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Abstract
Copula modeling has become an increasingly popular 
tool in finance to model assets returns dependency as it 
can overcome the limitations of correlation when extreme 
losses occurred. In this study, we discussed the choice 
of an appropriate copula function aimed at adequately 
capturing the dependence between the return time series 
of S&P 500 stock index and futures in U.S. financial 
crisis. By comparing with the Gaussian, Student’s t, 
Gumbel, Clayton and Frank copula, we concluded that 
Gumbel copula function can provide a better fit to the 
empirical data, and therefore well extract the dependence 
structure between S&P 500 stock index and futures in 
financial crisis.
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INTRODUCTION
Modeling the dependence structure of assets returns 
time series has become an active topic of research in the 
finance field in recent years. A popular used dependence 
measure is correlation, which indicates the strength and 
direction of a linear relationship between two random 
variables. The best known correlation measure is the 
Pearson correlation coefficient. It is a reasonable measure 
when the random variables are normally distributed. But 
research shows that the multivariate normal distribution is 
inadequate because it underestimates both tail thickness of 
the marginal distributions and their dependence structure. 
Especially in financial crisis, data are approximated with 
more skewed distributions because of occasional, extreme 
losses. In 2008 financial crisis, U.S. stock markets have 
suffered their worst volatile trading days in memory, and 
various stock indices have fallen dramatically. The Dow 
Jones and S&P 500 are on course to record their worst 
yearly returns since the Great Depression. Meanwhile, 
U.S. stock index futures fluctuated a day after the 
Dow Jones snapped a seven-day losing streak. There 
is a number of empirical evidence that the dependence 
between many important asset returns is non-normal in 
crisis. Pearson correlation coefficient is not an appropriate 
dependence measure for very fat-tailed risks when 
extreme losses occurred. This inadequacy of correlation 
requires an appropriate dependence measure. Copula 
method may be the right tool for the job, which is applied 
to research on non-normal dependence of financial time 
series. 

The primary motivation for this paper is as follows. 
Copula models for financial time series are used to 
extract the dependence between stock index futures and 
its underlying asset when crisis breaks out. In this study, 
we empirically examined the return time series of S&P 
500 stock index and futures in 2008 financial crisis. It is 
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concluded that, stock index and futures are not normally 
distributed in financial crisis and Gumbel copula function 
can provide a better fit to the empirical data.

Since Longin and Solnik (2001) have shown that the 
correlation between market returns is higher in case of 
extreme events, the number of papers on copula theory in 
finance and economics has grown enormously. Schmidt 
(2002) discusses the tail dependence property for some 
well-known examples of elliptical distributions. Cherubini 
et al. (2004) focus primarily on applications of copulas in 
mathematical finance and derivatives pricing. Rodriguez 
(2007) models dependence with switching-parameter 
copulas to study financial contagion. Bouye and Salmon 
(2009) introduce an approach to nonlinear regression 
model based on the copula function that defines the 
dependency structure between the variables. Guegan and 
Zhang (2010) propose a dynamic copula for measuring 
dependence in multivariate financial data.

1.  COPULA MODELS
As is known to us, non-normality at the univariate level 
is associated with leptokurtosis phenomena, and the fat-
tail problem. The use of copula functions enables us to 
model these features. A copula function links n univariate 
marginal distributions to a full multivariate distribution 

resulting in a joint distribution function of n standard 
uniform random variables. Consider a vector random 
variable, X  =[X 1, X 2,…, X n], with joint distribution F 
and marginal distributions F1, F2,…, Fn. Sklar’s theorem 
provides the mapping from the individual distribution 
functions to the joint distribution function:
                                                                                         
                                                                                         (1)

From any multivariate distribution F, we can extract 
the marginal distributions Fi, and the copula C, which 
captures the dependency structure among X1, X2,…, Xn. 
And, more useful for time series model, given any set of 
marginal distributions (F 1, F 2,…, F n) and any copula C, 
equation (1) can be used to obtain a joint distribution with 
the given marginal distributions.

1.1  Elliptical Copulas
Copulas can be distinguished in the Elliptical and 
Archimedean family. Elliptical copulas are the ones with 
elliptical distributions and therefore symmetry in the 
tails. Two frequently used copulas in this family are the 
Gaussian and the student’s t copula.
(1) Gaussian copula
Assume there are two random variables X and Y, the 
Gaussian copula is defined by

                                                                                         (2)
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where Фρ is the bivariate standardized Gaussian 
cumulative distribution function (cdf) and the letter Ф 

represents the univariate standardized Gaussian cdf.
(2) Student’s t copula
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1.2  Archimedean Copulas
In comparison to Elliptical copulas, Archimedean copulas 
are constructed using a generator øα (t ), indexed by the 
parameter α. By choosing the generator, one obtains a 
family of Archimedean copulas. The formulas of Gumbel, 
Clayton and Frank copula for the bivariate cases are given 
as follows.
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2.  DATA AND EMPIRICAL RESULTS

