed in the constraint (22) for period p as the chance 
allowed for stochastic demand. Thus, 1-α*

p  represents a 
service level. We can set the 1-αp to make the constraint of 
service level.

The constraint (22) is intended mainly to explain the 
stochastic conception. Now we provide the “deterministic 
transformation” for the computation feasibility. We 
start by assuming D~ p

r is a random variable with a known 
normal distribution of N(μp, σ

2
p). The index p means 

μp and σp is defined for D~ p
r in p-th period. Thus, we can 

obtain:
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Here, we introduce a new variable z~p, defined by:
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We can see that z~p follows the standard normal 
distribution which means z~p to has unit variance and zero 
mean. Then we can introduce the direct substitution in (25) 
for each period.
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(26)
Thus, we can use the property of z~p with standard 

normal distribution to transform (26) as: 
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Where, Φ means the standard normal distribution 
function, so Φ-1 is its inverse function which is so-called 
fractile function.

Through above transformation, we can transform the 
stochastic problem into the deterministic problem. μp and 
μp can be obtained by the market statistic or other data 
statistic.
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2.  EMPIRICAL ILLUSTRATION
Since it is hard to obtain the data from company, we use  
hypothetical production to validate rationality of our model.

2.1  Data
We generally assume that a company has 3 kinds of 
inputs. One non-variable input: capital and two variable 
inputs: the monthly staff number and the monthly total 
amount of raw material. One output is the number of 
products. The hypothetical historical data for six months 

are shown in Table 1. Table 2 exhibits the market demand 
in the next three months (Dp

r), the unit cost for input 
resources (wp

1 and wp
2), and unit cost for inventory (qp

r). 
The initial stock I0

1=1800.
According to the notations in Section 2, the index 

is i=2，s=1，p=3，r=1，j=6. Here, we view the six 
processing units in the sequential months as DMUs. The 
DMUs are compared with each other to form a possible 
production set. The plan of next 3 months is forecasted by 
the production set.

Table 1 
Hypothetical Historical Data

(DMUj) x1j (staff number/people) x2j(amount of raw material/ton) x3j(fixed input/million dollar) yj(product number/dozen)

1 55 57,200 100 4,800

2 60 62,400 100 5,000

3 58 59,200 100 4,900

4 54 55,080 100 4,500

5 50 53,000 100 4,400
6 50 54,000 100 4,450

Table 2 
Demand For Period 1, 2, 3 and Other Parameters

Month(p) Dp
1(dozen) wp

1(dollar/people) wp
2(dollar/ton) qp

1(dollar/dozen)

1 5,150 1 2.5 0.4

2 5,200 2 2.5 0.4
3 5,300 0.8 2 0.5

2.2  Results of Deterministic Method
Table 3 exhibits the solution of the problem which is 
solved by the deterministic model. We can see a general 
trend from month 1 to month 3. Inputs and outputs are 

gradually increased while the inventories decreased as 
time flow. The stock volume for month 3 eventually goes 
to 0 and the total cost is 386782.8 dollars. 

Table 3
Forecasting Results

Month (p) xp
1( staff number/people) xp

2(amount of raw material/ton) yp
1( product number/dozen) Ip

1( product number/dozen)

1 50 53,000 4,400 1,050

2 53 55,625 4,650 500

3 55 57,200 4,800 0
min 386782.5(dollar)

2.3  Results of Stochastic Method
To consider the problem of market variation, we add the 
chance constraints. And the main aspect of the market 
variation is the demand uncertainty. We may not know 
the accurate amount of demand, but the probability 
distribution can be calculated by mathematical statistics. 
We assume that the stochastic variable of demand follows 
the normal distribution, thus the mean value and standard 
deviation is shown in Table 4. To compare the results 
with the deterministic method, we let the μ equal to the 
demand value in Table 2, and other data are the same in 
section 2.1. 