2.1  Data
We investigate the dependence between the S&P 500 
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stock index and futures time series data in U.S. financial 
crisis. On September 15th, 2008, bankruptcy of the 
investment bank “Lehman Brothers” in U.S. marked 
the beginning of global crisis. It resulted in a number 
of bank failures and sharp reductions in the value of 
stock worldwide. Then, a great many of the world’s 
stock exchanges experienced the worst declines in their 
history, with drops of around 10% in most indices. For 
this reason, the empirical data covers the period from 
September 15th, 2008 to July 31st, 2009 when the stock 
and futures markets suffered a dramatic fluctuation in the 
crisis. The test data is the natural logarithm return of the 
closing price. All the estimation process is carried out in 
Matlab 7.7.0. Some descriptive statistics are presented 
in Table 1. As previously found in other studies, returns 
exhibit excess kurtosis and skewness. It is also illustrated 
in Figure 1. Distributions of return series are founded to 
be non-normality.
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Table 1  
Descriptive Statistics of S&P 500 Stock Index and Futures Returns Series
Series                    Mean            Std. Dev.       Skewness         Kurtosis          Jarque-Bera                 Probability

S&P 500                   -0.0011             0.0300        -0.0483          4.6509           140.8539                   0.0000
S&P 500 futures  -0.0011             0.0303         0.1808          5.7877           295.1440                   0.0000
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Figure 1  
Frequency Histograms of S&P 500 and S&P 500 
Futures Returns Series

2.2 Copula Choice for S&P 500 Stock 
Index and Futures
The parameters  and formulas  of  El l ip t ical  and 
Archimedean copulas were estimated as follows.

2.2.1  Elliptical Copulas
The correlation coefficient ρ of Gaussian copula 

function is 0.9843 and the function is

The correlation coefficient ρ of Student’s t copula is 0.9871 and the degree of freedom is 3. Then the function is
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The density functions c(u,v) of Gaussian and Student’s 
t copula are plotted in Figure 2. It is illustrated that 
both these copulas have symmetric tails and strong tail 
dependence exists between S&P 500 stock index and 

futures returns series. However, they have different 
characteristics in terms of tail dependence. The density 
function of Student’s t copula has a little stronger tail than 
Gaussian copula.
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Figure 2  
The Density Function C (U,V) of Gaussian and Student’s T Copula

2.2.2  Archimedean Copulas
The parameters α of Archimedean copulas are 

estimated and the formulas of Gumbel copula, Clayton 
copula and Frank copula are followed in Table 2.

Table 2  
Estimated Results of Archimedean Copulas
Archimedean copulas                              Estimated parameter α                                     Formulas of copulas

Gumbel copula                                                        9.1269  

Clayton copula                                                        9.2345 

Frank copula                                                      34.8682 
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The density functions c(u,v) of Gumbel, Clayton and 
Frank copulas are plotted in Figure 3. As shown that, they 
have different characteristics in terms of tail dependence. 
The Gumbel copula has asymmetric tails and the upper 
tail is stronger. The Clayton copula also has asymmetric 

tails, but differently, the lower tail is stronger than upper. 
The lower left tails are best described with Clayton 
copulas while the upper right tails are best described with 
Gumbel copula. Different with the former two copulas, 
the density functions of Frank copula are symmetry in the 
tails.
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Figure 3  
The Density Function c(u, v) of Gumbel, Clayton and Frank Copula

2.2.3  Comparison and Evaluation
In order to choose an appropriate copula model to 
describe the dependence structure of data, we introduce 
empirical copula to evaluate performances of the Elliptical 
and Archimedean family. When analyzing data with an 

unknown underlying distribution, one can transform the 
empirical data distribution into an empirical copula by 
warping such that the marginal distributions become 
uniform. Mathematically the empirical copula frequency 
function is calculated by

                                                                                         (9)
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Results of dGaussian, dt, dGumbel, dClayton and dFrank are 
0.0954, 0.0927, 0.0883, 0.2939 and 0.1304. By comparing 
distances, we found that the distance between Gumbel 
and empirical copula is the smallest. It is suggested that 
the Gumbel copula can provide a better fit to the empirical 
data and therefore well extract the dependence structure 
between S&P 500 stock index and futures in financial 
crisis.

CONCLUSION
In this study, we discussed the choice of an appropriate 
copula function aimed at adequately capturing the 
dependence between the return time series of S&P 500 
stock index and futures in U.S.. In 2008 financial crisis, 
data are approximated with more skewed distributions 
because of extreme losses. The linear correlation is 
inadequate for non-normal distributions. In this case, 
the Elliptical and Archimedean family of copulas are 
employed to extract the dependence structure. 

To choose an appropriate copula to describe the 
dependence structure, we introduce empirical copula 
to evaluate performances of copulas. By comparing the 
distances between each copula function and empirical 

copula, we concluded that the dependence between the 
return series of S&P 500 stock index and futures in 2008 
financial crisis can be well captured by the Gumbel copula 
function. 
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