The solution of the stochastic model is shown in 
Table 5 and Table 6. Table 5 exhibits the results with 
αp=0.9, p=1,2,3. which means a low service level. When 
we compare Table 5 with Table 3, it is interesting to find 
that the total cost is decreased. The direct reason is the 
decrease of the input of raw material in month 2. Actually, 
the results reflect that the company sacrifices their quality 
of service to save the total cost when they face the market 
variation. The company chooses to cut down their input of 
raw material in month 2 which leads to a high possibility 
of not satisfying the demand in this period. Some customer 
will even be angry about not getting their product. 
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When we choose a high service level with αp=0.1, 
p=1,2,3, the total cost is raised to 387, 792 which is 
listed in Table 6. We can notice that the input 54, 56028 
in month 2 in Table 6 are higher than that in Table 3. The 
company uses more inputs to produce more products to 
obtain a high possibility to satisfy the demand in month 
2. Although the total cost is high, this choice offers a high 
quality service level. 

The different option of the 1-α(service level) gives the 
manager of the company a trade-off between service level 
and the total cost. A trade-off curve helps the manger to 
make the decision is shown in Figure 1. We can see that 
the total cost increase as the service level is improved. 
The increased fee is produced by the high level of service 
quality. It is interesting to see that the total cost equals to 
the results in Table 2 if α=0.5.We call this point a Neutral 
Point. At this Neutral Point, the total cost is neither higher 
nor lower than the total cost. It just equals to the value in 

Table 2 which means we don’t pay for the promotion of 
service quality or save the money from the bad service 
quality. Different companies have different strategies. 
For some military companies, they have strict request of 
their product demand. If they cannot supply sufficient 
product in such period, it will result in huge lose. Thus, 
the military companies should choose a low value of α 
to ensure the supply of the product such as bullets, guns, 
etc.. For some other companies, they may more careful 
about their cost. These companies can choose a relatively 
low service level to save money.
Table 4 
Mean Value and Standard Deviation

Period(p) μp(mean value)  σp(standard deviation)
1 5,150 10

2 5,200 10
3 5,300 10

Table 5
Forecasting Results With αp=0.9,  p=1, 2, 3
Month(P) xp

1( staff Number/People) xp
2( amount of raw material/ton) yp

1( product number/dozen) Ip
1(product number/dozen)

1 50 53,000 4,400 1,063

2 53 55,222 4,612 487

3 55 57,200 4,800 0
min 385,775 (dollar)

Table 6
Forecasting Results With αp=0.1, p=1, 2, 3

Month(p) xp
1( staff number/people) xp

2( amount of raw material/ton) yp
1( product number/dozen) Ip

1(product number/dozen)

1 50 53,000 4,400 1,037

2 54 56,028 4,688 513

3 55 57,200 4,800 0
min 38,7792 (dollar)
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Trade-Off Curve

CONCLUSION
DEA has been widely used to various performance 
evaluation situations especially for non-profit entities 
since DEA does not require a priori information 
regarding concrete operating process. Moreover, 

it is important to schedule the production planning 
reasonably. Even though many scholars do a lot of 
researchers on this subject, most of these researchers 
are based on the deterministic methodologies. Thus, 
they cannot combine stochastic demand and production 
planning together. 

A DEA-based multi-period production planning 
model was constructed in this paper. This approach 
further promotes the development of production planning, 
especially in the direction of stochastic approach. A 
hypothetical numerical example was applied to illustrate 
this model. The results indicate that it is possible to obtain 
a detailed plan for input resource allocation and inventory 
policy when minimizing the enterprise’s costs after the 
market demand is satisfied. Moreover, a stochastic model 
is given to adapt the variation of the market in which 
demand is defined as stochastic variable. In the trade-off 
curve, we conclude that if a company wants a high level 
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of service level, it should pay more money to produce 
more products to satisfy the customer.      

 Finally, our paper points out a feasible direction for 
non-profit organizations in the multi-input and multi-
output. For example, how to arrange patients in diverse 
departments to receive high quality medical treatment 
and simultaneously keep the hospital operating in highly 
efficient status is now in the spotlight. The manager 
could use the trade-off curve to make the decision 
when considering the service level and the efficiency 
simultaneously. 

Future research can consider different statistical 
hypothesis for the market demand, for example, 
t-distribution, and f-distribution and so on. Although each 
of the above situations will bring a number of obstacles 
for researchers, they are the ones which offer possibilities 
and future research directions to promote further progress 
in this area.
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